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Abstract

Lipid bilayers are ubiquitous in biology, and constitute natural barriers separating the

outer environment from the inner content of cells and intracellular organelles. Among nu-

merous other proteins with diverse biological functions, the plasma membrane is equipped

with adhesion proteins that bind the membrane to the extracellular matrix and/or neighbor-

ing cell membranes. Adhesion bonds often aggregate on the surface of the membrane and

form macroscopically large adhesion domains containing hundreds to thousands of bonds,

which provide greater mechanical stability to cells and also promotes signaling cues for var-

ious biological purposes. The formation of adhesion clusters is, thus, fundamental to life as

it regulates numerous important biological processes, such as tissue formation, cell migra-

tion and intercellular communication. One important thermodynamic mechanism facilitat-

ing adhesion cluster formation is the membrane-mediated potential of mean force (PMF)

between adhesion bonds, which originates from the membrane’s thermal undulations and

elastic curvature energy. The aggregation of adhesion bonds that bind a membrane to an-

other surface enhances the membrane’s thermal roughness and reduces its curvature energy;

the membrane-mediated PMF is essentially the associated free energy gained. In this work,

we employ statistical-mechanical methods, conduct molecular computer simulations, and use

novel mean-field calculations to investigate the influence of membrane-mediated interactions

on the condensation transition of adhesion bonds in supported biomimetic and biological

membranes.

The entropic membrane-mediated mechanism for aggregation of adhesion bonds is in-

vestigated by conducting molecular simulations of a solvent-free coarse-grained model for

supported lipid bilayers. Our simulation results corroborate the conclusions drawn from

previous theoretical studies, and show that the fluctuation-induced PMF is too weak to pro-

mote condensation on its own; nevertheless, it greatly facilitates aggregation by partially

compensating for the loss of mixing entropy, and effectively reducing the temperature by a

factor of 2-3. The influence of thermal fluctuations on the condensation transition is further

examined by simulating membranes exhibiting reduced or enhanced thermal undulations, by

subjecting them to physical confinement or negative surface tension, respectively. Our results

reveal that while the condensation transition is significantly shifted for confined membranes,
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the impact of negative tension is negligible. Nevertheless, once adhesion domains form, a

negative tension may result in strong membrane buckling and the formation of elongated

adhesion domains.

In contrast to the long-range fluctuation-induced interactions, the curvature-induced

PMF spans over a correlation length, ξγ, which for biological membranes is typically in the

range of several tens of nanometers. Our investigation of adhesion domain formation driven

by the curvature-mediated mechanism relies on a novel mean-field approach, in which the

elastic energy of the membrane is numerically estimated for various random distributions

of bonds. We obtain an empirical expression for the system’s free energy, from which we

derive the phase diagram of the system. Our analysis reveals that the typical membrane

deformations caused by adhesion bonds in biological systems may lead to the formation of

adhesion domains with semi-dilute densities of the order of ∼ ξ−2
γ . The conclusions drawn

from our analysis are further examined in relation to the important biological system of

the immunological synapse (IS). This special cellular junction forms between T cells and

antigen-presenting cells as part of the immune response, and is established by two types of

adhesion bonds, namely TCR-pMHC and LFA1-ICAM1. The IS is characterized by a unique

molecular pattern where the TCR-pMHC form a central cluster at the contact area, while

LFA1-ICAM1 adhesion bonds accumulate around it. We locate the system in the two-phase

region of our mean-field phase diagram, and identify the IS as a semi-dilute domain with

roughly 100 bonds per µm2, in line with experimental observations.

While our investigation finds that passive (thermodynamic) membrane-mediate mech-

anisms may be crucially important for the aggregation of the IS, the formation of the TCR-

pMHC cluster at the center of the contact area can be only explained by a symmetry breaking

mechanism. A widely accepted source for this symmetry breaking is the active cytoskeletal

processes originating from actin retrograde flow and dynein-mediated directed transport. To

further investigate the interplay between passive and active mechanisms in IS formation, we

present and simulate an implicit-membrane lattice-gas model, where the curvature-mediated

PMF and the active cytoskeletal-based forces are introduced via simple potentials. The

spatio-temporal evolution of the lattice simulations is found to be astonishingly similar to

the signature features of the IS formation process. Specifically, we observe that small TCR-

pMHC microclusters are initially formed at the periphery of the contact region, and then
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migrate (while continuing to grow in size) to the center of the contact area, where they accu-

mulate into a quasi-circular domain. Moreover, we find that this process is completed within

a biologically relevant timescale of ∼ 30 minutes. Our simulation results, thus, reveal the

important role played by the membrane-mediated interactions in regulating the rate of the

IS formation process. Explicitly, membrane elasticity facilitates the formation of long-lived

TCR-pMHC peripheral microclusters, which are important for T cell activation, thereby al-

lowing sustained signaling over tens of minutes prior to the formation of the central domain,

where these signals are terminated.

Keywords: membrane elasticity, thermal undulations, cell junctions, adhesion domains,

lattice-gas, coarse-grained, Monte Carlo simulations, condensation transition, mean-field the-

ory, immunological synapse, active and passive forces.
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Chapter 1

Introduction

Lipid membranes serve as a physical barrier that separates the interior of the cell from its

outer environment. They are typically arranged as a bilayer of a number of lipids, such

as phospholipids, glycolipids and cholesterol [1]. Similar to the plasma membrane that

surrounds the cells, several intracellular organelles such as the mitochondria, the nucleus

and the endoplasmic reticulum are also compartmentalized by a lipid membrane. One of

the most important roles of lipid bilayers is to regulate the bidirectional flow of ions and

other molecules into and out of the cell [2]. Biological membranes are also embedded with

numerous types of proteins, which exhibit lateral diffusion in the membrane’s plane [3, 4].

Cell adhesion molecules constitute a special class of membrane proteins that enable the

attachment of the membrane to various elements, such as the extracellular matrix (ECM),

the cytoskeleton and neighboring cell membranes. The adhesion process is mediated by

the formation of specific receptor-ligand bonds that anchor the membrane to the adhesive

element. Cell adhesion is crucial for the proper function of individual cells and the organism

as a whole, and plays a vital role in many biological processes, including cell migration [5],

tissue morphogenesis [6], intercellular communication [7], and T cell activation as part of the

immune response [8].

One common feature of cell adhesion is the ability of the adhesion bonds to aggre-

gate and form large adhesion domains. For instance, connexon protein complexes aggregate

into gap junction plaques that bind opposing cell membranes. Gap junctions directly con-

nect the cytoplasms of two neighboring cells and regulate the exchange of ions and small

6



molecules, thereby regulating intercellular communication [9]. Likewise, proteins of the in-

tegrin family aggregate into clusters called focal adhesion, which physically link the ECM

to the cell cytoskeleton. This mechanical linkage not only provides strong anchoring of the

cell to the ECM, but also enables the cell to generate traction forces necessary for cellular

locomotion [10]. In addition, focal adhesions act as mechano-sensors and promote biological

signals that regulate cell growth, survival, proliferation and differentiation [11–14]. Finally,

cadherin proteins cluster into adherens junctions that bind neighboring cells within tissues.

The formation of this type of adhesion domains is vital for proper tissue organization and

architecture maintenance in developing and adult organisms [15,16]. Given the enormous im-

portance of adhesion clusters in biological systems, it is essential to acquire a comprehensive

understanding of the biophysical principles governing the formation of these structures.

Due to the highly complexed nature of the cell membrane, several experimental studies

have developed model systems containing the key components of biological membranes to

gain insights into the adhesion process. These models include lipid bilayers deposited onto

solid substrates and thin polymer-coated supports [17, 18]. When incorporated with spe-

cific adhesion proteins, such supported membranes may serve as targets for the binding of

synthetic ligand coated vesicles or liposomes [19, 20]. These biomimetic systems are able to

elucidate many aspects of cell adhesion, such as the effect of density and strength of ligand-

receptor bonds on adhesion efficiency [21], as well as estimation of adhesion bonds binding

affinity [22]. Supported membranes also constitute new potential applications in designing

biosensor nano-devices [23].

1.1 Statistical mechanics of fluctuating membranes

The elastic behavior of lipid bilayers is traditionally studied in the framework of the Helfrich

effective surface Hamiltonian [24] for two-dimensional manifolds with local principle curva-

tures c1 and c2. The system Hamiltonian is described in terms of the bending energy of the

membrane, and is given by

H =

∫
dS

{
1

2
κ (c1 + c2 − c0)2 + κ̄c1c2

}
, (1.1)
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where the integration is taken over the entire surface of the membrane. In eq. (1.1), κ is

the bending modulus of the membrane, κ̄ is the saddle-splay (Gaussian) modulus, and c0

is the spontaneous curvature. If one assumes that the two leaflets of the bilayer membrane

have similar lipid compositions, the spontaneous curvature can be simply set to c0 = 0.

For fluctuating membranes that do not change their topology, the surface integral over the

Gaussian curvature term would simply result in a constant, which has no effect on the

underlying physics of the system and, thus, can be ignored. A useful way to parametrize

the membrane surface is the Monge gauge. Within this parametrization, the membrane is

represented by a height function h(r) measured relative to a reference plane, where r = (x, y)

is the two-dimensional position vector. Assuming the small gradient approximation, which

essentially states that the membrane does not fluctuate considerably (and, in particular,

does not develop “overhangs”), one can re-express the membrane curvature (c1 + c2) and

the area differential element (dS) in terms of the membrane’s height function. Keeping only

quadratic terms in h, one obtains the following simplified version of the effective Helfrich

Hamiltonian

H =

∫
AP

1

2
κ
(
∇2h

)2
d2r, (1.2)

where, in this case, the integration is taken over the projected area of the membrane, AP.

Eq. (1.2) is the most commonly used form of the Helfrich energy in the literature of membrane

biophysics.

The quadratic nature of eq. (1.2) gives rise to a harmonic theory, in which membrane

undulations can be viewed as a collection of independent harmonic oscillators. This is done

by using the Fourier representation of the height profile

h(r) =

(
l

L

)2∑
q

hq exp (−iq · r) (1.3)

q =
2π

L
(n1, n2) ; ni=1,2 =

−L
2l
, . . . ,

L

2l

where q is the two dimensional wave vector, l is a microscopic cutoff lengthscale of the order

of the membrane thickness (≈ 5nm), and L is the linear size of the membrane such that
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L2 = AP. In Fourier space the Helfrich Hamiltonian (1.2) reads

H =
l4

L2

∑
q

1

2
κq4

∣∣h2
q

∣∣ , (1.4)

where q = |q|. From eq. (1.4) we observe that the different Fourier modes decouple; thus,

each mode constitutes an independent fluctuation degree of freedom of the membrane. For

quadratic energy functionals, the equipartition theorem implies that each fluctuation mode

contributes an average of kBT/2 to the system energy, where kB is the Boltzmann constant

and T denotes the system temperature. Thus, the fluctuation spectrum of the membrane

obeys

〈
∣∣h2

q

∣∣〉 =
L2kBT

l4κq4
. (1.5)

Eq. (1.5) provides an incredibly useful method for estimating the bending modulus κ of the

membrane, by measuring the fluctuation spectrum using flicker spectroscopy [25] or computer

simulations [26]. Fitting the data to eq. (1.5) results in typical values of the bending rigidity

that lie within the range of κ ≈ 10− 50kBT [27].

