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Molecular motors are found throughout the cells of the human body and have many different and important
roles. These micromachines move along filament tracks and have the ability to convert chemical energy into
mechanical work that powers cellular motility. Different types of motors are characterized by different duty ratios,
which is the fraction of time that a motor is attached to its filament. In the case of myosin II (a nonprocessive
molecular machine with a low duty ratio), cooperativity between several motors is essential to induce motion
along its actin filament track. In this work we use statistical mechanical tools to calculate the duty ratio of
cooperative molecular motors. The model suggests that the effective duty ratio of nonprocessive motors that
work in cooperation is lower than the duty ratio of the individual motors. The origin of this effect is the elastic
tension that develops in the filament which is relieved when motors detach from the track.
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I. INTRODUCTION

Motor proteins are molecular machines that convert chem-
ical energy into mechanical work by adenosine triphosphate
(ATP) hydrolysis. They “walk” on the microtubule and actin
cytoskeleton and pull vesicles and organelles across the cell
[1]. Motor proteins can be classified into processive and
nonprocessive motors. The former class includes motors like
kinesins, which travel a long distance along their cytoskeleton
track (microtubules) without detachment [2]. In the latter class,
we find motors like myosins that make only a single step along
their tracks (actin filaments) before disconnection [3]. While
processive motors can move cargoes by operating individually,
nonprocessive motors need to work in cooperation to generate
substantial movement. The cooperative action of myosin mo-
tors is implicated in a variety of cellular processes, including
the contraction of the contractile ring during cytokinesis [4],
adaptation of mechanically activated transduction channels in
hair cells in the inner ear [5], and muscle contraction [6].
Another important example of cooperative motor dynamics is
found in motility assays, where filaments glide over a surface
densely covered by motor proteins [7].

One of the more interesting outcomes of cooperative action
of molecular motors is their ability to induce bidirectional
motion. Bidirectional motion is observed when a filament is
subjected to the action of two groups of motors that engage in a
“tug-of-war” contest and exert forces in opposite directions [8].
The motor party that exerts the larger force determines the
instantaneous direction of motion, which is reversed when the
balance of forces shifts from one group to the other. Earlier
theoretical models suggested that the characteristic reversal
time of the bidirectional dynamics (i.e., the typical duration of
the unidirectional intervals of motion) τrev grows exponentially
with the number of motors N [9]. In these earlier models, the
moving filament was treated as a rigid rod which does not
induce elastic coupling between the motors. A recent motility
assay of myosin II motors and actin filaments with alternating
polarities challenged this prediction. It was found that the
characteristic reversal times of the bidirectional motion in
this motility assay were macroscopically large, but practically
independent of the number of motors [10]. This observation

has been explained by a model that accounts for the elasticity
of the actin filament [10,11]. It has been shown that the motors
indirectly interact with each other via the tensile stress that
they generate in the elastic filament. The elasticity-mediated
crosstalk between the motors leads to a substantial increase
in their unbinding rates, making each motor effectively less
processive and eliminating the exponential growth of τrev with
N [12].

The reduction in the duty ratio (the fraction of time that each
motor spends attached to the filament track) of the cooperative
motors can be explained as follows: During bidirectional
motion, the elastic filament is subjected to a tug-of-war
between motors that exert opposite forces, which leads to
large stress fluctuations along the elastic filament. These stress
fluctuations are the origin of the elasticity-mediated crosstalk
effect. Detailed analysis shows that the typical elastic energy
stored in the actin filament scales as [10,11]

E

kBT
= αNn, (1)

where N is the number of motors, n is the number of connected
motors, and α is a dimensionless parameter [which is closely
related to the parameter β∗, to be defined below in Eq. (3)].
For actin-myosin II systems, α is rather small (for the motility
assay described by the authors of Ref. [10], α ∼ 2 × 10−3),
but the energy released upon the detachment of a single motor
(n → n − 1): �E/kBT = −αN can be quite large if N is
large. This last result implies that for large N , the transitions of
motors between the attached and detached states are influenced
by both ATP-driven (out-of-equilibrium) processes as well
as by thermal (equilibrium) excitations. The latter will be
dominated by the changes in the elastic energy of the actin
[see Eq. (1)] and not by the energy of the individual motors.

