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Mechanical surface tension governs membrane thermal fluctuations
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We use analytical considerations and computer simulations to show that the membrane spectrum of thermal
fluctuations is governed by the mechanical and not the intrinsic tension. Our study highlights the fact that the
commonly used quadratic approximation of the Helfrich effective Hamiltonian is not rotationally invariant. We
demonstrate that this nonphysical feature leads to a calculated mechanical tension that differs dramatically from
the correct mechanical tension. Specifically, our results suggest that the mechanical and intrinsic tensions vanish
simultaneously, which contradicts recent theoretical predictions derived for the approximated Hamiltonian.
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I. INTRODUCTION

Bilayer membranes are quasi-two-dimensional (2D) fluid
sheets formed by spontaneous self-assembly of lipid molecules
in water [1]. Their elasticity is traditionally studied in the
framework of the Helfrich effective surface Hamiltonian for
2D manifolds with local principle curvatures c1 and c2 [2]

H0 =
∫

A

dS

[
σ0 + 1

2
κ0(c1 + c2 − 2c0)2 + κ̄0c1c2

]
, (1)

where the integration is carried over the whole surface
of the membrane. The Helfrich Hamiltonian involves four
parameters: the spontaneous curvature c0, the surface tension
σ0, the bending modulus κ0, and the saddle-splay modulus κ̄0.
For symmetric bilayer membranes, c0 = 0. If, in addition, the
discussion is limited to deformations that preserve the topology
of the membrane, then (by virtue of the Gauss-Bonnet theorem)
the total energy associated with the last term is a constant, and
one arrives at the more simple form

H0 =
∫

A

dS

[
σ0 + 1

2
κ0(c1 + c2)2

]
= σ0A + 1

2
κ0J

2, (2)

where A is the total area of the membrane and J , defined by
J 2 = ∫

dS(c1 + c2)2, is the integrated total curvature.
The surface tension appearing in Eq. (2) is known as the

“intrinsic tension.” It represents the elastic energy required
to increase the surface of the membrane by a unit area,
and can be identified with the derivative of the energy with
respect to the area A, σ0 = (∂H/∂A), at constant J . As this
quantity is not directly measurable, its physical meaning is
still a matter of a fierce debate. In molecular simulations,
one can attach the membrane to a “frame” and measure the
“mechanical (frame) tension,” τ , which is the lateral force per
unit length exerted on the boundaries of the membrane [3–6].
Experimentally, the mechanical tension is routinely measured
by micropipette aspiration of vesicles [7,8]. Formally, the
mechanical tension is obtained by taking the full derivative
of the free energyF with respect to the frame (projected) area:
τ = dF/dAp [9]. From a comparison of the above definitions
of σ0 and τ , it becomes clear that the intrinsic and mechanical
tensions are different quantities. Contrary the former, the
latter is a thermodynamic quantity that also depends on the
entropy of the membrane. Bilayer membranes usually exhibit
relatively large thermal undulations at room temperature [10]

and, indeed, their mechanical tension also includes an entropic
contribution due to the suppression of the amplitude of the
undulations upon increasing the projected area.

The surface tension can be also measured indirectly by
recording and analyzing the statistics of the membrane height
fluctuations [11,12]. The analysis is based on the so-called
Monge parametrization, where the surface of the fluctuating
membrane is represented by a height function, h(x,y), above
the frame (x,y) plane. The Helfrich Hamiltonian does not have
a simple form when expressed in terms of h(x,y). However,
for a nearly flat membrane, i.e., when the derivatives of h with
respect to x and y are small (|∂xh|, |∂yh| � 1), one obtains
the quadratic approximation

HM
2 = σ0Ap +

∫
dxdy

[
σ0

2
(∇h)2 + κ0

2
(∇2h)2

]
. (3)

Note that unlike Eq. (2), the integral in Eq. (3) runs
over the frame area rather than over the area of the
manifold. The quadratic approximation can be diago-
nalized by introducing the Fourier transformation: hq =
(1/Ap)

