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Noise-induced drift in two-dimensional anisotropic systems

Oded Farago
Department of Biomedical Engineering and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev,

Be’er Sheva 85105, Israel
(Received 14 June 2017; revised manuscript received 18 September 2017; published 17 October 2017)

We study the isothermal Brownian dynamics of a particle in a system with spatially varying diffusivity. Due to
the heterogeneity of the system, the particle’s mean displacement does not vanish even if it does not experience
any physical force. This phenomenon has been termed “noise-induced drift,” and has been extensively studied
for one-dimensional systems. Here, we examine the noise-induced drift in a two-dimensional anisotropic system,
characterized by a symmetric diffusion tensor with unequal diagonal elements. A general expression for the mean
displacement vector is derived and presented as a sum of two vectors, depicting two distinct drifting effects.
The first vector describes the tendency of the particle to drift toward the high diffusivity side in each orthogonal
principal diffusion direction. This is a generalization of the well-known expression for the noise-induced drift
in one-dimensional systems. The second vector represents a novel drifting effect, not found in one-dimensional
systems, originating from the spatial rotation in the directions of the principal axes. The validity of the derived
expressions is verified by using Langevin dynamics simulations. As a specific example, we consider the relative
diffusion of two transmembrane proteins, and demonstrate that the average distance between them increases at a
surprisingly fast rate of several tens of micrometers per second.
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I. INTRODUCTION

Recent advances in single particle tracking methods and
force measurement techniques have led to renewed interest in
the problem of isothermal Brownian motion in inhomogeneous
systems [1]. A prominent example is diffusion of a colloidal
particle near a surface, in which case due to hydrodynamic
interactions, the diffusion coefficients parallel and perpendic-
ular to the boundary are (i) different from each other, and
(ii) increase with the particle-wall distance [2,3]. Another
example is diffusion in liquid-crystalline systems where the
orientation of the media is heterogeneous [4,5]. Closely related
is the problem of Brownian motion of nonspherical particles,
e.g., ellipsoids whose diffusion coefficients along the long and
short axes are different [6,7].

A common feature in the above examples of Brownian
motion with state-dependent diffusion is the anisotropic nature
of the dynamics, i.e., the fact it is direction dependent.
Such problems arise only in two and higher dimensions.
Current theoretical understanding of the topic of hetero-
geneous diffusion, however, is based on studies of one-
dimensional systems where a particle moves in a medium with
coordinate-dependent diffusion coefficient D(x) (see recent
review [8], and many references therein). The dynamics of a
freely diffusing particle (i.e., experiencing no potential energy
gradient) in a one-dimensional isothermal system, can be
described by Langevin’s equation [9]

m
dv

dt
= −α(x)v + β[x(t)], (1)

where m and v = dx/dt denote, respectively, the mass and
the velocity of the particle. This is Newton’s second law
of motion where the contact with the heat bath is realized
via the action of two effective forces: A friction force,
−αv, proportional to the velocity with a coordinate-dependent
friction coefficient α(x) > 0, and a stochastic force β(t) that
can be modeled as a multiplicative Gaussian noise with zero

mean 〈β(t)〉 = 0 and δ-function autocorrelation 〈β(t)β(t ′)〉 =
2α[x(t)]kBT δ(t − t ′), where kB is Boltzmann’s constant and
T is the temperature of the system. These statistical properties
ensure that the fluctuation-dissipation theorem is obeyed,
which is necessary for achieving correct Fickian dynamics
[10]. The state-dependent diffusion coefficients D(x) and α(x)
are related to each other via Einstein’s relation [11]

α(x) = kBT /D(x). (2)