For the actin filament with alternating polarities, the
elasticity-mediated crosstalk is a cooperative effect that re-
duces the degree of cooperativity between motors (decreases
τrev) by decreasing their duty ratio (i.e., their attachment
probability). But as discussed above, much of the strength of
this effect is related to the large stress fluctuations that develop
in the elastic filament due to the opposite forces applied by the
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FIG. 1. The actin elastic filament is represented as a chain of
nodes, connected by identical springs with spring constant ks . Each
node is either connected to a single myosin II motor, in which case it
experiences a force of magnitude f0, or disconnected, in which case
it experiences no force.

antagonistic motors. In view of this fact, it is fair to question the
significance of this effect in the more common situation where
polar filaments move directionally under the action of a single
family of motor proteins. In this work we analyze this problem
and show that the elasticity-mediated crosstalk effect in this
system is indeed much smaller, but not entirely negligible. Our
analysis of this effect is presented in Sec. II. The magnitude
of this effect in actomyosin systems is estimated in Sec. III.

II. STATISTICAL-MECHANICAL MODEL

In what follows we model the elastic actin filament as
a chain of N equally spaced nodes connected by N − 1
identical springs with spring constant ks (see Fig. 1). In
the chain reference frame, the ith node is located at xi =
(i − 1)�l, where i = 1, . . . ,N and �l is the spacing between
the nodes. For brevity we set �l = 1. The chain lies on
a “bed” of motors, where each node may be either free
and experience no pulling force (fi = 0), or attached to one
motor in which case it is subjected to a force of magnitude
fi = f0. Different configurations of the system are defined
according to which nodes are connected to motors and which
are not. For a given configuration j , the elastic energy of
the chain is given by the sum of energies of the springs
Eel

j = ∑N−1
i=1 F 2

i /2ks , where Fi is the force applied on the
ith spring. The forces Fi are calculated as follows. We first
calculate the mean force f̄ = (

∑N
i=1 fi)/N , and define the

excess forces acting on the nodes f ∗
i = fi − f̄ . The force on

the ith spring is then obtained by summing the excess forces
applied on all the monomers located on one side of the spring:
Fi = −∑i

l=1 f ∗
l = ∑N

l=i+1 f ∗
l .

It is more convenient to analyze the problem using con-
tinuous functions. Let us introduce the function h(x) which,
for xi < x < xi+1, has a slope +1 if the monomer at xi is
connected to a motor, and a slope 0 otherwise. Thus, h(x)
gives the total force applied on the chain up to the point x,
with h(x = 0) = 0 and h(x = N ) = n, where n is the number
of monomers connected to motors in a given configuration. The
solid line in Fig. 2 shows the function h(x) corresponding to
the configuration of five nodes depicted in Fig. 1. To calculate
the elastic energy of a configuration we introduce the function
g(x) = h(x) − (n/N )x, which is depicted by the dashed line
in Fig. 2 and gives the total excess force accumulated up to x.
The elastic energy can then be expressed as

Eel
j

kBT
= β∗

N−1∑
i=1

g2(xi) � β∗
∫ N

0
g2(x)dx, (2)
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FIG. 2. The functions h(x) and g(x) which correspond to the
configuration shown in Fig. 1.

where

β∗ = f 2
0

2kskBT
(3)

is the ratio between the typical elastic energy of a spring f 2
0 /2ks

and the thermal energy kBT .
To determine the mean number of connected motors, one

needs to calculate the partition function

Z =
N∑

n=0

pn(1 − p)N−nzn, (4)

where p is the attachment probability (i.e., duty ratio) of
a single motor, and zn is the partition function of all the
configurations with exactly n connected motors. The function
zn can be calculated by tracing over all the functions g(x)
corresponding to configurations with n connected motors.
Mathematically, the condition that exactly n motors are
connected can be expressed through the following constraint
on the function h(x)

lim
α→∞

∫ N

0

∣∣∣∣dh

dx

∣∣∣∣
α

dx = n. (5)

To allow an analytical solution, we approximate this constraint
by setting α = 2, in which case Eq. (5) can be expressed in
terms of g(x) = h(x) − (n/N ) x as∫ N

0

(
dg

dx

)2

dx = N
n

N

(
1 − n

N

)
. (6)

With Eq. (6), the partition function zn is given by

zn = B (n,N )
∫

D [g(x)] exp

(
−β∗

∫ N

0
g2(x)dx

)

× δ

[ ∫ N

0

(
dg

dx

)2

dx − N
n

N

(
1 − n

N

)]
, (7)

where δ is Dirac’s delta function. The function B (n,N ) is
introduced in Eq. (7) to compensate for the error introduced
by the approximated constraint Eq. (6). We will determine this
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function through the requirement that for β∗ = 0, that is, in
the absence of elastic crosstalk between the motors

zn|β∗=0 =
(

N

n

)
= N !