∫
dxdy h(x,y) exp(−i �q · �r). In Fourier space the

Hamiltonian reads

HM
2 = σ0Ap + Ap

2

∑
�q

(σ0q
2 + κ0q

4)|hq |2, (4)

and by invoking the equipartition theorem, we find the mean
square amplitude of mode �q (“spectral intensity”):

〈|hq |2〉 = kBT

Ap(σ0q2 + κ0q4)
. (5)

From the last result, it seems as if σ0 can be extracted from the
fluctuation spectrum of the membrane. Results of both fully
atomistic and coarse-grained simulations [13–17] show that
spectral intensity can indeed be fitted to the form

〈|hq |2〉 = kBT

Ap(rq2 + O(q4))
. (6)

However, the derivation of Eq. (5) is based on the approximated
Hamiltonian HM

2 and, therefore, it is not a priori clear why
the so-called “q2-coefficient” appearing in Eq. (6) r = σ0.
In fact, some theoretical studies have argued that the q2-
coefficient is actually equal to the mechanical tension τ

[18–20]. This conclusion has been rejected more recently in
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favor of the more common interpretation that r = σ0 [21,22].
Membrane simulations carried at fixed mechanical tension
(usually performed for τ = 0) tend to agree with the result that
r = τ [4,13,15,16,23], but simulations that show the opposite
r �= τ also exist [21,24].

Which of the above two results is correct? Theoretical
arguments [18,19] and computer simulations [20] show that
r = τ . In this paper we demonstrate that the incorrect form
r = σ0 arises from the use of the truncated Hamiltonian Eq. (3)
that breaks rotational invariance.

II. WHAT DOES THE INTRINSIC TENSION REPRESENT?

Much of the confusion associated with the physical mean-
ing of surface tension in membranes is related to fact that
the concept of surface tension has been originally defined for
an interface between bulk phases (e.g., between water and
oil) [25]. In its original context, the surface tension represents
the access free energy �F per unit area A of the interface
between the bulk phases

γ = �F

A
. (7)

When the concept of surface tension is introduced into the
theory of bilayer membranes, its meaning is distorted due to
the following two major differences between membranes and
interfaces of bulk phases:

(1) In the case of bulk phases, it is often assumed that the
interface between them is flat. There is usually very little
interest in the thermal roughness of the interface, unless it
is very soft. In contrast, bilayer membranes are treated as
highly fluctuating surfaces whose elastic response is very
much influenced by the entropy associated with the thermal
fluctuations.

(2) The changes in the areas of both systems arise from
very different origins. In the case of, say, a water-oil interface,
the changes in the interfacial area are not produced by
elastic deformations (dilation/compression) that modify the
molecular densities of the bulk phases. Instead, they result from
transfer of molecules between the bulk phases and the interface
occurring, for instance, when the shape of the container is
changed. The surface tension γ is essentially a chemical
potential which is directly related to the exchange parameter
between the coexisting phases [26]. The case of bilayer
membranes is completely different. Here, there is an exchange
of water between the bulk fluid and interfacial region, but
almost no exchange of lipid material because the concentration
of free lipids in the embedding solution is extremely low
(10−6 to 10−10 M [1]). In other words, there is no reservoir
of lipids outside of the bilayer and, therefore, a change in
the bilayer area results in a change in the area density of the
lipids. The membrane surface tension measures the response
to this elastic deformation, including the indirect contribution
due to the exchange of water between the bilayer and solution
resulting from the deformation (which has influence on the
effective elastic moduli).

Most earlier theoretical investigations of membranes in-
volved the assumption that the area per lipid a is constant.
This assumption relies on the observation that the energy
cost involved in density fluctuations is much larger than the

energy scale associated with curvature fluctuations. Further
assuming that the lipids are insoluble in water (and, therefore,
they all reside on the membrane where their number N is
constant) implies that the total area of the membrane A = Na

is constant. If that is the case, then why does one need to
include this constant in the Helfrich Hamiltonian [first term on
the right-hand side of Eq. (2)], and what does the coefficient
σ0 represent? The answer is simple. It is technically very hard
to calculate analytically the partition function for a fluctuating
manifold with a fixed area A. The first term in Eq. (2) is
a Lagrange multiplier that fixes the mean area 〈A〉 of the
membrane, and the value of σ0 is set by the requirement
that A = 〈A〉 = ∂F/∂σ0. As usual, it is assumed that in the
thermodynamic limit the relative fluctuations in the total area
become negligible, and there is no distinction between 〈A〉
and A.