One can also derive an expression for the mean square height fluctuations of the mem-

brane

∆2
0 = 〈h(r)2〉 =

(
l

L

)4∑
q

〈
∣∣h2

q

∣∣〉 ≈ kBT

16π3κ
L2, (1.6)

which gives the “thermal roughness” of the membrane. Note that the mean square fluctua-

tions of a free bilayer are proportional to the system temperature as one would expect, but

diverge with the system size L.

1.2 Membrane-mediated interactions between adhesion

bonds

The clustering process of membrane adhesion bonds at the surface of membranes requires

attractive interactions between them to overcome their mixing entropy. These may originate
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from direct electrostatic and Van der Waals interactions [28], or effective forces stemming

from cytoskeleton remodeling and the action of motor proteins that actively translocate and

redistribute the adhesion bonds [29]. Another interesting mechanism that can facilitate ad-

hesion domain formation is related to the thermodynamics of the membrane itself, which can

induce effective forces between the adhesion proteins [30]. Membrane-mediated interactions

between adhesion bonds originate from two interrelated mechanisms operating in concert.

The first mechanism is related to the suppression of membrane thermal fluctuations by the

presence of adhesion bonds, which locally fix the membrane’s height [31]. The resulting

loss in the membrane’s fluctuation entropy can be partially mitigated if the adhesion bonds

aggregate into a single domain, which allows the membrane to fluctuate more freely. The

second mechanism stems from the local membrane deformations that are imposed by the

adhesion bonds. These membrane distortions are minimized once the bonds reside in close

proximity to each other, which can greatly relieve the mechanical stress of the system [32].

Thus, membrane curvature and thermal fluctuations induce an effective attractive potential

of mean force (PMF) between the adhesion bonds, which may trigger their aggregation.

The non-specific membrane-mediated interactions have also been studied in relation to con-

densation of trans-membrane proteins (membrane “inclusions”) [33–35], and in the broader

context of “Casimir-like” interactions in condensed matter [36].

The main challenge in analyzing and deriving expressions for membrane-mediated in-

teractions arises from their many-body nature [37], i.e., their non-trivial dependence on the

spatial distribution of the adhesion bonds. In a system with a large number of bonds, the

PMF acting between each pair of bonds depends on the locations of all of the other bonds

and, therefore, cannot be expressed as a simple sum of pairwise interactions. To illustrate

this complexity, consider the two configurations schematically depicted in Fig. 1.1. In the

first configuration [Fig. 1.1(a)], the membrane is attached by two adhesion bonds separated

by a distance r0, whereas in the second one [Fig. 1.1(b)] the membrane is attached by a

single bond and another small cluster of three bonds, with the same distance r0 between

them. It is readily apparent that the spectrum of thermal undulations, as well as the degree

of membrane curvature, is quite similar in both scenarios and, therefore, the membrane-

mediated PMFs are expected to be roughly the same in both cases. In other words, the

membrane-mediated force exerted on the single bond in Fig. 1.1(a) by the second bond is
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similar to that exerted on the single bond in Fig. 1.1(b) by the three bond cluster, and not

three times smaller.

(a) (b)

Figure 1.1: Schematics of a membrane bound to a surface by (a) two isolated adhesion
bonds, and (b) a single adhesion bond and a small cluster of three bonds. The separation
between the two bonds in (a) and between the single bond and the cluster in (b) is identical
and equals r0. The membrane-mediated PMF is similar in both cases, which illustrates its
many-body nature.
.

Several theoretical studies have been devoted to characterizing and deriving expressions

for the membrane-mediated PMF between adhesion bonds. In a seminal work by Bruinsma,

Goulain and Pincus, the aggregation of gap junctions was investigated by considering two

opposing tensionless membranes with bending moduli 2κ that are connected to each other

at several points [38]. The system Hamiltonian is given by

H =

∫
AP

{
1

2
κ
(
∇2h

)2
+ V (h)

}
d2r, (1.7)

where the effective potential, V (h), stands for the various interactions between the two mem-

branes, and h is the distance between them. A similar Hamiltonian describes the energy of

a single supported membrane with bending rigidity κ and a flat underlying surface. For sup-

ported membranes in model systems, a number of factors can contribute to V (h), including

short-range van der Waals attraction and excluded volume repulsion, double layer forces,

and effective repulsion due to thermal collisions between the membrane and the underlying

surface [39]. In the context of the living cell, confinement effects may arise from the ECM,

the cytoskeleton and the glycocalyx coating of the cell, which can all be clumped into this

effective non-specific potential.

Two important regimes for V (h) have been considered, corresponding to different

membrane-surface interactions. The first regime is termed the Helfrich regime, and deals

with membranes exhibiting large thermal fluctuations. In this regime, V (h) is an effective
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repulsive potential (per unit area) arising from thermal collisions between the membrane

and the surface. The second regime, termed the van der Waals regime, describes membranes

with large bending moduli, such that the thermal undulations are small. In this case, the

curvature of the membrane dominates the system and, thus, V (h) can be replaced by a

Lennard-Jones type of potential. In the following sections, we review results for the thermo-

dynamic behavior of membranes in the Helfrich and the van der Waals regimes, from which

insights can be drawn into the fluctuation- and curvature-mediated interactions, respectively.

1.2.1 The Helfrich regime

1.2.1.1 Entropic attachment penalty of a single adhesion bond

An interesting feature of membranes attached to a surface at a single point is that the

fluctuation spectrum remains unaffected when compared to a free (unbound) membrane [40].

This rather surprising property can be understood from the fact that the membrane energy

is invariant under vertical translations and, thus, one can always position the underlying

adhesive surface at the global minimum of the membrane. That the attachment of the

membrane to the surface at a single point eliminates its horizontal degrees of freedom with

respect to a free membrane implies that the configurational space of the attached membrane

occupies a fraction l2/L2 of that of the free membrane, where l2 is roughly the area occupied

by the single adhesion bond. Therefore, the ratio between the partition functions of these

two systems satisfies Z/Zfree = l2/L2. Since the free energy of the attached membrane is

simply given by F1 = −kBT ln (Z/Zfree), the free energy cost associated with attaching a

membrane by a single adhesion bond is given by

F1 = 2kBT ln

(
L

l

)
. (1.8)

Eq. (1.8) can also be derived by employing a different approach. Helfrich showed that thermal

collisions between the membrane and the underlying surface result in an effective repulsive

potential per unit area that scales with the height h of the membrane above the surface
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as [41]

Vrep(h) ∼ (kBT )2

κh2
. (1.9)

Using this form in eq. (1.7) gives

H =

∫
AP

{
1

2
κ
(
∇2h

)2
+ C

(kBT )2

κh2

}
d2r, (1.10)

where C is an unknown numerical constant. Minimizing eq. (1.10) with respect to h results

in the membrane’s average height profile that grows linearly with the distance r from the

adhesion point (see also Fig. 1.2) according to

〈h(r)〉 ∼ r

√
kBT

κ
. (1.11)

Substituting eq. (1.11) in eq. (1.9) results in the effective fluctuation-induced repulsion be-

tween the membrane and the surface as a function of r

Vrep(r) ∼ kBT

r2
. (1.12)

The free energy penalty associated with the attachment of the membrane by the single bond

can now be derived by integrating eq. (1.12) over the membrane’s projected area (excluding

a region of size l around the adhesion point), yielding

F1 =

∫
AP

V (r)dr '
∫ L

l

2πr
kBT

r2
dr = 2πkBT ln

(
L

l

)
. (1.13)

One readily finds that in order to reconcile eq.(1.13) with eq. (1.8), the scaling behavior of

eq. (1.12) can be replaced by the exact form

Vrep(r) =
kBT

πr2
. (1.14)
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Figure 1.2: Schematics of the mean height profile of a membrane tethered by a single adhesion
bond to a surface in the Helfrich regime. The solid line represents the linear growth of the
mean height with the distance r from the bond. The dashed curve represents thermal
undulations around the average profile.

1.2.1.2 Two-body fluctuation-induced attraction

The effective steric repulsion proposed by Helfrich, which stems from the thermal collisions

between the membrane and the surface, may be used to analyze the fluctuation-induced

interactions between a pair of membrane adhesion bonds. This is done by considering a

membrane attached to the surface at a single adhesion point and the probability density,

p [h(r) = 0], that the membrane collides with the surface at a distance r away from it [31].

Since this probability density function is directly related to the rate of collision between

the membrane and the surface, it should display the same scaling behavior with r as does

V (r) (1.14), namely p [h(r) = 0] ∼ 1/r2. If one thinks of the collision point as the location of

the second adhesion bond, then the pair correlation function between the two adhesion bonds

should also scales as g(r) ∼ 1/r2, which immediately gives the pair fluctuation-induced PMF

Φ2(r) ≡ −kBT ln [g(r)] = 2kBT ln(r). (1.15)

This shows that the fluctuation-induced pair PMF is a long-range (infinitely ranged) attrac-

tive potential which, remarkably, is independent of the bending modulus κ. This result has

also been verified by computer simulations of coarse-grained bilayer membranes [42].

1.2.1.3 Many-body fluctuation-induced PMF

The study of the clustering process of adhesion bonds traditionally uses a lattice model [43–

45], in which the membrane is discretized into patches that may or may not contain adhesion

molecules that bind (via receptor-ligand bonds) the membrane to an underlying surface.
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Such models constitute discrete versions of the Helfrich continuum surface model of lipid

bilayers. Thus, each lattice site is characterized by two variables si and hi. The former

parameter characterizes the distribution of adhesion bonds, where si = 1 corresponds to

a membrane segment that is connected to the surface and si = 0 to a segment which is

free to fluctuate. The latter parameter, hi, represents the local height of the membrane.

Analyzing the aggregation behavior of the adhesion bonds by means of computer simulations

requires sampling over different distributions of lattice sites, as well as over different height

conformations. This may become a computationally expensive task in simulations of large

systems. It is, therefore, desirable to develop a model that integrates out the degrees of

freedom associated with the height fluctuations and, instead, assigns a potential of mean force

between the lattice adhesion sites. Apart from computational simplicity, another advantage

of this approach is that it makes possible a direct comparison with the well-investigated two-

dimensional (2D) lattice-gas model and, thus, highlights the role played by the membrane-

mediated interactions in the aggregation process1.