The trajectory of the particle can be calculated by nu-
merically integrating Langevin’s equation in time. From an
ensemble of stochastic trajectories, the probability distri-
bution function (PDF), P (x,t), of finding the particle at
coordinate x at time t can be determined for a given initial
distribution P (x,0). In heterogeneous systems with spatially
varying friction coefficient α(x), Langevin’s equation must
be supplemented with a convention for choosing the value
α(x) at each integration time step dt . The ambiguity about
the appropriate convention rule is known in the literature
as the Itô-Stratonovich dilemma [12]. In the “overdamped”
limit of Langevin’s equation, which is when the inertial
term on the left-hand side of Eq. (1) is set identically to
zero, different conventions lead to different dynamics and,
consequently, different PDFs [13]. Keeping the inertial term
in Eq. (1), on the other hand, ensures that the correct
PDF is obtained when the integration time step dt → 0,
regardless of the interpretation of the stochastic calculus [14].
This remarkable difference between the underdamped and
overdamped Langevin equations is directly related to the most
striking feature of heterogeneous Brownian dynamics—the
noise-induced drift.

The term “noise-induced drift” refers to the phenomenon
that a particle, freely diffusing in a medium with a coordinate-
dependent friction coefficient α(x), tends to drift toward the
less viscous side of the system [1]. By “freely” we mean in
the absence of external forces, concentration, or temperature
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gradients. The presence of a diffusion coefficient gradient
allows for a drift in the position of an individual particle without
a net particle current—a rather counterintuitive equilibrium
effect. The drift originates from the fact that when the particle
moves in the less viscous direction, it suffers less dissipation
and therefore travels longer distances [14]. The drifting effect
is countered by the tendency of the particle to diffuse more
slowly and get trapped for longer durations at the more viscous
part of the system. In a closed system, the consequence of
the opposite “drifting” and “trapping” effects is the proper
uniform equilibrium distribution [15]. We notice, however,
that the drift is an inertial effect taking place at short time
scales t � τ = m/α during which Langevin’s dynamics is
ballistic in nature. This effect is missing in the overdamped
version of Eq. (1) which, therefore, must be written with an
additional term to correctly account for the drifting effect.
The magnitude of this so-called “spurious drift” term depends
on the chosen interpretation [13]. The term spurious drift
is, of course, misleading as the drift is a very real physical
phenomenon.

In dimensions higher than one, the system is characterized
by a symmetric diffusion matrix that can be diagonalized along
the principal diffusion directions. It is expected to observe
noise-induced drift toward lower viscosity along each of these
principal directions, since the multidimensional dynamics
decouples into independent one-dimension problems. This,
however, is true only if the directions of the principal axes
are fixed. If, on the other hand, the principal directions are
themselves spatially dependent, the noise-induced drift may
be also affected by their rotation. In this work we derive
an expression for the noise-induced drift in two-dimensional
anisotropic systems [Eq. (13)]. The derivation indeed reveals
a new term representing an additional novel contribution
to the noise-induced drift arising from spatial variations in
the directions of the principal axes. The magnitude of the
new term is proportional to the difference between the the
principal diffusion coefficients and the rate of spatial change
of the principal unit vectors (curvature). The newly derived
expression for the noise-induced drift is tested and validated by
using Langevin dynamics simulations of model systems with
anisotropic diffusion tensor. To demonstrate the importance of
the drift effect, we use the derived expression to evaluate the
variations in the relative distance between two transmembrane
proteins, and find the noise-induced effect to be surprisingly
large.

The paper is organized as follows. In Sec. II, we present
our derivation for the noise-induced drift. Section III presents
the results of computer simulations of Langevin dynamics in
two-dimensional anisotropic systems. In Sec. IV we apply the
newly derived expression to the case study of pair diffusion of
membrane proteins. Finally, in Sec. V, we discuss the results
and explain why the variations of the principal diffusion axes
induce an additional component to the noise-induced drift.