The renewed interest in the meaning of surface tension
during the past decade is very much linked with the rapid
development in computer modeling and simulations of bilayer
membranes. In molecular simulations the number of lipids
N is usually fixed, but the total area is not. Membranes are
no longer treated as incompressible thin films, but rather
as stretchable/compressible surfaces whose elastic response
results from their intermolecular forces. With this point of
view in mind, it is clear that the intrinsic tension σ0 in the
Helfrich Hamiltonian represents an elastic coefficient which,
potentially, may be related to the mechanical tension τ . There
is, of course, no reason to expect that the elastic energy E

of the membrane is linear in A [27]. A quadratic elastic
function E = 1/2KA(A − A0)2 seems like a more appropriate
form, where KA is the stretching/compression modulus and
A0 is the relaxed area of the membrane [28] (also known as
Schulman’s area [29]). Expressing the total area as the sum
of the projected and undulations areas A = Ap + δA, and
assuming that δA � |Ap − A0|, yields the linear approxima-
tion E � 1/2KA(Ap − A0)2 + KA(Ap − A0)δA from which
one identifies that σ0 = KA(Ap − A0). The assumption that
δA � |Ap − A0| becomes increasingly accurate at high ten-
sions; but, nevertheless, the linear relationship between E

and A is used in Eq. (2) over the entire range of intrinsic
tensions.

III. THE IMPORTANCE OF ROTATIONAL INVARIANCE

The detailed derivation of the equality r = τ appears in
Ref. [19] and will not be repeated here. One aspect of the
derivation, which is the fact that the equality relies on the
rotational invariance of the membrane, must however be
emphasized. The derivation consists of two steps. In the first
step, it is demonstrated that r = μ, where μ is the out-of-plane
simple shear modulus. The shear modulus μ is the force per
unit length required to introduce the deformation depicted in
Fig. 1(b) from the initial reference state depicted in Fig. 1(a).
This deformation is achieved by applying opposite tangential
forces on boundaries of the membrane. The shear modulus
is not related to the deformation of a specific configuration,
but rather to the deformation of a fluctuating membrane. It
is obtained by taking the derivative of the free energy with
respect to A, the area of the mean membrane profile (i.e.,
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(b)(a)

unstrained sheared rotated

(c)

FIG. 1. (a) The unstrained reference state of a thin film. (b) The
film subjected to a simple shear deformation. (c) The film subjected
to a pure shear deformation. The two deformed states have the same
elastic free energy since they can be transformed into each other by
rotation. The volume of the film (indicated by the gray shaded area) is
the same at all three states. The dashed line in (a) serves as a reminder
that the membrane is fluctuating around its mean profile.

the configuration defined by the mean height function around
which the membrane thermally fluctuates),

μ = ∂F

∂A
. (8)

In the second step of the derivation, it is proved that μ = τ .
This follows immediately from the invariance of the free
energy with respect to rigid transformations. Upon rotation,
the sheared membrane in Fig. 1(b) can be transformed into the
deformed state shown in Fig. 1(c) where the mean profile lies
in the (x,y) plane defined the undeformed state. The projected
area Ap in Fig. 1(c) is equal to the area A in Fig. 1(b) and,
assuming rotational invariance, the free-energy cost of both
deformations is the same. Therefore, the mechanical tension,
which represents the elastic response to the deformation
depicted in Fig. 1(c)