Such a lattice model was recently proposed by Weil and Farago (WF) [46], which

combines two attractive energy terms:

HWF = −ε
∑
〈i,j〉

sisj +
∑
i

Vi(1− si). (1.16)

The first term constitutes the conventional lattice-gas model, where the sum runs over all

pairs of nearest-neighbor lattice sites. The energy ε > 0 gained for each pair of nearest-

neighbor occupied sites accounts for all the interactions between the adhesion bonds other

than the membrane-mediated PMF. The latter potential is represented by the second term

in eq. (1.16) which, quite unusually, involves summation over the empty sites alone. The

energy of each empty site measures the amount of free energy lost due to the suppression of

the thermal height fluctuations of the corresponding membrane segment. Weil and Farago

conjectured that this free energy penalty depends on the distance of the segment from the

nearest adhesion bond dmin
i , i.e., the distance to the nearest occupied site. This assump-

tion is based on the idea that each of the adhesion bonds restricts the membrane thermal

1Note that an opposite approach is taken in refs. [43, 44], where the positional degrees of freedom si are
integrated out by using the mean-field solution of the 2D lattice-gas model. This introduces an effective
membrane-surface interaction energy term in the Helfrich Hamiltonian that depends on the local hi.
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fluctuations mainly in its own vicinity. In other words, the local suppression of thermal un-

dulations is essentially determined by the nearest adhesion bond, while the effect of the other

more distant bonds is effectively screened out. The energy penalty term, Vi, in eq. (1.16)

associated with the (empty) site i is given by

Vi =
kBT

π

(
l

dmin
i

)2

, (1.17)

which generalizes eq. (1.14) for the free energy density at a distance r from a single isolated

adhesion bond. In eq. (1.17), l is the lattice constant (which should be of the order of a few

nanometers – comparable to the thickness of the membrane), and dmin
i measures the distance

of site i to the nearest occupied site. Note that, in general, dmin
i depends on the distribution

of all the occupied sites; therefore, the second term in eq. (1.16) represents a many-body

PMF between the adhesion bonds. This potential is attractive because most of the entropy

is lost at the proximity of the occupied lattice sites, where dmin
i is small. The many-body

fluctuation-induced PMF can be evaluated by: (i) constructing a Voronoi diagram for the

distribution of adhesion bonds, (ii) calculating the attachment free energy penalty within

each Voronoi cell by integrating eq. (1.14) over the area of the given Voronoi cell, and (iii)

adding up the free energy contributions of all the Voronoi cells. Thus, the many-body PMF

is given by

ΦN =
N∑
i=1

∫
Ai

kBT

πr2
dr, (1.18)

where within each Voronoi cell i with area Ai the distance r is measured from the adhesion

bond located inside the cell.

To study the aggregation behavior of adhesion bonds in membranes, Monte Carlo

simulations of the WF model were conducted on a triangular lattice and were compared to

simulation results of the standard lattice-gas model with only nearest-neighbor interactions,

i.e., in the absence of the second term in eq. (1.16). In both sets of simulations, the system

exhibited a first order condensation transition at a certain threshold value ε = εc. The

simulation results revealed that the transition value, εc, of the WF model is smaller than the

corresponding value of the standard lattice-gas model at the same density of bonds, typically
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by a factor of 2-3. This is depicted in Fig. 1.3, in which the mean number of nearest-neighbor

pairs, normalized by the number of occupied sites

〈NC〉 =
1

N

∑
〈i,j〉

〈sisj〉, (1.19)

is plotted as a function of ε. At low values of ε, the system is in the “gas” phase and 〈NC〉

takes a small value, since the adhesion points are scattered throughout the system. For high

values of ε, the energy gained from direct interactions overcomes the mixing entropy of the

adhesion bonds, which condense and form a large domain. In such configurations, 〈NC〉

approaches the value 3, due to the triangular nature of the lattice under inspection2. At the

onset of the condensation transition, the parameter 〈NC〉 exhibits a sharp increase, which

is useful for estimating the threshold value εc required for condensation. In particular, the

simulations showed that εc is smaller than thermal energy kBT in the WF model, and larger

than kBT in the standard lattice-gas model. In agreement with previous lattice models that

included the membrane explicitly (and not via a potential of mean force) [43–45], the adhesion

sites do not form large clusters when ε = 0, which implies that the fluctuation-induced

interactions alone are not sufficient to allow for the formation of large adhesion domains,

but they greatly reduce the strength of the residual interactions required to facilitate cluster

formation.

In a subsequent study, Noguchi suggested that the strength of the membrane-mediated

interactions can be enhanced by pinning more than one membrane to the surface [47]. He

demonstrated this by simulating monolayers of particles that are pinned to each other by

gap junctions. In simulations of Nlay = 2 monolayers, the gap junctions remain dispersed

for ε = 0, which is consistent with the results of the WF model. However, when the num-

ber of monolayers was Nlay > 2, Noguchi found that the gap junctions exhibited different

behavior and condensed into a large stable domain. This behavior can be attributed to the

fact that the entropy loss caused by the gap junctions is proportional to the total rate of

collisions between the layers in the stack [42], which grows proportionally to the number

of pairs of colliding surfaces, i.e., to (Nlay − 1). Motivated by the results of the molecular

2In a cluster composed of N points on a lattice where each occupied site has n nearest-neighbors, the
number of nearest-neighbor pair interactions is ' nN/2 (neglecting finite size effects on the boundaries of
the cluster). In a triangular lattice, n = 6 and, thus, in a highly packed cluster of adhesion points 〈NC〉 ' 3.
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Figure 1.3: Condensation transition curves obtained from Monte Carlo simulations of the
Weil-Farago model and the standard lattice-gas model of system with a particle density
of φ = 0.1. The average number of nearest-neighbor pairs per occupied site is plotted as
a function of the short-range interaction parameter ε, for the Weil-Farago model (circles)
and for the standard lattice-gas model (squares). The left and right vertical dashed lines
are located at εc ' 0.65kBT and εc ' 1.3kBT , respectively, and mark the condensation
transition. The solid lines serve as a guide to the reader’s eyes.

simulations, Noguchi also simulated the WF lattice model with a free energy term which is

simply (Nlay − 1) times larger than Vi given by eq. (1.17). The WF model yielded results in

very good agreement with the molecular simulations.

1.2.2 The van der Waals regime

In membranes where the thermal undulations are small, the system’s free energy is dominated

by the bending energy of the membrane. In this case, one may consider the membrane-

surface interactions V (h) to take the form of a Lennard-Jones type of potential. For small

deviations from the potential’s minimum, which for simplicity can be set to h = 0, a harmonic

approximation for V (h) can be assumed. Hence, the effective Helfrich Hamiltonian of a

tensionless membrane becomes

H =
1

2

∫
AP

{
κ
(
∇2h

)2
+ γh2

}
d2r, (1.20)
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where γ = ∂2V/∂h2|h=0 denotes the strength of the harmonic confining potential, which

acts to suppress the thermal fluctuations of the membrane. The influence of the harmonic

potential on the membrane can be appreciated by considering the spectrum of thermal

fluctuations, which is now given by

〈
∣∣h2

q

∣∣〉 =
L2kBT

l4 (κq4 + γ)
. (1.21)

Comparing eq. (1.21) with eq. (1.5), it is clear that the harmonic confining potential strongly

suppresses the amplitudes of long wavelength (with small q) undulation modes satisfying

κq4 � γ, whereas the fluctuation spectrum is essentially unaffected at much smaller length

scales. To put it differently, eq. (1.21) introduces the characteristic length scale

ξγ =

(
κ

γ

)1/4

, (1.22)

which sets the crossover between two regimes. On length scales r � ξγ the membrane’s

height profile is governed by the bending energy, whereas the r � ξγ regime is dominated by

the harmonic confining potential. The parameter ξγ also gives the typical length scale over

which membrane shape undulations are correlated (see Appendix A). From eq. (1.21), one

can also derive the thermal roughness of the membrane in the van der Waals regime

∆2 = 〈h(r)2〉 =

(
l

L

)4∑
q

〈
∣∣h2

q

∣∣〉 ≈ kBT

8
√
κγ

=
kBT

8κ
ξ2
γ, (1.23)

which can be compared to eq. (1.6) to see that the harmonic confinement eliminates the

dependence on the system size. Instead, the mean square fluctuations now depend on the

length scale ξγ.

1.2.2.1 Deformation energy of membranes with a single adhesion bond

The mechanical equilibrium state of a membrane that is not connected to a surface by

adhesion bonds is that of flat bilayer at h = 0. This ground state minimizes the confinement

energy and, in addition, is characterized by zero curvature energy. What happens when a

single adhesion protein locally “pulls” the membrane away from this equilibrium height and
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attaches it to an adhesive surface located at h = h0 6= 0? One way to answer this question is

to find the height function h(r) that minimizes the Helfrich Hamiltonian, under the constraint

that at the location of the adhesion bond (which can be set to r = 0) the membrane height

is fixed at h(0) = h0 where the adhesive surface resides. The equilibrium (mean) height

profile is the solution of the corresponding Euler-Lagrange differential equation, which for

the Hamiltonian (1.20) is given by the biharmonic equation [38]

∇4h+
h

ξ4
γ

= 0 (1.24)

with the following boundary conditions (BCs)



h(0) = h0

h(r →∞) = 0

∂h

∂r

∣∣∣∣
r=0

= 0

∂h

∂r

∣∣∣∣
r→∞

= 0

. (1.25)

The solution of eq. (1.24) subject to the BCs (1.25) is

h(r) = − 4

π
h0 kei

(
r

ξγ

)
, (1.26)

where r = |r| and kei(x) is the Kelvin function [48]3. The (cross-section) height profile given

by eq. (1.26) is sketched in Fig. 1.4, which shows that ξγ also acts as a “healing length”

over which the deformation caused by the adhesion bond relaxes, and the membrane settles

back to the minimum of the harmonic confining potential. Inserting eq. (1.26) into eq. (1.20)

yields the average deformation energy caused by a single adhesion bond

E1 =
kBT

2

(
h0

∆

)2

. (1.27)

One can straightforwardly verify that the deformation energy E1 in eq. (1.27) arises from

equal contributions of the curvature and interaction energies in eq. (1.20).

3The Kelvin is defined as kei(x) = ImK0

(
xei3π/4

)
, where K0(z) is the 0th order modified Bessel function

of the second kind.
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Figure 1.4: The mechanical equilibrium height profile of the membrane in the van der Waals
regime as a function of the distance from a single adhesion bond located at the origin and
sets the membrane to h(0) = h0. The membrane settles back to h ' 0 at distances much
larger than the characteristic healing length ξγ.