n!(N − n)!
, (8)

which is simply the number of ways to choose n out of N

monomers.
To calculate the partition function zn, we use the Fourier

space representation of δ(x)

δ(x − a) = 1

2πi

∫ i∞

−i∞
ew(x−a)dw, (9)

and the Fourier series of g(x)

g(x) =
N/2−1∑

k=−N/2

gke
i 2π

N
kx. (10)

Substituting Eqs. (9) and (10) into Eq. (7) yields

zn = B (n,N )
1

2πi

∫ i∞

−i∞
dw

∫
D [gk]

× exp

[
wN

n

N

(
1 − n

N

)]

× exp

[
−

∑
k

g2
k

(
8π2

N
k2w + 2Nβ∗

)]
. (11)

Tracing over gk can be readily performed, giving

zn = B(n,N )
1

2πi

∫ i∞

−i∞
dw exp

[
wN

n

N

(
1 − n

N

)]

×
{

N/2∏
k=0

π

2Nβ∗ + 8π2k2w/N

}
. (12)

The integral over w can be evaluated using the method of
steepest descent, which yields

zn � B (n,N ) eG(w0), (13)

where

G(w) = n

(
1 − n

N

)
w −

N/2∑
k=0

ln

[
1

π

(
8π2

N
k2w + 2Nβ∗

)]

� N

{
w

n

N

(
1 − n

N

)
− 1

2
ln

[
2e−2N

π
(π2w + β∗)

]

−
√

β∗

π2w
tan−1

(√
π2w

β∗

)}
, (14)

and w0 satisfying

dG

dw

∣∣∣∣
w0

= n

N

(
1 − n

N

)
− 1

2w0

+ 1

2

√
β∗

π2w3
0

tan−1

(√
π2w0

β∗

)
= 0. (15)

For β∗ � 1, one gets

w0 � N

2n

(
N

N − n

)
−

√
N

8n

(
N

N − n

)
β∗. (16)

From Eqs. (8), (13), (14), and (16), one finds that

B(n,N ) =
(

N

n

)
e−G(w0)

∣∣∣∣
β∗=0

=
(

N

n

) (
π

e3

)(N/2) (
N3

n(N − n)

)N/2

. (17)

Inserting Eq. (16) into Eq. (14), and expanding G(w0) in
powers of

√
β∗, yields

G(w0) � G(w0)|β∗=0 −
√

n(N − n)

2
β∗. (18)

Finally, for β∗ � 1, the partition function zn is obtained by
substituting Eqs. (17) and (18) into Eq. (13), which gives

zn �
(

N

n

)
exp

(
−

√
n(N − n)

2
β∗

)
. (19)

To calculate the partition function Z, one needs to substitute
Eq. (19) into Eq. (4), which gives

Z =
N∑

n=0

(
N

n

)
pn(1−p)N−n exp

(
−

√
n(N − n)

2
β∗

)
. (20)

In the thermodynamic limit (N 	 1), the sum in Eq. (20) is
dominated by one term which corresponds to the mean number
of attached motors 〈n〉. This term is given by

〈n〉 = N

[
p − (1 − 2p)

√
p(1 − p)

8
β∗

]
. (21)

From Eq. (21) we identify the effective attachment probability
as

peff ≡ 〈n〉
N

= p − (1 − 2p)

√
p(1 − p)

8
β∗. (22)

Notice that the second term on the right-hand side of Eq. (22)
is antisymmetric around p = 1/2, and that for p < 1/2
(p > 1/2), the effective attachment probability peff is smaller
(larger) than p. This observation is directly related to the
fact the elasticity-mediated crosstalk effect is driven by the
tendency to reduce the force fluctuations along the elastic
filament. For p < 1/2 (p > 1/2) the force fluctuations are
reduced by the detachment (attachment) of motors, which
brings the system closer to the limiting case p = 0 (p = 1)
where the force fluctuations vanish.

To test the validity and range of applicability of Eq. (22),
we conducted Monte Carlo (MC) simulations of elastic chains
of N = 1000 monomers with p = 0.05, which is the typical
duty ratio of myosin II motors [13]. Systems corresponding
to different values of β∗ were simulated using the parallel
tempering method. The simulations include two types of
elementary moves (which are attempted with equal proba-
bility); one in which the state (connected or disconnected) of
a randomly chosen node changes, and the other in which two
randomly chosen nodes with opposite states change their states
simultaneously. For each move attempt, the model energy of
the chain is recalculated, and the move is accepted or rejected
according to the conventional Metropolis criterion. Our MC
results are summarized in Fig. 3. For β∗ < 0.2, we find an
excellent agreement between our computational results and
Eq. (22) (which has been derived for β∗ � 1). Notice that
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FIG. 3. The effective attachment probability as a function of the
dimensionless parameter β∗. The circles denote the results of the MC
simulations, while the solid line depicts the analytical approximation
for β∗ � 1, Eq. (22).