II. DERIVATION

A. Noise-induced drift in one dimension

The displacement, �x, of a particle initially located at x =
x0 can be calculated by integrating the full (underdamped)

Langevin equation (1) over the time interval from t = 0 to
t = �t , and taking the average of the different terms with
respect to all possible noise realizations and all possible values
of the initial velocity (or, equivalently, over an ensemble of
particles). This yields the following equation:〈∫ x0+�x

x0

α(x)dx

〉
= −〈m�v〉 +

〈∫ �t

0
β(t)dt

〉
. (3)

Both terms on the right-hand side of Eq. (3) vanish for the
following reasons: The first term is the average momen-
tum change of the particles, which are moving at constant
temperature and experience no deterministic force due to
a potential gradient. Their momentum distribution function,
therefore, remains unchanged and is given by the symmetric
Maxwell-Boltzmann equilibrium distribution. The second
term represents the average momentum change due to the
thermal noise. It vanishes because the ensemble average at
each time instance and coordinate 〈β(x(t)〉 = 0 [11,14]. (It is
the noise variance rather than the mean that depends on the
coordinate x.) We thus conclude that〈∫ x0+�x

x0

α(x)dx

〉
= 0. (4)

Assuming that α(x) is a smooth function which does not
change considerably during the time interval �t , one can use
the truncated Taylor expansion α(x) � α(x0) + α′(x0)(x − x0)
in (4) to arrive at the following relation:

〈�x〉 = − α′(x0)

2α(x0)

〈
(�x)2

〉
(5)

between the mean displacement and the mean-squared dis-
placement (MSD). Further assuming that the time interval of
interest �t is much larger than the ballistic time τ ∼ m/α(x0),
the MSD on the right-hand side of Eq. (5) can be approximated
to leading order by 〈(�x)2〉 � 2D(x0)�t which, together with
Einstein’s relation (2), yields

〈�x〉 � D′(x0)�t. (6)

From Eq. (6) we identify the drift velocity vdrift ≡ 〈�x〉/�t as
being equal to the gradient of the diffusion coefficient, D′(x).

B. Multidimensional systems

In dimensions higher than one, Langevin’s equation takes
the tensorial form [16]

m
dvi

dt
= −α({xk})ij vj + βi[{xk(t)}], (7)

where the subscripts i, j , and k denote Cartesian coordinates
and Einstein’s summation rule over repeated indices is as-
sumed. The components of the friction tensor, αij , may depend
on all the space coordinates, {xk}, and the noise satisfies
〈βi(t)〉 = 0, and 〈βi(t)βj (t ′)〉 = 2αij kBT δ(t − t ′). The space-
dependent diffusion tensor, Dij ({xk}), is related to αij via
Einstein’s relation (2), which in dimensions higher than one
reads αikDkj = kBT δij , where δij is the Kronecker’s delta
(identity matrix) [16]. The drift can be calculated by repeating
the derivation outlined above for one-dimensional systems.
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This leads to the generalized form of Eq. (5)

αij 〈�xj 〉 = −∂αij

∂xk

〈∫
[xk − xk(0)]dxj

〉

� −∂αij

∂xk

〈
�xk�xj

2

〉
� −∂αij

∂xk

Dkj�t. (8)

From Einstein’s relation we deduce that (∂αij /∂xk)Dkj +
αij (∂Dkj/∂xk) = 0, and by using this result in (8), we arrive
at

〈�xi〉 � ∂Dij ({xk})
∂xj

∣∣∣∣
0

�t, (9)

which generalizes Eq. (6) for d-dimensional (d > 1) systems.
Since αij is a real symmetric matrix at each point in space, it

can be diagonalized. Along the local principal axes, the friction
tensor reads αij = αjδij (Einstein’s summation convention is
suppressed henceforth), where αj ({xk}) = kBT /Dj ({xk}) is
the coordinate-dependent eigenvalue of the matrix αij that
is associated with the j th principal direction, and Dj is the
corresponding, space-dependent eigenvalue of the diffusion
matrix. We now consider the Brownian motion of a particle
in a two-dimensional anisotropic system with D1(x1,x2) 	=
D2(x1,x2), where the Cartesian axes of the laboratory frame,
x̂1 and x̂2, are chosen to lie in the initial principal directions.
The diffusion tensor of the system, D(x1,x2), is given by(