A more rigorous way to study the elastic effect of tethering a membrane at a single

adhesion point is to consider the partition function associated with the system Hamilto-

nian (1.20)

Z1 =

∫
D [h(r)] e−βH · δ (h(0)− h0) , (1.28)

where β = (kBT )−1. Eq. (1.28) involves a statistical average over all possible membrane

height configurations under the constraint that at the location of the adhesion bond, r = 0,

the membrane is fixed to h(0) = h0. The latter is introduced into the calculation by Dirac’s-

delta function. The partition function can be analytically derived by using the Fourier

representation of the delta function

δ(x− x0) =
1

2πi

∫ i∞

−i∞
e−w(x−x0)dw, (1.29)

together with the Fourier series of h(r) (1.3), which results in Gaussian integrals that can
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be readily evaluated. It follows that Z1 has the form

Z1 =
Z0√
2π∆2

exp

{
−kBT

2

(
h0

∆

)2
}
, (1.30)

where Z0 is the partition function of a membrane in the absence of adhesion bonds. The

associated free energy reads4

F1 = −kBT ln

(
Z1

Z0

)
=
kBT

2

(
h0

∆

)2

+
kBT

2
ln
(
2π∆2

)
(1.31)

From eq. (1.31) we identify the ground state energy as the first term on the r.h.s. in line

with eq. (1.27), and the second term measures the entropy of thermal fluctuations around the

mean profile. Interestingly, the entropic component in eq. (1.31) is found to be independent

of the deformation h0.

1.2.2.2 Pairwise curvature-induced attraction

Pulling the membrane by a second adhesion point, separated by a distance r from the first

adhesion bond at r = 0 can be introduced into the statistical mechanical analysis by a

second delta function representing the additional height constraint imposed by the second

bond. The partition function of a membrane with two adhesion bonds now reads

Z2(r) =

∫
D [h(r)] e−βH · δ (h(0)− h0) δ (h(r)− h0) . (1.32)

The associated free energy is given by

Φ2(r) = −kBT ln

(
Z2

Z0

)
=

2E1

1− 4
π
kei

(
r

ξγ

) +
kBT

2
ln

{
4π2∆4

[
1−

(
4

π

)2

kei2
(
r

ξγ

)]}
, (1.33)

4In the second term on the r.h.s. of eq. (1.31), the thermal roughness ∆ should be measured in units of
the relevant de Broglie wavelength ∆ → ∆/ΛdB. The same holds true for the second term on the r.h.s. of
eqs. (1.33) and (1.37) below.
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where E1 is given by eq. (1.27). The pair PMF is composed of a deformation energy con-

tribution and an entropic component, which are represented by the first and second terms

on the r.h.s. of eq. (1.33), respectively. The former represents the curvature-induced inter-

actions between the pair of adhesion bonds, while the latter gives the fluctuation-induced

interactions. Note that both terms describe a short-range pair attraction that spans over a

typical range of ξγ, unlike the Helfrich regime where the pairwise fluctuation-induced PMF

is infinitely long-range. This is a direct result of the harmonic confinement potential in-

troduced in the van der Waals regime which suppresses the long wavelength undulations,

whereas in the Helfrich regime, the amplitudes of thermal fluctuations continue to grow with

the wavelength.

1.2.2.3 Many-body curvature-induced PMF

For a system with N ≥ 3 adhesion bonds, the attachment between the surface and the

membrane can be incorporated by a set of height constraints satisfying h
(
{ri}Ni=1

)
= h0,

where the bonds are positioned at {ri}Ni=1 and h0 is the height of the surface. Thus, the

partition function of such systems reads

ZN =

∫
D [h(r)] e−βH ·

N∏
i=1

δ (h(ri)− h0) . (1.34)

The partition function ZN can be evaluated by: (i) using the Fourier representations of

the height function and the Dirac-delta functions, (ii) applying N Hubbard-Stratonovich

transformations, and (iii) evaluating the resulting Gaussian integrals [45,49–51]. This leads

to the following expression

ZN =
Z0

(2π∆2)N/2
√

det M
exp

{
−1

2

(
h0

∆

)2 N∑
i,j=1

(
M−1

)
ij

}
, (1.35)

where Z0 is the partition function corresponding to the Hamiltonian (1.20), with V (h) =

1
2
γh2 and without adhesion bonds (N = 0). The coupling matrix M appearing in eq. (1.35)
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is given by,

Mij =
2kBT

Ap∆2

∑
q

cos [q · (ri − rj)]

κq4 + γ
' − 4

π
kei

(
|ri − rj|
ξγ

)
. (1.36)

For a given distribution of adhesion bonds, the PMF is given by the free energy

ΦN

(
{ri}Ni=1

)
= −kBT ln

(
ZN
Z0

)
(1.37)

=
kBT

2

[(
h0

∆

)2 N∑
i,j=1

(
M−1

)
ij

+ ln
((

2π∆2
)N

det M
)]

.

The first term on the r.h.s. of eq. (1.37) gives the energy of the height function that mini-

mizes the Hamiltonian (1.20) with the harmonic potential, subject to the height constraints

imposed by the bonds. The second term is the entropic contribution due to the thermal

undulations around this profile [51]. Note that the energetic and the entropic components

in the free energy decouple in this model, which follows from the quadratic nature of the

Hamiltonian in q-space. Also note that both terms in eq. (1.37) depend on the elements of

the matrix Mij (1.36) in a non-linear manner, which is a mathematical manifestation of the

many-body nature of the membrane-mediated PMF.

An interesting observation was made by Speck, Reister and Seifert [50], who argued

that the model depicted in eq. (1.37) belongs to the two dimensional Ising universality class

(see detailed discussion in Appendix A). Furthermore, if the typical spacing between the

adhesion bonds is much larger than the healing length ξγ (i.e., for dilute systems), the

model can be mapped onto a lattice-gas with nearest-neighbor interactions. By estimating

the effective interaction parameter between adhesion bonds occupying neighboring sites, the

authors of ref. [50] were able to draw the phase diagram of the system and estimate the

critical temperature below which clusters appear.

1.3 Outline of the thesis

This thesis is organized as follows. In chapter 2, we analyze the aggregation behavior of ad-

hesion bonds in the Helfrich regime by conducting computer simulations of a coarse-grained

model for supported lipid bilayers. We find the conditions under which the condensation
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transition occurs and compare our results to the predictions of the WF lattice model. The

role of the fluctuation-induced interactions in adhesion cluster formation is further studied by

simulating membranes subjected to a physical confinement or to a negative surface tension

that, respectively, feature reduced or enhanced thermal undulations. In chapter 3, we investi-

gate adhesion domain formation in the van der Waals regime. We present a novel mean-field

theory for the free energy of the system, and determine the condensation transition from the

phase diagram of the system. In chapter 4, we study the role of the curvature-induced at-

traction in a specific biological process, which is the formation of the immunological synapse

– a specialized cellular junction that forms between a T cell and an antigen-presenting cell

as part of the immune response. This process is driven by both passive (thermodynamic)

and active (ATP-driven) forces, and the ideas developed in chapter 3 are used to study their

respective roles in the formation of this unique biological pattern. Chapter 5 covers the

concluding remarks.
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Chapter 2

Molecular simulations of membranes

in the Helfrich regime

2.1 Introduction

Various models have been proposed over the years in the attempt to describe and study the

behavior and the biophysical properties of lipid bilayers. Typically, different models vary

in the resolution by which the describe the system, which directly relates to the time and

length scales that can be explored within the framework. For instance, continuum models

(such as the Helfrich elasticity model of an infinitely fluctuating manifold – see section 1.1)

can be used to study properties of membranes on macroscopic length scales that can reach

several micrometers [52]. Such models are applicable to membranes with lateral dimensions

that greatly exceed its thickness, but are too crude to describe processes on smaller length

scales. On the other hand, high resolution fully-atomistic models display great chemical

specificity, but can be used to study small systems of a few tens of nanometers in size over

timescales of about a 100-1000 nanoseconds [53,54]. Since many cellular phenomena (includ-

ing membrane adhesion) occur on larger length- and time-scales, a variety of coarse-grained

models have evolved [55–58], which constitute a certain compromise between the fully atom-

istic and continuum approaches. Within the coarse-grained approach, it is assumed that the

detailed atomic nature of the system has a relatively small impact on the mesoscopic behav-

ior under investigation and, hence, a number of atoms are grouped together and treated as
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single beads. Depending on the degree of coarsening, coarse-grained models are extremely

advantageous in terms of the computation time, allowing one to simulate larger systems and

longer processes than those typically explored on atomistic scales. The simulation results can

be compared to continuum theoretical models, while retaining a reasonable molecular de-

tail. Notably, several solvent-free models have been presented, in which the water molecules

surrounding the membrane are excluded from the simulations. Instead, the hydrophobic

effect is introduced via effective interactions between the beads that enable self-assembly

and maintain membrane integrity [59,60]. Such implicit-solvent models substantially reduce

the CPU time required for equilibrating the system and, concomitantly, allow simulations

of substantially larger systems for increasingly larger durations. In this chapter we employ

an implicit-solvent coarse-grained membrane model to study the formation of membrane

adhesion clusters under several external constraints.

2.2 Comparison with the Weil-Farago model

We begin by testing the validity and accuracy of the WF model for condensation of adhe-

sion bonds. To this end, we use the coarse-grained model proposed by Cooke and Deserno,

in which lipids are modeled as trimmers consisting of one hydrophilic (head) and two hy-

drophobic (tail) beads [61]. This model is less coarse-grained than the one used is ref. [47]

and, thus, gives a better representation of lipid membranes which are simulated as bilayers

rather than monolayers. A flat plate, which cannot be intersected by the lipids, was placed

underneath the lower monolayer at z = 0, and the attachment of the membrane to the

surface was established by restricting N head beads from the lower monolayer to z = 0 and

allowing them to move only in-plane. We conducted Monte Carlo (MC) simulations with

periodic boundary conditions of a bilayer comprising of 2Nl = 2000 lipids (where Nl denotes

the number of lipids per monolayer) at different densities of adhesive lipids, φ = N/Nl. A

slight change in the Cooke-Deserno model was made where, for pairs of adhesive head beads,

the pair potential was switched from head-head to tail-tail. While the former pair potential

is purely repulsive, the latter also includes a cosine potential well whose depth can be tuned

(see eq. (4) in ref. [61]). This attractive part of the pair potential plays the same role played

by the standard lattice-gas term in eq. (1.16), with ε denoting the interaction energy between
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nearest-neighbor occupied sites. By setting the depth of the potential well in the molecular

model to ε, and by simulating the WF lattice model with same value of ε, one can directly

compare the two models to each other.