Eq. (22) does not include any fitting parameters. For larger
values of β∗, Eq. (22) overestimates the decrease in peff .

III. ACTIN-MYOSIN II SYSTEMS

Equation (3) relates the dimensionless parameter β∗ to
three physical parameters of the system: the temperature T ,
the typical force exerted by the motors f0, and the effective
spring constant of the actin filaments segment between two
binding sites of the motors ks . The last parameter can be further
expressed as

ks = YA

l
, (23)

where Y is Young’s modulus of the actin, A is the cross-
sectional area of an actin filament, and l is the distance between
binding sites. For myosin II motors, forces in the range of
f0 = 5−10 pN have been measured experimentally [13,14].
The actin-cross sectional area (including the tropomyosin
wrapped around the actin helix) is A = 23 nm2, and the
Young’s modulus of the actin-tropomyosin filament is Y =
2.8 GPa [15,16]. The value of l is somewhat more difficult
to assess. One possibility is that l � 5.5 nm, which is simply
the size of the G-actin monomers, each of which includes one
binding site for myosin motors [17]. Another possible value is
related to the double helical structure of F-actin and the fact
that it completes half a twist about every seven monomers (i.e.,
every �38 nm [18]). Since the binding sites follow a twisted
spatial path along the double helix, many of them remain
spatially unavailable to the motors. In the motility assay, the
motors are located underneath the F-actin, and the distance
between the binding sites along the line of contact with the bed
of motors is l = 38 nm. A third choice for l, which may be more
relevant to skeletal muscles, is l = 14 nm. This value is derived
from the fact that within the sarcomere (the basic contractile
unit of the muscle) an average number of three thick myosin
filaments surround one thin actin filament. The separation
between collinear motor heads along the thick filament is
∼43 nm [19–21], and because the actin is surrounded by three

thick filaments, the distance between the motors along the
actin is l = 43/3 � 14 nm.

For the duty ratio p, the range of experimental values is
scattered and varies from p = 0.01–0.02 [22] to p = 0.05
[13]. The uncertainty may be partially related to the elasticity
cross-talk effect discussed here. It also stems from the fact that
p also depends on the distance and orientation of the motor
head (both in space and time) with respect to the associated
binding site. These may vary between the motors which, hence,
should have different attachment probabilities [23].

Using the above-mentioned values of system parameters,
one finds that for actomyosin systems the parameter β∗ lies
within the range of 5 × 10−4 � β∗ � 5 × 10−3. Setting the
duty ratio of myosin II to p = 0.05 (as used in the MC
simulations) we find that for this range of β∗, the effective
duty ratio is slightly lower than p and lies within the range
of peff = 0.97p (for β∗ = 5 × 10−4) and peff = 0.90p (for
β∗ = 5 × 10−3). Using a lower estimate for the duty ratio
p = 0.02 [22], we find that the effective duty ratio drops to
0.83p � peff � 0.95p for the same range of β∗.

As stated earlier, the cooperative action of myosin motors
“compensates” for the nonprocessive character of the individ-
ual motors. The force generated by a group of N motors is
〈F 〉 = Npefff0. Which force f0 maximizes the effective force
per motor feff = 〈F 〉/N and, hence, the force production of
the collectively working motors? From Eqs. (3) and (22) we
find that the maximum value of feff is achieved when the force
of the individual motors is

f max
0 = 2p

1 − 2p

√
kskBT

p(1 − p)
. (24)

Setting the values of the system parameters as above (Y =
2.8 GPa, A = 23 nm2, l = 38 nm) and taking p = 0.02 as the
duty ratio of a single motor, we find that f max

0 � 25 pN, for
which feff � 0.25 pN. For forces in the range of f0 � 5–10 pN,
which are typically measured for myosin II motors [13], the
effective mean force per motor is feff � 0.1–0.15 pN, which
is about half of the optimal effective force feff(f max

0 ). We thus
conclude that mysoin II motors work quite close to conditions
that maximize their cooperative force generation.