τ = ∂F

∂Ap

∣∣∣∣
V

, (9)

is equal to the shear modulus μ defined by Eq. (8). This
completes the proof that r = τ . Notice that in Eq. (9), the
derivative with respect to Ap is taken at constant volume.
This feature cannot be captured within the framework of the
Helfrich model that treats the membrane as a 2D manifold
with no 3D volume. In Figs. 1(a)–1(c) we have intentionally
drawn the membranes as thin films, which highlights a very
important point. The two deformations (b) and (c) are both
volume preserving. Deformation (b) is known as simple shear,
while (c) is a pure shear deformation. The fact that μ = τ

stems from the equivalence of these two shear moduli.
Experimentally and computationally, there is no practical

way to fix or even determine the volume of a bilayer
at the molecular resolution. However, the membrane and
the embedding fluid medium are placed in a “container” whose
volume can be easily controlled. Equation (9) states that the
frame tension of the bilayer can be measured by changing
the cross-sectional area of the container while keeping its
volume fixed. By considering such a deformation, one arrives
at the following expression for τ :

τ = Lz

[
Pz − Px + Py

2

]
= Lz[Pn − Pt ], (10)

where Pn and Pt are, respectively, the normal and transverse
components of the pressure tensor (the negative Cauchy stress
tensor) relative to the plane of the membrane. Equation (10) is
known as the mechanical definition of the surface tension [25].
This tension is associated with the entire “interfacial region”
of the system that includes both the bilayer of lipids as well as
the hydration layers of structured water around the bilayer. The
fluid bulk water has no elastic response to volume preserving
deformations and, therefore, it make no contribution to τ .

So why does one gets r = σ0 rather than r = τ when
dealing with the quadratic approximation of the effective
surface Hamiltonian, Eq. (3)? The answer is simple: The
approximated Hamiltonian is not rotationally invariant. This
striking fact (which has been discussed by Grinstein and Pel-
covitz in the context of lamellar liquid crystalline phases [30])
can be demonstrated by considering a certain configuration
parametrized by the height function h(x,y) and evaluating the
elastic energy cost corresponding to simple and pure shear
deformations. For the simple shear deformation hμ(x,y) =
h(x,y) + εx, and upon substituting hμ(x,y) in Eq. (3) one gets

HM
2 (hμ (x,y) ) = σ0Ap +

∫
dxdy

[σ0

2
(∇hμ)2 + κ0

2
(∇2hμ)2

]

= HM
2 (h(x,y)) + σ0Ap

ε2

2
. (11)

From this result one finds that

μ = 1

Ap

d2
〈
HM

2 (hμ(x,y))
〉

dε2
= σ0, (12)

and, thus, r = μ = σ0. This conclusion that r = σ0 is in
agreement with what the equipartition theorem Eq. (5)
predicts for the approximated Hamiltonian. The response to
pure shear is determined by considering the transformation
hτ (x ′,y ′) = h(x(1 + ε),y(1 + ε))/(1 + ε)2, with 0 < x ′ �
Lx(1 + ε), 0 < y ′ � Ly(1 + ε). For this deformation,
Ap(ε) = Ap(ε = 0)(1 + ε)2, dx ′dy ′ = (1 + ε)2dxdy,
∇hτ = ∇h/(1 + ε)3, and ∇2hτ = ∇2h/(1 + ε)4. When these
relations are used in Eq. (3), we get

HM
2 (hτ (x,y)) = (1 + ε)2σ0Ap(ε = 0)

+
∫

dx ′dy ′
[σ0

2
(∇hτ )2 + κ0

2
(∇2hτ )2

]
= HM

2 (h(x,y)) + 2εσ0Ap(ε = 0)

−
∫

dxdy[2εσ0(∇h)2+3εκ0(∇2h)2]+O(ε2).

(13)

From this result, one derives the mechanical tension, which is
given by

τ = 1

2Ap

d
〈
HM

2 (hτ (x,y))
〉

dε

∣∣∣∣
ε=0

= σ0 − 1

Ap

〈∫
dxdy

[
σ0(∇h)2 + 3

2
κ0(∇2h)2

]〉
. (14)

The second term on the right-hand side of Eq. (14) is the
entropic part of the mechanical tension, evaluated within the
framework of the approximated quadratic Hamiltonian. This
entropic contribution to τ is not reflected in the fluctuation
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spectrum of the quadratic Hamiltonian, which has the
nonphysical feature of not being rotationally invariant.