The molecular simulations of the Cooke-Deserno model, which were conducted at zero

surface tension, consist of several types of MC moves, including translation of beads, rotation

of lipids, and changes in the cross-sectional projected area of the membrane, which are

accepted according to the standard Metropolis criterion [62]. To achieve equilibration within

a reasonable computing time, two additional move types were also performed. The first

move type resolves the problem arising from the slow changes in the amplitudes of the long

wavelength bending modes [63]. It involves a collective change in the heights of all the lipids,

allowing acceleration and rapid relaxation of these modes. The other process limiting the

approach to equilibrium is the slow diffusion of the lipids, especially those pinned to the

surface and serve as the adhesion bonds. In order to speed up the aggregation of adhesion

domains, one needs to allow the adhesion bonds to “jump” across the membrane. This

is accomplished by the second move type, in which two lipids simultaneously experience

opposite vertical translations: the free lipid whose head resides closest to the surface is

brought down and attached to the surface, while a randomly chosen pinned lipid is lifted

and released [42].

We simulated membranes with different concentrations φ of adhesion bonds, and for

different values of ε (measured in units of the thermal energy kBT ). Snapshots of equilibrium

configurations corresponding to ε = 0.4kBT and ε = 1.2kBT are shown, respectively, in

Figs. 2.1(A) and Fig. 2.1(B). The concentration in both cases is φ = 0.2. The distinction

between the two configurations is clear: In (A) the adhesion bonds are scattered across

the membrane in relatively small clusters, while in (B) they are assembled into one big

aggregate. The transition between the gas and the condensed phases of adhesion bonds

displayed in Figs. 2.1(A) and (B), respectively, occurs at intermediate values of ε. In order

to characterize the transition value ε = εc, we compute the non-discrete analogue for 〈NC〉 in

the WF model. In the molecular simulations, this is achieved by measuring the interaction

energy between the adhesive beads, and normalizing it by Nε. The condensation transition

value εc is empirically defined via the equality 〈NC〉 = 1.5. In Fig. 2.2 we plot 〈NC〉 as

a function of ε, the (maximum) strength of the pair interaction, for φ = 0.05 (A) and
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(A) (B)

Figure 2.1: Bottom view of a membrane with concentration of adhesion bonds φ = 0.2 for
(A) ε = 0.4kBT and (B) ε = 1.2kBT . The head and tail beads of the lipids are colored in
grey and blue, respectively, while the adhesive beads are colored in red. In (A), ε < εc and
the adhesion bonds are in the gas phase. In (B), ε > εc and the adhesion bonds condense
and form a single cluster.
.

φ = 0.1 (B). The simulation results, which are plotted in solid squares (with the dashed

line serving as a guide to the eye), suggest that the transition between the phases is of first

order. The parameter 〈NC〉 steeply increases around εc ≈ 0.7kBT from a low value reflecting

the dispersed distribution of adhesion bonds in the gas phase where the number of pair

interactions is small, to a high value characterizing a big cluster where the bonds are closely

packed and experience a large number of pair interactions. Also plotted in Fig. 2.2 are the

results of lattice simulations of the WF model for identical values of φ and for various values

of ε (solid circles with solid line serving as a guide to the eye). The agreement between the

molecular simulations and the lattice simulations of the WF model is very good. The lattice

model predicts a very similar value of εc ≈ 0.7kBT (for both simulated concentrations), and

gives very similar values of 〈NC〉 in the gas phase (ε < εc).

A slight discrepancy between the molecular and lattice simulation is observed in the

condensed phase for ε > εc, where the WF model appears to give higher values for 〈NC〉. This

deviation between the results of the lattice and continuum molecular models is anticipated

considering the nature of the models. In the former, the sites are organized on a perfect

triangular lattice, and the energy assigned to every pair of nearest-neighbor occupied sites is
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(A) (B)

Figure 2.2: The dimensionless (normalized by ε) average energy of direct interactions between
the adhesion bond, per bond, as function of the pair interaction energy ε. Results for
φ = 0.05 and φ = 0.1 are shown in (A) and (B), respectively. Solid squares and circles
denote the results of the molecular simulations and of the Weil-Farago 2D lattice simulations,
respectively. The solid and dashed lines are guides to the eye.

exactly ε. In the latter, on the other hand, the bonds within each cluster do not necessarily

have a long-range positional order [see, e.g., the snapshot in Fig. 2.1(B)], and ε denotes the

depth of the interaction well. The actual strength of the interaction is expected to be lower

than ε in the continuum molecular model, which explains why it gives lower values of 〈NC〉

than in the lattice simulations.

At even higher values of ε, the close agreement between the lattice and the molecu-

lar simulations is regained. This occurs due to another phase transition that the clusters

undergo, from disordered liquid-like structures into more ordered organizations such as the

one displayed in Fig. 2.3(A) for φ = 0.2 and ε = 3.4kBT . This phase transition can be

understood within the framework of the KTHNY theory, which proposes the formation of a

two dimensional hexatic phase with a quasi-long range hexagonal (orientational) order [64].

This transition is characterized by the bond orientational order parameter

ψ6j =
1

Nj

Nj∑
k=1

ei6θkj , (2.1)

where the sum runs over the nearest-neighbor bonds k to a given bond j (whose identity

is determined by Voronoi tessellation), and θkj is the angle between the line connecting the

pair of bonds j and k and some fixed axis. Averaging over all the bonds within the cluster
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(A) (B)
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(A) (B)

(C) (D)

Figure 2.3: The molecular simulation results for a membrane with φ = 0.2 for ε > εc.(A)
Snapshot of an equilibrium configuration with ε = 3.4kBT , depicting an adhesion domain
organized in the hexatic phase. Color coding as in Fig. 2.1. (B) The mean bond orientational
order parameter 〈Φ6〉 as a function of the pair interaction energy ε. The transition into the
hexatic phase occurs around εh ≈ 1.9kBT where a sudden increase in 〈Φ6〉 is observed. (C)
The mean square displacement of the adhesion bonds vs. the simulation time for different
values of ε. The slope of each curve is a measure for the self diffusion coefficient of the
adhesion bonds within the cluster D. The results for ε/kBT = 1, 1.8, 2 are marked by
arrows. (D) The dimensionless average energy of direct interactions between the adhesion
bond (normalized per bond) as function of the pair interaction energy ε. A jump in 〈NC〉 is
observed around εh.

yields the global orientational order parameter

Φ6 =

∣∣∣∣∣ 1

N

N∑
j=1

ψ6j

∣∣∣∣∣ . (2.2)

Another quantity undergoing rapid variations at the transition is the self-diffusion coefficient

of the bonds (relative to the diffusion of their center of mass), defined by

D = lim
t→∞

1

4Nt

N∑
i=1

〈
[(~ri(t)− ~rcm(t))− (~ri(t = 0)− ~rcm(t = 0))]2

〉
(2.3)

≡ lim
t→∞

〈
(∆r′)2〉

4t
,
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where ~ri(t) and ~rcm(t) denote, respectively, the position of adhesion bond i and of the center

of mass of the cluster at time t (measured in MC time units), and 〈· · · 〉 denotes statistical

average. The transition into the hexatic phase is characterized by (i) an increase in Φ6,

associated with the emergence of orientational order, and (ii) a sharp decrease in D, reflecting

a lower mobility of the bonds. In Fig. 2.3(B), we plot our results for 〈Φ6〉, as a function of ε

for φ = 0.2. In Fig. 2.3(C) the mean squared displacement of the adhesion bonds (measured

in units of σ2, where σ is the diameter of the beads1) is plotted versus the simulation

time (measured in MC time units), with the curves, from top to bottom, corresponding

to increasingly higher values of ε. [Each curve in Fig. 2.3(C) corresponds to a data point

in Fig. 2.3(B)]. The curves display a linear increase in 〈(∆r′)2〉 with t, and the slope of

each curve is proportional to D. Both Figs. 2.3(B) and (C) indicate that the transition

from disordered-liquid into an ordered-hexatic structure occurs at around ε = εh ≈ 1.9kBT .

Another evidence for the fluid to hexatic transition is also observed in Fig 2.3(D), showing

a “jump” in 〈NC〉 between ε = 1.8kBT and ε = 2.0kBT . Note that the values of 〈NC〉 in the

hexatic phase is higher than three, which is the maximum possible value in simulations of

the WF model on a triangular lattice. This feature is related to the form of the attractive

tail-tail pair potential in the molecular simulations whose cut-off range was set to slightly

less that 2.5σ. This implies that, in a closely packed cluster, each adhesion bond weakly

interacts with its next- and next-next-nearest neighbors, which explains why 〈NC〉 becomes

larger than three.

2.3 Adhesion domain formation in stressed and con-

fined membranes

Thus far, we have focused on the aggregation behavior of adhesion bonds in tensionless sup-

ported membranes. We now wish to extend our investigations to lipid bilayers subjected to

a physical confinement and lateral negative tensions. The former constraint acts to suppress

the long wavelength thermal undulations, while the latter amplifies their amplitudes (and, for

very large negative values, can even lead to instability). It follows that for systems subjected

1In the Cooke-Deserno model, σ is also the range of the head-head repulsive potential [61].
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to confinement or negative tension, one should expect that the resulting fluctuation-induced

PMF between the adhesion bonds becomes weaker or stronger, respectively. Therefore, such

constraints alter the magnitude of the direct short-range attraction required for condensa-

tion. In other words, one may presume that physical confinement may hinder the formation

of adhesion domains, and that the transition threshold value, εc, into the condensed state

grows with the degree of confinement. Likewise, one can also anticipate that a negative

tension would cause a reduction in εc. It is especially interesting to examine whether εc

can decrease to zero, in which case the adhesion domains will form without an additional

short-range potential, i.e., on purely entropic grounds.

In order to address the above issues, we conducted Monte Carlo simulations of a lipid

bilayer using the Cooke-Deserno implicit-solvent coarse-grained model [61]. The details of

the simulations are similar to those presented in section 2.2. Our simulations for confined

membranes included an additional impermeable surface placed above the upper monolayer

at z = zconf . Simulations of membranes under constant mechanical surface tension τ were

carried out according to the method described in ref. [66]. Similarly to the strategy presented

in section 2.2, we followed the aggregation behavior by measuring the average energy of

direct pairwise interactions between adhesive beads, normalized per bond and expressed in

dimensionless units by dividing it by the potential strength ε, to obtain the typical number

of contacts per bonds 〈NC〉. As will be shown further on, our results suggest that physical

confinement might have a very strong impact on εc, unlike the application of a negative

surface tension, which may lead to buckled configurations where we observe the formation

of elongated adhesion domains close to the transition point.