D1 cos2 θ + D2 sin2 θ �D sin 2θ

�D sin 2θ D1 sin2 θ + D2 cos2 θ

)
, (10)

where �D (x1,x2) = D1 − D2, and θ (x1,x2) is the angle
between the laboratory frame axes and the local principal
directions [θ (t = 0) = 0]. We note that the same form Eq. (10)
is also used to study the Brownian motion of an ellipsoid in
a homogeneous medium [7]. However, in the latter example,
the diffusion tensor does not depend on the center-of-mass
coordinates of the particle as in the present study, but on
the instantaneous orientation of the (nonspherical) Brownian
particle. This implies an important difference between the two
problems. In the case of diffusion of particles with anisotropic
shapes, the translational and orientational degrees of freedom
are decoupled and, therefore, at sufficiently long times the
motion must become isotropic. In the case discussed herein of
diffusion in anisotropic medium, the changes in the orientation
of the diffusion tensor depend on the position of the particle,
which introduces a strong coupling between the translational
diffusion and the orientational variations.

Using Eq. (10) in Eq. (9) yields the following expressions
for drift velocity, vdrift

i = 〈�xi〉/�t :

vdrift
1 = ∂D1

∂x1
+ �D

∂θ

∂x2
, (11)

vdrift
2 = ∂D2

∂x2
+ �D

∂θ

∂x1
. (12)

The second terms on the right-hand sides of Eqs. (11) and (12)
can be reexpressed in a more illuminating form as follows. The
unit vectors x̂1 and x̂2 in the local principal directions define
an orthogonal curvilinear coordinate system, as exemplified in
Fig. 1. The partial derivatives of θ , appearing in Eqs. (11)
and (12), give the curvatures c1 and c2 of the coordinate

1x

2x

1         1

2         2

x  = x (0)

x  = x (0)
FIG. 1. The local principal directions define an orthogonal curvi-

linear coordinate system with unit vectors x̂i (i = 1,2) that are tangent
to the coordinate curves xi = xi(0) = const.

curves x1 = x1(0) and x2 = x2(0), respectively: ci = ∂θ/∂xi .
In vector notation (see Fig. 1): 
c1 = (∂θ/∂x̂1) = −c1x̂2, and

c2 = (∂θ/∂x̂2) = c2x̂1, which allows writing Eq. (9) in the
following vectorial form:(

vdrift
1

vdrift
2

)
=

(
∂D1/∂x1

∂D2/∂x2

)
+

(
(D1 − D2)c2

(D2 − D1)c1

)
, (13)

which constitutes the main result of this paper.

III. LANGEVIN DYNAMICS SIMULATIONS

The two vectors on the right-hand side of Eq. (13) depict
two distinct drifting effects. The former represents the d-
dimensional generalization of the one-dimensional equation
(6) for the drift in the direction of increasing diffusivity.
Its validity can be tested by considering an example where
the principal directions of the diffusion tensor are fixed, in
which case the angle θ is constant and the second vector
is null. This is illustrated in Fig. 2, which shows results for
〈�x1〉 and 〈�x2〉 vs time in an anisotropic two-dimensional

0 100 200 300 400 500 600 700 800 900 1000
Δt

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

<Δ
x>

 , 
<Δ

y>

FIG. 2. The mean displacements 〈�x1〉 (solid line) and 〈�x2〉
(dashed line) as a function of time, computed from Langevin
dynamics simulations of 5 × 105 stochastic trajectories of a particle
moving in an anisotropic system with D1 = 10x1/(x2)2 and D2 =
10/x2, and starting at x1 = x2 = 100.
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FIG. 3. The mean displacement in the x direction, 〈�x〉, as a
function of time. The monotonically increasing (decreasing) curve
depicts results for a particle starting at (x,y) = (1,0) and moving
in an anisotropic system with Dr = 1/25, and Dθ = 1/125 (Dr =
1/125 and Dθ = 1/25). The inset shows a magnification of the initial
region �t � 15, where the tangent dashed lines depict the asymptotic
behavior 〈�x〉 ∼ ±(4/125)�t , expected from Eq. (13).