IV. COMPUTER SIMULATIONS

To summarize our discussion: We argue that r = τ is
correct, and that it is the use of the not rotationally invariant
quadratic Hamiltonian Eq. (3) that leads to the spurious result
r = σ0 �= τ . This conclusion can be tested by performing
Monte Carlo simulations of the one-dimensional (1D) analogs
of Eqs. (2) and (3). Within these two models, the membrane
is represented by a string of N = 1024 points, the positions
of which in 2D space are given by {�ri = (xi,hi)}. In both
cases, the simulations are performed at a constant projected
length Lp with periodic boundary conditions. Denoting by
�bi = �ri+1 − �ri the distance vector (“bond”) between adjacent
points, the 1D analog of the rotationally invariant Helfrich
effective Hamiltonian is given by [31]

H1 = σ0

∑
i

|�bi | + κ0

∑
i

[
1 −

�bi · �bi−1

|�bi ||�bi−1|

]
. (15)

The quadratic approximation of this Hamiltonian is given by

H2 = σ0Lp + σ0

2lp

∑
i

(hi+1 − hi)
2

+ κ0

2l2
p

∑
i

(hi+1 + hi−1 − 2hi)
2, (16)

where lp = LP /N . Notice that in the 1D models, the tension
has units of a force (energy per unit length). A major difference
between the two 1D models is related to the positions of the
points. In the rotationally invariant case Eq. (15), the points
are allowed to be anywhere in the available 2D space. At
low tensions, this creates configurations in which the chain
forms overhangs [see, e.g., Fig. 2(a)]. The existence of such
configurations does not invalidate any of our discussion which
only requires that the height function of the mean profile is
a well-defined function. Within the quadratic approximation
Eq. (16), the points are allowed to move only in the direction
normal to the projected length [in the spirit of Eq. (3) in
which the height is measured from the (x,y) plane]. Thus,
the position of the ith point is given by �ri = (ilp,hi) and,
obviously, such moves do not generate any overhangs [see a
typical configuration in Fig. 2(b)].

In the simulations, we vary σ0 and measure both
the mechanical tension τ and the q2-coefficient r . For each
value of σ0, the simulations extended over 2–4 × 108 MC time
units, where each time unit consists of N single-particle move
attempts and one collective “mode excitation Monte Carlo”

(a)

(b)

FIG. 2. Typical configurations of the chain in (a) the rotationally
invariant Hamiltonian Eq. (15) and (b) its quadratic approxima-
tion Eq. (16). Both configurations have been obtained for σ0 =
0.75 kBT /lp and κ0 = 0. In (a) the points of the chain are allowed to
be anywhere in the available 2D space which creates overhangs such
as those shown inside the bold circles. In (b) the points move only
vertically to the line that connects the end points of the chain.

(MEMC) move that accelerates the very slow relaxation
dynamics of the 10 largest Fourier modes [32,33]. The
introduction of MEMC moves is essential for the equilibration
of the system. The mechanical tension is calculated using
the 1D equivalent of Eq. (10), τ = fn − ft , where fn and
ft are the normal and transverse forces acting on the chain.
Expressing these forces as thermal averages, one arrives at
the following virial formulas. For the rotationally invariant
Helfrich Hamiltonian H1

τ =
〈∑

i

[
σ0

(xi+1 − xi)2 − (hi+1 − hi)2

lp|�bi |
+ κ0

2

lp|�bi−1||�bi |

×
(

(hi − hi−1)(hi+1 − hi)(xi − xi−1)2 − (xi − xi−1)(xi+1 − xi)(hi − hi−1)2

|�bi−1|2
+ (xi − xi−1)2 + (hi − hi−1)2

|�bi |2
)]〉

. (17)
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0
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T

mechanical tension; κ
0
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mechanical tension; κ
0
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B
T

FIG. 3. Simulation results for Hamiltonian H2 [Eq. (16)]: The
q2-coefficient r (circles) and the mechanical tension τ (squares) as a
function of the intrinsic tension σ0. Results are shown for both κ0 = 0
(solid symbols) and κ0 = 1 kBT (open symbols). The dashed line is
a guide to the eye for the relationship r = σ0. Both axes are plotted
in units of kBT /lp .