2.3.1 Membranes under physical confinement

We first start with our simulation results for non-stressed membranes confined between the

supporting underlying surface (on which the adhesive beads reside) and a second impene-

trable upper surface. The former is located at z = 0, just underneath the tips of the head

beads of the lower leaflet, while the latter is placed at z = zconf ≥ 6σ. The degree of con-

finement increases when zconf decreases which, in turn, would lead to stronger suppression

of the membrane thermal fluctuations and a shift in the transition threshold εc to larger
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values. This trend is demonstrated in Fig. 2.4, showing our simulation results for zconf = 6σ,

7.5σ, and 9σ in supported membranes with φ = 0.1 (A) and φ = 0.2 (B). For zconf = 9σ, our

results for 〈NC〉 (green diamonds) match perfectly with the results obtained for non-confined

membranes (black circles). This means that the rate of collisions between the membrane

and the upper surface is negligibly small and, therefore, it does not affect the fluctuation

spectrum. Lowering the confining surface by a distance equal to the size of a bead and a

half to zconf = 7.5σ has a more noticeable effect on membrane thermal undulations, which

leads to an increase in the condensation transition value from εc ' 0.65kBT for non-confined

membranes at φ = 0.1 to εc ' 0.8kBT . As mentioned in section 2.2, εc is found by the

condition 〈NC〉 ' 1.5. For φ = 0.2, the shift is smaller, from εc ' 0.6kBT to εc ' 0.7kBT .

When the upper surface is further lowered to zconf = 6σ, it touches the tips of the head

beads in the upper leaflet, as the thickness of the bilayer is equal to the size of six beads.

A confining surface located at zconf = 6σ completely suppresses thermal undulations, and

eliminates the fluctuation-mediated interactions between the adhesion bonds. Under these

conditions, the threshold value for aggregation increases to εc ' 1.2kBT at φ = 0.1, and

εc ' 1kBT for φ = 0.2. These values are approximately twice larger than the corresponding

values found when no upper plate exists (εc ' 0.65kBT and εc ' 0.6kBT for φ = 0.1 and

φ = 0.2, respectively), which is in accord with the conclusions of refs. [46, 47], that the

entropic gain of aggregation compensates for, roughly, half of the loss in mixing entropy of

the adhesion bonds.

2.3.2 Membranes under negative surface tension

We next aim to address the implications of applying a negative surface tension. A constant

mechanical surface tension introduces an additional energy term to the system Hamilto-

nian, proportional to the surface area of the membrane. In the Monge gauge, the system

Hamiltonian is given by

H =

∫ [
1

2
κ
(
∇2h

)2
+ τ

(
~∇h
)2
]
d2r, (2.4)
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(B)

(A)

Figure 2.4: The dimensionless energy 〈NC〉 in membranes confined by a surface located at
zconf = 9σ (green diamonds), zconf = 7.5σ (blue triangles) and zconf = 6σ (red squares), as
a function of ε, for (A) φ = 0.1, and (B) φ = 0.2. Results for non-confined membranes are
denoted by black circles. The lines serve as a guide to the reader’s eye. The statistical errors
are comparable to the size of the symbols.

where τ denotes the surface tension. The fluctuation spectrum corresponding to eq. (2.4)

now reads

〈
∣∣h2

q

∣∣〉 =
L2kBT

l4 (κq4 + τq2)
, (2.5)

which can be compared with eq. (1.5) for non-stressed membranes. On length scales larger

than the characteristic lengthscale ξτ ∼
√
κ/τ , the imposed surface tension dominates the

thermal fluctuations of the membrane, while fluctuation modes with q � 2π/ξτ remain

largely unaffected by it. In general, a negative tension imposed on the membrane leads to a

reduction in its projected area, AP, and amplifies the long wavelength bending modes. Hence,

the fluctuation-induced attraction between the adhesion bonds is expected to be stronger

35



(A) (B)

(C)

Figure 2.5: The dimensionless energy 〈NC〉 in membranes under surface tension τ =
−0.24kBT/σ

2, as a function of ε for (A) φ = 0.1, and (B) φ = 0.2. The results are plotted
in red squares, and are compared with the results for tensionless membranes (τ = 0) that
are depicted by black open circles. (C) The mean projected area per lipid as a function of ε,
for φ = 0.1 (black) and φ = 0.2 (red). Circles denote the results for tensionless membranes,
while the results for τ = −0.24kBT/σ

2 are shown in squares. The lines serve as guides to
the eye.

which, in turn, implies that the threshold for condensation εc should become smaller than

in tensionless membranes. To test this hypothesis, we simulated the membrane under a

negative tension of τ = −0.24kBT/σ
2. We performed two sets of independent MC simula-

tions, one starting from a random distribution of adhesion bonds, and another where initially

the adhesion bonds were organized in one large cluster. The system was equillibrated until

configurations originating from these two distinct initial conditions achieved similar charac-

teristics. Fig. 2.5 shows our results for 〈NC〉 as a function of ε for φ = 0.1 (A) and φ = 0.2

(B). Contrary to our expectation to observe a reduction in εc, the data for τ = −0.24kBT/σ
2

appears almost identical to the results of the tensionless case, with εc ' 0.6kBT for both val-
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ues of φ, and seems to suggest that a negative tension has a minor impact on the aggregation

process.

The negative tension, however, does have an impact on the shape of membranes. Freely

fluctuating bilayers assume buckled configurations at negative tensions larger (in absolute

value) than τc ' −4π2κ/AP [67, 68] 2. In this study, non-stressed systems are character-

ized by AP/N ' 1.33σ2 [see Fig. 2.5(C)] which, for the bending modulus of the present

model membrane κ ' 8 kBT [63], gives τc ' −0.24kBT/σ
2. In ref. [69], a similar model

membrane consisting of the same number of lipids was simulated and, indeed, for τ = τc

the membrane appeared quite buckled. In supported membranes, however, the emergence

of buckled configurations occurs only in membranes with large adhesion domains (i.e., for

ε & εc). Fig. 2.6 shows typical equilibrium configuration for φ = 0.1 with ε = 0 (A), 0.6kBT

(B), and 1.0kBT (C). Each configuration is shown both in side and bottom views (lower and

upper panels, respectively). When the attractive potential is set to ε = 0, the distribution of

the adhesion bonds is scattered and the membrane remains fairly flat. This indicates that

the mixing entropy of the bonds dominates the fluctuation entropy of the bilayer, despite the

imposed negative tension [see Fig. 2.6(A)]. For ε = 1.0kBT , the short-range pair interactions

between the bonds lead to their aggregation. Once the bonds condense, their influence on

the thermal behavior of the membrane is greatly weakened, and strong bending undulations

appear [see Fig. 2.6(C)]. Close to the condensation transition, at ε = 0.6kBT , the system ex-

hibits some interesting features: The amplitude of one of the two longest wavelength bending

modes [with wavevector ~q(1,0) = (2π/
√
AP)(1, 0), or ~q(0,1) = (2π/

√
AP)(0, 1)] grows consider-

ably, and the membrane assumes an anisotropic buckled configuration. The adhesion bonds

are concentrated throughout the minimum of the dominating bending mode, forming an

elongated domain (“stripe”) [see Fig. 2.6(B)]. These observed characteristics represent an

intricate balance between the driving forces that govern the thermodynamic behavior of the

system. Under negative tension, the system benefits from a reduction in the projected area,

leading to a decrease in the Gibbs free energy. The membrane, however, is quite incompress-

ible and, thus, the reduction in AP must be accompanied by an increase in the area stored in

2This value for the critical tension for buckling, τc, stems from the amplitude divergence of the longest
Fourier mode with q0 = 2π/L. Looking at eq. (2.5), the amplitude of this mode diverges when κq40 +τq20 ' 0,
which is satisfied for a negative tension of τ = τc ' −κq20 = −4π2κ/AP.
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thermal fluctuations whose amplitudes grow. The modes that experience the largest increase

in amplitude are the softest ones, corresponding to ~q(1,0) and ~q(0,1) [67] 3. In our simulations,

we seldom observed situations where both these modes were simultaneously excited4, which

can be linked to the mixing entropy of the adhesion bonds. When only one of the long modes

is dominant, the contact area between the membrane and the surface, which is available for

the presence of the adhesion bonds, is larger than in configurations where both modes are

excited.

(A) (B) (C)

Figure 2.6: Typical equilibrium configurations of membranes under surface tension τ =
−0.24kBT/σ

2 with density of adhesion bonds φ = 0.1 for (A) ε = 0, (B) ε = 0.6kBT and (C)
ε = 1.0kBT . The figures in the upper and lower rows display bottom and side views of the
system, respectively. The head and tail beads are colored in white and blue, respectively,
while the adhesive beads are colored in red.

The interplay between the mixing entropy of the adhesion bonds and the contribution

of the negative tension to the free energy is further demonstrated in Fig. 2.5(C), depicting

the mean projected area 〈AP〉 (normalized by the number of lipids per monolayer Nl = 1000)

3Note that in ref. [67], the membrane is simulated in the fixed-area ensemble, AP = LxLy, with Lx 6=
Ly which generates buckled configurations with anisotropic surface tension. Here, we simulate the fixed
(isotropic) tension ensemble, where the projected area AP is allowed to fluctuate, but with Lx = Ly.

4Out of 15 independent realizations of the system corresponding to ε = 0.6kBT , in more than half we
observed one dominant long Fourier mode. For larger values of ε, realizations where both modes were
simultaneously excited occurred more frequently.
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(A) (B)

Figure 2.7: Configurations of membranes with φ = 0.1 and ε = 1.0kBT under a strong
negative tension τ = −0.32kBT/σ

2, showing a spherical protrusion (A) and a tubular one
(B). The upper and lower rows display top and side views of the membrane respectively.
The tail and adhesive beads are colored in blue and red, respectively. The head beads are
colored in grayscale to reflect their height above the surface, with lighter colors representing
a higher bead.

as a function of ε for τ = −0.24kBT/σ
2 (squares) and τ = 0 (circles). In the tensionless

case, we observe a very mild decrease in 〈AP〉 as ε increases, occurring mainly around εc.

For τ = −0.24kBT/σ
2, 〈AP〉 maintains a value close to the tensionless case for ε < εc, and

drops significantly for ε > εc. In the latter regime, we also observe an increase in the area

fluctuations, resulting in larger uncertainties (error bars) in our estimates of 〈AP〉. The

sharp decrease in 〈AP〉 and the concurrent increase in the area fluctuations are anticipated

outcomes of a negative surface tension [69]. The fact that they are observed only above the

condensation transition is consistent with the picture discussed in the previous paragraph

that, below εc, the effect of the negative tension is largely eliminated by the pressure resulting

from the mixing entropy of the adhesion bonds. Note that the sharp decrease in the mean

projected area and the increase in the area fluctuations are much more noticeable for φ = 0.1
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than for φ = 0.2. This is to be expected because the smaller φ, the smaller the restrictions

imposed by the adhesion bonds on large thermal undulations, which are directly coupled to

the projected area by the highly incompressible character of the membrane.