system with D1 = 10x1/(x2)2 and D2 = 10/x2. The results are
based on inertial Langevin dynamics simulations of 5 × 105

trajectories of a particle of unity mass (m = 1) at constant
temperature (kBT = 1) starting at (x1,x2) = (100,100). The
trajectories are computed with dt = 10−4 (which is three
orders of magnitude smaller than the ballistic time), using
a method based on the robust Grønbech-Jensen and Farago
(G-JF) Langevin thermostat [17,18] and the novel “inertial”
convention for assigning the values of the friction function
at each time step [11]: αinertial

i ≡ [αi({xk(t)}) + αi({xk(t) +
vk(t)dt})]/2. From Eq. (13), we expect the drift velocities
in this case to be vdrift

1 � ∂x1D1(100,100) = 10−3 and vdrift
2 �

∂x2D2(100,100) = −10−3, which is in agreement with the data
in Fig. 2.

The second vector on the right-hand side of Eq. (13)
depicts a different drifting effect, namely, the one which
is associated with the spatial variations in the principal
directions of the diffusion tensor. In order to focus on this
contribution to the mean displacement of the particle, we
consider a system with constant diffusion coefficients D1

and D2 (D1 	= D2), in which case the first vector is null. As
examples, we consider two radially symmetric systems: one
with diffusion coefficients D1 = Dr = 1/25 and D2 = Dθ =
1/125, in the radial and tangential directions, respectively,
and the other with D1 = Dr = 1/125 and D2 = Dθ = 1/25.
Using a method similar to that employed in Fig. 2 (see
Ref. [19]), we compute 5 × 105 trajectories, each of which
start at (x,y) = (1,0). Figure 3 depicts the mean displacement
along the x axis, which is the initial radial direction, as a
function of time. The monotonically increasing curve shows
the mean displacement of the particle in the system where
Dr = 1/25 and Dθ = 1/125, whereas the decreasing curve
corresponds to the system with Dr = 1/125 and Dθ = 1/25.
In the former case, the particle drifts outward (〈�x〉 > 0),
which is in agreement with Eq. (13) for Dr = D1 > D2 = Dθ .
Conversely, the particle moves inward for Dr = D1 < D2 =

Dθ , which is indeed observed in the simulations. Notice that
in the latter case, the displacement 〈�x〉 → −1 for �t → ∞,
which is anticipated since this is exactly the initial distance
of the particle from the symmetry center of the system. At
small times (i.e., when the particle is still close to the point
of origin), we expect the drift velocity vdrift

1 to converge to the
asymptotic values of (D1 − D2)c2 = ±(4/125) [see Eq. (13)].
This result is captured by the simulations, as demonstrated in
the inset to Fig. 3 by the tangent dashed lines depicting the
asymptotic behavior 〈�x〉 ∼ ±(4/125)�t . For both systems
(data not shown), the mean displacement along the initial
angular direction 〈�y〉 = 0, which is expected from symmetry
arguments, and is also consistent with Eq. (13) considering that
the curvature c1 of r lines is zero.

IV. PAIR DIFFUSION OF TRANSMEMBRANE PROTEINS

A particularly interesting example of two-dimensional
diffusion with radial symmetry is the relative pair diffusion
between two transmembrane proteins. This, and other closely
related setups, have attracted considerable attention because
the lateral diffusion of membrane proteins and lipid domains
is an important biophysical factor in controlling the dynamics
and functioning of the cell membrane (see reviews [20,21], and
references therein). Let us consider two membrane inclusions
with cylindrical cross sections of radius a, and denote by

r the vector distance between them (r = |
r| � a). The
temporal evolution of 
r = (r,θ ) is diffusive, and the associated
diffusion coefficients vary with r because of the hydrodynamic
interactions between the proteins. Explicitly, the radial and
tangential diffusion coefficients of the vector 
r are given
by [22]

Dr (r) = kBT

2πηm

[ln (r/a) − 3/2 + κr/3], (14)