For the approximated quadratic Hamiltonian H2

τ = σ0 −
〈∑

i

[
3σ0

2l2
p

(hi+1 − hi)
2

+ 2κ0

l3
p

(hi+1 + hi−1 − 2hi)
2

]〉
. (18)

The q2-coefficient r is obtained by taking the Fourier transform
of the the function hi and fitting the measurements to Eq. (6).
Our results for r are based on the analysis of the fluctuations
of the 10 largest Fourier modes.

Our simulation results for the quadratic HamiltonianH2 are
summarized in Fig. 3. For both κ0 = 0 and κ0 = 1 kBT and
for all values of σ0, we find that, indeed, all our measurements
of the q2-coefficient agree with the predicted relationship
r = σ0 (which is denoted by the dashed line). As expected
from Eq. (18), the mechanical tension τ is smaller than r

and for small values of σ0 even gets negative values. In
comparison, the simulation results for the rotationally invariant
Helfrich Hamiltonian H1 are shown in Fig. 4. In agreement
with our expectations for this case, the various tensions satisfy
the relationship that r = τ �= σ0. To further demonstrate the
validity of our discussion, we computed the simple shear
modulus μ, which for Hamiltonian H1 is also expected to
be equal to r and τ . The shear modulus μ can be computed
using a rather cumbersome virial expression. For κ0 = 0, the
virial expression for μ takes the more simple form

μ =
〈∑

i

σ0
(xi+1 − xi)4

lp|�bi |3
− 1

lpkBT

×
(∑

i

σ0
(xi+1 − xi)(hi+1 − hi)

|�bi |

)2〉
. (19)

Our results for μ agree perfectly with the results for τ and r .

0 0.5 1 1.5 2 2.5
σ

0

0

0.5

1

1.5

r,
 τ

, μ

q
2
 coefficient; κ

0
=0

mechanical tension; κ
0
=0

shear modulus; κ
0
=0

q
2
 coefficient; κ

0
=1 k

B
T

mechanical tension; κ
0
=1 k

B
T

FIG. 4. Simulation results for Hamiltonian H1 [Eq. (15)]: The
q2-coefficient r (solid symbols) and the mechanical tension τ (open
symbols) as a function of the intrinsic tension σ0. Results are shown
for both κ0 = 0 (circles) and κ0 = 1 kBT (squares). The pluses denote
our results for the shear modulus μ for κ0 = 0. Both axes are plotted
in units of kBT /lp .

V. CONCLUSIONS

We use computer simulations to demonstrate that the
q2-coefficient r is equal to the mechanical tension τ and
not the intrinsic tension σ0. Although this result was derived
analytically a long time ago, it remained controversial and was
disputed by several recent papers. In this paper we explain that
the origin of the incorrect equality, r = σ0, is the the use of
the truncated Hamiltonian Eq. (3), which is not rotationally
invariant. The recognition of the importance of rotational
invariance calls for a reconsideration of some of the results
derived through the truncated Hamiltonian. Specifically, in
Refs. [21,22,28] the quadratic form has been used for a
derivation of negative mechanical tension for positive intrinsic
tension [see also Eq. (14) in the present paper]. Our simulations
demonstrate that this result is achieved only with the faulty
(nonphysical) quadratic Hamiltonian H2 (see Fig. 3). For
the corresponding rotationally invariant Hamiltonian H1, the
mechanical tension is always positive for σ0 > 0 (see Fig. 4).
Our computational results actually suggest that σ0 and τ vanish
simultaneously. As a last remark we note that our simulations
yielding the result r = τ employ the Hamiltonian H1 with a
constant intrinsic tension. As mentioned at the end of Sec. II,
a stretching elasticity Hamiltonian would be more realistic
for bilayer membranes. One should not however erroneously
conclude that our discussion is limited to the constant σ0 case.
Our derivation in Ref. [19] of the equality r = τ is independent
of the explicit form of the membrane Hamiltonian.
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