Applying an even stronger negative tension causes the membrane to lose its mechan-

ical stability. This is demonstrated in Fig. 2.7, showing snapshots in top and side views of

membranes with φ = 0.1 and ε = 1.0kBT subjected to τ = −0.32kBT/σ
2. In these snap-

shots, the head beads are colored in grayscale, with lighter colors indicating beads located

higher above the underlying surface. The application of a strong negative tension causes

the supported membrane to develop large protrusions with either spherical [Fig. 2.7(A)] or

tubular [Fig. 2.7(B)] shapes. The adhesion bonds (which are colored in red, and are only

partially visible) are concentrated in the periphery of the protrusion, where the membrane

is in contact with the underlying surface. We note that the observed protrusions tend to

evolve slowly and, therefore, the snapshots shown in Fig. 2.7 may not represent true equilib-

rium structures. On the other hand, we also note that very similar equilibrium structures,

featuring spherical and tubular protrusions, have been recently observed in an experimental

study where supported lipid bilayers were subjected to lateral compression [70].

2.4 Summary

In this chapter, we used solvent-free coarse-grained molecular simulations to study the for-

mation of adhesion domains in supported membranes. We have focused on the Helfrich

regime, in which the membrane’s thermal undulations are substantial, which results in fre-

quent collisions with the underlying supporting surface. Theses constitute the entropic source

of the fluctuation-mediated attractive PMF between the adhesion bonds, which may drive

their aggregation into large domains in order to reduce the entropic free energy penalty.

Our molecular simulations are found to be in excellent agreement with the recently pro-

posed Weil-Farago (WF) lattice model. Both the molecular and lattice simulations of the

WF model show that adhesion domain formation requires an additional direct attraction

between the bonds of strength ε > 0. In addition, results from the molecular simulations

show that the transition into the condensed phase occurs at values of ε = εc extremely

similar to those predicted by the WF model. Our simulation results for physically confined
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membranes reveal that placing the membrane between two impenetrable plates significantly

alters the condensation point and requires a stronger direct attraction between the bonds.

This stems directly from the fact that the thermal fluctuations of confined membranes are

strongly suppressed, which weakens the fluctuation-induced PMF. In the most extreme case,

where the membrane is completely flattened between the two plates, the thermal fluctuations

are entirely eliminated. This reduces the problem to the phase transition in the standard

lattice gas model, and results in a roughly two-fold increase in the value of εc, which is in

accord with the conclusions of the WF model. The implication of the fluctuation-induced

shift in εc is that the fluctuation entropy gained by the condensation of the adhesion bonds

compensates for about half of the mixing entropy that is lost in the transition. In other

words, the fluctuation-mediated attraction effectively renormalizes the system temperature

to about half its value. Thus, while the fluctuation-induced PMF is too weak to promote

adhesion domain formation purely on entropic grounds, it greatly facilitates the conditions

required for the aggregation of adhesion bonds.

The excellent agreement between the molecular simulations presented here and the WF

model lands great credibility to the main idea of the WF model, which is the notion that

each adhesion bond suppresses the thermal fluctuations mainly in its immediate vicinity.

When studying the system via a lattice model, therefore, one can associate the fluctuation-

induced PMF between the bonds with free energies assigned to the empty sites of the lattice.

The empty sites represent the fluctuating segments of the supported membrane, and the free

energy assigned to each site measures the free energy loss due to the local restrictions imposed

on the membrane’s thermal undulations. This free energy penalty mainly depends on the

distance, dmin, between an empty site and the closest occupied site (representing an adhesion

bond).

We also presented simulations of membranes under negative surface tension which,

presumably, fluctuate more strongly than tensionless membranes and, therefore, should ex-

hibit stronger membrane-mediated effects. Surprisingly, we find that the application of a

negative tension has a very minor effect on the condensation transition. Nevertheless, once

the adhesion bonds are aggregated into a large domain (i.e., for ε > εc), the negative tension

affects the shape of the membrane and causes it to buckle. Below εc, the adhesion bonds

are scattered across the membrane, which prevents the formation of buckled configurations.
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Close to εc, we observed both membrane buckling and the formation of elongated adhesion

stripes. Such configurations emerge from a delicate interplay between the mixing entropy

of the adhesion bonds, the short-range residual potential, and the applied negative tension.

Finally, under a very strong negative tension, we observe tubular and spherical structures

protruding out of the membrane’s plane, which indicates that the system is at the onset of

mechanical instability.
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Chapter 3

Formation of semi-dilute adhesion

domains in the van der Waals regime

3.1 Introdcution

In this chapter, we focus our attention on the van der Walls regime, in which membranes

experience small thermal undulations such that the bending energy dominates the system’s

free energy. Such situations are frequent in biology as the plasma membrane fluctuations

are quite confined due to the presence of the ECM, the underlying cytoskeleton and the

glycocalyx coating of the cell. This regime can be studied via the effective Helfrich Hamilto-

nian given by eq. (1.20), which accounts for the membrane-surroundings interactions via an

additional non-specific harmonic confining potential V [h (r)] = γh2/2 that prevents strong

membrane fluctuations, and limits the thermal roughness of the membrane to 〈h2〉 = ∆2.

A single adhesion bond that locally fixes the membrane to h = h0 pulls the membrane

away from the minimum of the harmonic potential and leads to an elastic deformation,

which relaxes after a typical healing length ξγ = (κ/γ)1/4 (see Fig. 1.4). In a many-body

system with a multiple number of adhesion bonds, this curvature energy induces an effective

attractive PMF in order to minimize the elastic deformations. As discussed in section 1.2.2.3,

obtaining the curvature-induced PMF requires a full statistical average over the membrane’s

height degrees of freedom, under the height constraints imposed by the bonds. While an

analytical expression for the PMF was previously introduced [see eq. (1.37)], a satisfactory
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description of the thermodynamic behavior of the system is still lacking. This is attributed

to the highly complicated task of further tracing over the positional degrees of freedom of

the adhesion bonds, which is required in order to characterize the condensation transition.

Here, we employ a different strategy and derive the phase diagram of the system for a

wide range of healing lengths, ξγ, and adhesion bonds densities, φ. Our investigation relies

on a novel mean-field treatment of the system’s free energy. We obtain the spinodal and

binodal curves and locate the critical temperature of the system, Tc, above which adhesion

domains do not form. As shown below, results for different systems exhibit data collapse

when (∆/h0)2 ∼ T/Tc is plotted as a function of the rescaled density ξ2
γφ. Interestingly,

we find that the critical point is located at extremely low densities, which is linked to the

many-body membrane-mediated PMF. Therefore, close to critically, a phase coexistence is

found between two extremely dilute phases, while dense domains form only for T � Tc, i.e.,

when each bond deforms the membrane considerably.

3.2 Mean-field theory

The membrane-mediated PMF in the van der Waals regime, ΦN , as written in eq. (1.37),

corresponds to a system with a given spatial distribution of N fixed adhesion bonds. The

thermodynamics of a system with N mobile bonds is characterized by the free energy F ,

which depends on the bond density φ = aN/AP, where a is a microscopic unit area for which

0 ≤ φ ≤ 1. The free energy F (and, thus, the phase diagram) can be derived from the

corresponding partition function F (φ) = −kBT lnZ, where

Z = Tr
{ri}

[
e−ΦN({ri}Ni=1)/kBT

]
, (3.1)

is obtained by integrating out the translational degrees of freedom of the bonds at a given

density φ. Since the exact calculation of the partition function is out of reach, we invoke

a simpler mean-field approach. Within a mean field approximation, the free energy can be

written as

aF

AP

= kBT [φ lnφ+ (1− φ) ln(1− φ)] + φ

〈
ΦN

N

〉
MF

, (3.2)
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where the first term on the r.h.s. accounts for the mixing entropy of the bonds, and the

second term represents a mean-field estimation of ΦN .

We recall that, here, we are interested in the van der Waals regime, which is charac-

terized by small thermal roughness ∆ [see eq. (1.23)]. Following previous studies [38, 50],

we will also make the assumption that each adhesion bond causes a deformation h0 signif-

icantly larger than ∆. This allows us to drop the second term on the r.h.s. of eq. (1.37)

accounting for the entropic contribution of the thermal fluctuations to the PMF in the van

der Waals regime. Thus, the curvature-mediated PMF can be expressed just by the first

term representing the elastic energy of the ground state

ΦN

(
{r}Ni=1

)
' kBT

2

(
h0

∆

)2 N∑
i,j=1

(
M−1

)
ij
, (3.3)

with the coupling matrix M, whose entries are given in eq. (1.36). The elastic energy (3.3)

can be estimated by considering a lattice of adhesion bonds with spacing r ∼
√
aφ−0.5, which

gives an energy landscape that depends on the ratio r/ξγ. This approach yields good an-

alytical expressions for the elastic energy only in the limits r/ξγ � 1 and r/ξγ � 1 [38];

however, it fails to capture the correct thermodynamic behavior at the intermediate regime

r/ξγ ∼ 1 where the lattice distribution does not necessarily represent the energy of a typical

random distribution of adhesion bonds. Here, we take a different approach and derive an

empirical expression for the dependency of the elastic energy on the bonds’ density. We com-

putationally obtain this expression by (i) generating membranes with random, rather than

ordered, distributions of adhesion bonds, (ii) finding the membrane profile that minimizes

the Helfrich elastic energy of each realization, and (iii) describing the computational data

for the elastic energy by a fitting function, which applies to the entire range of densities.

3.2.1 Energy calculations

The ground state Helfrich energy corresponding to a random distribution of adhesion bonds

is given by eq. (3.3) and can, in principle, be computed by inverting the coupling matrix M

(1.36). In practice, this involves a computationally expensive process and, thus, we adopt a

different strategy based on a direct minimization of the Helfrich Hamiltonian. This is done
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by considering a triangular lattice with lattice spacing l. Each site, i, represents a small

membrane segment of area a =
√

3l2/2, and is characterized by a local height variable hi.

On the lattice, N sites are randomly chosen for the locations of the adhesion bonds, at which

we set hi = h0. The discrete analogue of the Helfrich Hamiltonian (1.20) is

Hlattice =
a

2

∑
i

[
κ
(
∇2
ihi
)2

+ γh2
i

]
=
aκ

2

∑
i

[(
∇2
ihi
)2

+

(
hi
ξ2
γ

)2
]
, (3.4)

where the discrete Laplacian at site i is given by ∇2
i =

[
2
3

∑6
j=1 hj − 4hi

]
/l2, with the sum

j = 1 . . . 6 running over the six nearest neighbors of site i. Starting with hi = h0 at all sites,

we simulate Langevin dynamics [72] without the noise term (i.e., at zero temperature), which

quickly brings the system to the ground state profile. We measure all lengths in units of the

lattice spacing l = 1 and the energy scale is set to kBT = 1. The density of bonds is given by

φ = N/Ns, where Ns is the number of lattice sites. Most of the calculations were performed

on a triangular lattice of 104 × 120 sites (with periodic boundary conditions) that has an

aspect ratio close to 1. We calculate the elastic energy of numerous random realizations at

various densities φ ≤ 0.1, and for several values of ξγ varying from ξγ = 5 to ξγ = 10. These

values for the correlation length are chosen such that: (i) ξγ is sufficiently larger than the

lattice spacing l = 1, which reduces the numerical errors associated with the discrete nature

of eq. (3.4) to less than a few percents, and (ii) ξγ is much smaller than the system linear

size, to avoid finite size effects.