IV. DISCUSSION

There has recently been a considerable interest in the
collective behavior of molecular motors, especially in relation
to cooperative dynamics of cytoskeletal filaments in motility
assays. Most studies have focused on the bidirectional motion
arising when the filament is driven by two groups of antagonis-
tic motors, or in the case when one motor party works against
an external force. The present work is motivated by our recent
studies of bidirectional motion in actomyosin motility assays
which demonstrated that the duty ratio of the motors (and,
hence, the level of cooperativity between them) is reduced by
the elasticity of the actin backbone. In this paper we extended
our studies to motility assays in which similar motors act on
a polar actin filament without a counter external force. To
single out the filament elasticity crosstalk from other possible
collective effects (e.g., those associated with nonequilibrium
ATP-assisted processes and with the elasticity of the motors
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themselves [24–26]), we neglect motor-to-motor variations
and use a model in which the motors are characterized by
two mean quantities: their attachment probability to a rigid
(nonelastic) filament p, and the mean applied pulling force f0.
We expect this mean-field description of the motors to hold
when the number of motors N becomes large. We calculate
the attachment probability to the elastic filament peff < p

from the partition function associated with the filament elastic
energy. The elastic energy of a filament can be treated as an
equilibrium degree of freedom (of a system which is inherently
out-of-equilibrium) because the mechanical response of the
filament to the attachment or detachment of motors occurs on
time scales which are far shorter than the typical attachment
time of the motors. (See the discussion in Ref. [12]. The
assumption that the actin filament is in mechanical equilibrium
is also made in theoretical studies of intracellular cargo
transport [8] and muscle contraction [27].) Our calculation
shows that peff is only slightly smaller than p. This result is
very different from our previous findings for motility assays of
bidirectional motion, where the elasticity-mediated crosstalk
effect is substantial. Finally, we note that, although in both
this and previous studies we found that peff < p [11,28], the
opposite relation cannot be excluded under certain conditions
(e.g., when the filament experiences external forces as in single
molecule experiments or muscle contraction). We intend to
address this opposite scenario in a future publication, in which
we investigate the variations in both p (the ATP-hydrolysis
related attachment probability) and peff (which also includes
the contribution due to the elastic crosstalk effect) with the
muscle contraction velocity.
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APPENDIX: ELASTIC ENERGY

We model the actin filament as a linear chain of identical
particles of mass m connected by elastic (massless) springs
with spring constant ks (see Fig. 4). Three types of forces
are exerted on the particles: (i) the motor forces f motor

i , (ii) the
spring forces Fi , and (iii) friction drag forces f

drag
i . Because the

motion is highly overdamped, the total instantaneous force on
each mass vanishes. For the ith mass, the equation of motion
is

f motor
i − f

drag
i + Fi − Fi−1 = 0, (A1)

with F0 = FN = 0. The drag force includes two contributions;
one is due to motor friction (MF) f MF

i and the other due
to friction with the viscous medium f viscous

i . The motor

f viscous
i = − f̄

viscous forces

fi = f0

m ks

Fi FiFi−1 Fi−1

motor forces

ii−1 i+1

spring forces

FIG. 4. The actin is modeled as a chain of masses and springs that
moves in a highly viscous medium. Three types of forces are present
in the system: the motor forces, a uniform viscous drag, and the spring
forces. The motion is highly overdamped (zero acceleration) and thus
the net force on each mass vanishes.

friction forces act only on the particles which are connected
to the motors. Therefore, by redefining the motor forces
fi = f motor

i − f MF
i , we can rewrite Eq. (A1) as

fi − f viscous
i + Fi − Fi−1 = 0. (A2)

For the chain’s center of mass (c.m.), the equation of motion
reads

F c.m. =
N∑

i=1

fi −
N∑

i=1

f viscous
i = 0, (A3)

but the viscous drag force is distributed uniformly along the
chain (i.e., it is equal for all masses) and therefore Eq. (A3)
gives

f viscous
i =

∑N
i=1 fi

N
= f̄ . (A4)

Using this last result, Eq. (A2) reads

Fi − Fi−1 = −f ∗
i , (A5)

where f ∗
i is the excess force. Since F0 = 0, we find that

F1 = −f ∗
1 . Then, F2 = F1 − f ∗

2 = −f ∗
1 − f ∗

2 and, in general,

Fi = −
N∑

i=1

f ∗
i . (A6)

If the motion is only partially overdamped (including in the
limit of no friction), all the masses move together at the same
acceleration. One can repeat the above calculation and show
that Eq. (A6) remains valid.
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