Dθ (r) = kBT

2πηm

[ln (r/a) − 1/2 − κr/3], (15)

where κ−1 is the Saffman-Delbrück length given by the
ratio between the two-dimensional membrane viscosity ηm

and twice the three-dimensional viscosity of the embed-
ding fluid ηf : κ−1 = ηm/2ηf . For lipid bilayers ηm ∼
10−10–10−9 Pa s m, implying that κ−1 ∼ 0.1–1 μm. Using
expressions (14) and (15) in Eq. (13) gives the average
velocity at which the inclusions are moving away from
each other: vdrift

r = kBT κ/(2πηm) ∼ 1–102 μm/s, which is
(i) independent of r , and (ii) surprisingly large consider-
ing that the linear size of cellular membranes is typically
∼10 μm. There are obviously many other factors that produce
an inhomogeneous diffusion environment for a membrane
protein, most notably the presence of viscous raft domains
and the cytoskeleton meshwork that generates corrals in
which the protein may be localized [23,24]. Nevertheless,
the magnitude of the noise-induced drift (as indicated by
the above calculation of vdrift

r ) appears to be quite large,
which suggests that the hydrodynamic interactions between
the proteins cannot be neglected when studying their lateral
diffusion in an inhomogeneous membrane. We remind one
here (see earlier discussion) that in isothermal systems, the
drifting effect is countered by an opposite trapping effect
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in regions of low diffusivity. Therefore, when two proteins
come within close vicinity to each other, they would tend to
remain closely separated [25], and this tendency is likely to be
intensified by shorter range attractive interactions, for instance,
van der Waals and membrane-mediated interactions [26].

We note that expressions (14) and (15) hold in the regime
where r  κ−1. For r � κ−1, the radial and azimuthal
diffusion coefficients are given by [22]

Dr (r) = kBT

2πηm

[ln (2/κa) − γ − 2/(κr)], (16)

Dθ (r) = kBT

2πηm

[ln (2/κa) − γ − 2/(κr)2], (17)

where γ � 0.58 is Euler’s constant. Using these expressions
in Eq. (13), we arrive at vdrift

r = kBT /(πηmκ2r3), for the noise-
induced radial drift velocity at large separations.

V. DISCUSSION

In this paper we studied the problem of single particle
diffusion in multidimensional systems with space-dependent
diffusion coefficient, focusing on the noise-induced drift in
two dimensions. By following the derivation for the drift in
one-dimensional systems [Eq. (6)], we arrive at the generalized
form (9) in higher dimensions. This expression is further
analyzed in two dimensions by considering a coordinate
system that aligns along the local principal diffusion axes. This
analysis yields Eq. (13), where the noise-induced drift vector
is expressed as the sum of two terms representing two distinct
noise-induced drifting effects. The first effect, which arises
also in the one-dimensional case, originates from the fact that
the ballistic distance grows proportionally to the local diffusion
coefficient and, therefore, the particle moves more persistently
(“makes larger steps”) in the direction of increasing diffusivity.

The second effect is a novel one, existing only in dimensions
larger than one. It stems from the gradual rotation of the
principal diffusion directions x̂1 and x̂2 occurring during the
motion of the particle, and can be understood as follows. At
very large times, after the particle moves to distant regions
and the memory of the initial principal directions is lost,
the dynamics becomes isotropic, and is characterized by the
average diffusion coefficient (D1 + D2)/2. Assuming (without
loss of generality) that D1 > D2, this implies that as the
particle diffuses away from its initial position, the effective
diffusion coefficient in the initial x̂1 direction decreases,
Deff

1 < D1, while the diffusion along the initial x̂2 direction
occurs with an effectively increasing diffusion coefficient,
Deff

2 > D2. The origin of the drift lies in the fact that the rate
of rotation is spatially dependent. It is larger in the direction
where the curvature of the x1 and x2 curves increases, which
explains the form of the second vector in expression (13) for
the two-dimensional noise-induced drift velocity.

We used the newly derived expression to estimate the drift
velocity of a pair of membrane proteins, and found it to be
surprisingly large. The actual diffusive dynamics of membrane
proteins is obviously more complex. It takes place in a highly
crowded environment, which implies that many-body effects
are important. Nevertheless, our study clearly highlights the
fact that hydrodynamic interactions between proteins (which
are the origin of the diffusivity spatial variations here) are
likely to be key factors.
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