From eq. (3.3) and the form of the elements of the coupling matrix M [see eq (1.36)],

we infer that for a given set of model parameters (κ, h0, ξγ, φ), the average elastic energy

has the form

〈
ΦN

N

〉
MF

=
kBT

2

(
h0

∆

)2

f(x) = 4κ

(
h0

ξγ

)2

f(x), (3.5)

where f(x) is a scaling function of the renormalized density x = ξ2
γφ. Note that the values

of κ and h0 can be fixed arbitrarily since the energy scales like κh2
0 [see eq. (3.5)], and

this scaling behavior is automatically satisfied by the Hamiltonian (3.4) which is linear in

κ and quadratic in hi ∝ h0. The low-density (x → 0) asymptotic limit of f(x) is found by

considering a system with a single bond, which gives the energy per bond in dilute systems
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where the typical spacing between the bonds is much larger than the correlation length ξγ.

From eq. (3.3) for N = 1, we read that in this limit f(x)→ 1. In the high density limit, i.e.,

when the spacing between bonds is much smaller than ξγ, the membrane assumes a nearly

flat configuration at height h0. Setting hi = h0 in eq. (3.4) and normalizing the energy by

the number of bonds, we obtain the following asymptotic expression ΦN/N → aκh2
0/2ξ

4
γφ.

Using eq. (1.23) and a =
√

3/2, this yields the decaying form f(x) =
√

3/(16x) for x � 1.

Taking these considerations into account, we propose the following expression for the scaling

function

f1(x) =
1 +B1x

1 +B2x+ 16√
3
B1x2

. (3.6)

This form ensures the correct asymptotic behavior at low and high densities, and involves

two fitting parameters, B1 and B2, to be determined by comparison with the numerical data

over the entire range of densities.

Figure 3.1: The scaling function for the elastic energy f(x) [see eq. (3.5)] as a function of
the scaled density x. The numerical results are presented by triangles. The solid and dashed
curves depict, respectively, the fitting functions f1(x) [eq. (3.6)] and f2(x) [eq. (3.7)] to the
data. The inset shows an enlarged view of the data and the fitting functions for x� 1.
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In Fig. 3.1 we plot the computational results (triangles) for the elastic energy per bond,

normalized by the energy of a single isolated bond E1 = 4κ(h0/ξγ)
2 [see eq. (1.27)], which

defines f(x) in eq. (3.5). The data, which is plotted against the scaled density x = ξ2
γφ,

exhibits an excellent data collapse over the entire range x ≤ 10. The solid curve represents

the fitting of the data to the form f1(x) given by eq. (3.6), with the parameters B1 ' 5.08

and B2 ' 9.87 that give the best fit. The scatter of the computational data is due to the

randomness of the simulated configurations. As expected, the scatter is larger for small

values x � 1, where the interaction between the closer pairs of adhesion bonds dominates

the energy of the configuration. In fact, for some configurations in this regime, we find

f(x) to be slightly larger than unity. This feature is to be expected, and follows from the

non-monotonicity of the Kelvin function defining the elements of the coupling matrix M [see

eq. (1.36)]. For x � 1, the PMF between the bonds can be approximated by a sum of

pair potentials, as was assumed in ref. [45] (see also discussion in Appendix A). By setting

N = 2 in eqs. (1.36) and (1.37), it is easy to confirm that the pair PMF is slightly repulsive

at large bond separations. We, therefore, conclude that the scaling function f(x) should be

non-monotonic; it first increases for very small values of x before dropping to zero at larger

values. Furthermore, from the fact that the Kelvin function converges exponentially to zero

for large arguments, one can also conclude that the derivative of the scaling function satisfies

df/dx = 0 at x = 0. These features of f(x) in the x → 0 limit are not accounted for by

the scaling form f1(x) proposed by eq. (3.6). Therefore, we also consider the three fitting

parameter scaling function

f2(x) =
1 + C1x+ C2x

2

1 + C1x+ C3x2 + 16√
3
C2x3

, (3.7)

which, in contrast to f1(x), correctly captures the behavior of f(x) near x = 0. The fit of

the scaling function f2(x) to the computational data is also plotted in Fig. 3.1 (dashed line)

with C1 ' 74.8, C2 ' 2174 and C3 ' 1836 that produce the best fit. The difference between

f1(x) and f2(x) is visible only for x ' 0, as seen in the inset in Fig. 3.1. Interestingly, even

though f2(x) is better suited to represent the scaling function close to the origin than f1(x),

the latter seems to provide a better fit to the numerical data. In any case, we expect these

two functions to yield similar binodal and spinodal curves, except for x ' 0. This will turn
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out to be in the vicinity of the critical point, which is where the validity of the mean-field

picture is questionable anyhow.

3.2.2 Phase diagram

Plugging eq. (3.5) into eq. (3.2), the mean-field free energy, F , of a system with adhesion

bond concentration φ and correlation length ξγ reads

aF

ApkBT
' φ lnφ+ (1− φ) ln(1− φ) +

1

2ξ2
γ

(
h0

∆

)2

g(x), (3.8)

where g(x) = xf(x). With this expression for F , we analytically obtain the spinodal curve

enclosing the region of thermodynamic instability by solving ∂2F/∂φ2 = 0, which yields

(
∆

h0

)2

=
x
(
x− ξ2

γ

)
2ξ2
γ

∂2g

∂x2
. (3.9)

The binodal curve, which defines the thermodynamic coexistence line, is obtained numer-

ically using a common tangent construction for F . Figs. 3.2(A) and (B) show the phase

diagrams calculated using the scaling functions f1(x) and f2(x), respectively. In each of

these figures, we plot the spinodal curve for ξγ = 5 (solid line) and ξγ = 10 (dotted line),

which turn out to be practically indistinguishable. The binodal curves for ξ = 5 and ξγ = 10

are given by squares and circles, respectively. As for the spinodal lines, the binodal curves

for different values of ξγ also overlap each other. Comparing the phase diagrams presented

in Figs. 3.2(A) [for f(x) = f1(x)] and (B) [for f(x) = f2(x)], we conclude that the phase

diagrams appear to be similar, expect for x . 0.6. This is to be expected because only in

this regime, the scaling functions are essentially different (see inset in Fig. 3.1). Fig. 3.2(C)

presents an enlargement of the low density regime, showing the binodal [squares for f1(x),

and circles for f2(x)] and spinodal [solid line for f1(x), and dotted line for f2(x)] curves, for

ξγ = 10. Note that the critical point is located at low densities, and the two scaling functions

place it at somewhat different values.
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(C)

(A) (B)

Figure 3.2: (A) The phase diagram corresponding to the free energy eq. (3.8) with f(x) =
f1(x) given by eq. (3.6). The binodal curve is represented by the symbols (with dashed
lines serving as guides to the eye), where squares and circles represent data for ξγ = 5 and
ξγ = 10, respectively. The two binodal curves nearly overlap each other. The spinodal
curves, which are presented by the solid (for ξ = 5) and dotted (for ξγ = 10) lines, are also
indistinguishable. (B) Same as (A), but for f(x) = f2(x) in eq. (3.8). (C) A zoom on the
vicinity of the critical point, where the differences between the scaling functions f1(x) and
f2(x) are visible. The phase diagrams are calculated for ξγ = 10. Binodal curves are plotted
by squares for f1(x) and circles for f2(x). The spinodal lines are presented by the solid and
dotted lines for f1(x) and f2(x), respectively.

3.3 Semi-dilute domains

Looking at the phase diagram depicted Fig. 3.2, the one feature that stands out is that the

critical point is found at very low densities. The precise value of the critical scaled density

xc is, of course, unknown since it depends on the form of the scaling function f(x) [see

Fig. 3.2(C)], and because the mean-field picture is not adequate in the vicinity of the critical

point. Nevertheless, it is fair to conclude from the data in Fig. 3.2 that xc < 0.1, which

implies that φc = xc/ξ
2
γ � 10−2 (unless the correlation length is microscopically small, i.e.,

ξγ ∼ 1). The critical temperature Tc can be related to the elastic deformation energy due to
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a single bond E1/kBT = 0.5 (h0/∆)2. From Fig. 3.2 we read that the critical temperature

satisfies E1/kBTc ' 2−3. Another noticeable feature in Fig. 3.2 is the fact that the spinodal

and binodal curves of membranes with different values of ξγ overlap each other when plotted

against the scaled density x. This does not a priori follow from the data collapse exhibited in

Fig. 3.1, because of the mixing entropy contribution to the free energy. The latter depends

on the density φ rather than the scaled density x. At low densities, however, we can use

the approximation (1− φ) ln (1− φ) ' −φ in eq. (3.2), and then it can be easily shown that

the spinodal line [r.h.s. of eq. (3.9)] becomes only a function of x. Thus, the observation in

Fig. 3.2 that the phase diagram depends on the scaled density is related to the fact that our

investigation focuses on membrane with low densities of bonds.

The fact that the critical point is located at very low densities means that, slightly

below Tc, we expect phase coexistence between two low-density phases. From Fig. 3.2 we also

notice that for x & 1, phase separation occurs only when the temperature drops significantly

to roughly T . 0.2Tc. This implies that low density systems with large ξγ will not phase

separate unless the bonds considerably deform the membrane (h0 � ∆). In the two phase

region of such a system, the scaled density of the condensed phase satisfies x & 1 which,

depending on the value of ξγ, could mean that the density φ is quite low. We term low-density

(φ � 1) regions with scaled density x ∼ 1 as semi-dilute, and conclude that the elasticity-

mediated interactions may indeed lead to the formation of such semi-dilute domains.

The “weakness” of the elasticity-mediated effect and its inability to induce formation

of dense adhesion domains, can be understood by looking at the variation of the total elastic

deformation energy [second term on the r.h.s. of eq. (3.8)] with the density of the bonds φ.

The elastic energy E, normalized per unit area, is plotted in Fig. 3.3 for membranes with

(h0/∆)2 = 20 (corresponding to T ∼ 0.2Tc), and ξγ = 10. Also shown in Fig. 3.3 is the

free energy of mixing −TS (S denotes the mixing entropy), per unit area, given by the first

term on the r.h.s. of eq. (3.8). Both contributions to the free energy are given in units of the

thermal energy kBT . We observe that total elastic deformation energy increases with φ but,

somewhat surprisingly, saturates at extremely low densities. The dashed-dotted vertical line

in Fig. 3.3 at φ = 0.01 corresponds to x = ξ2
γφ = 1, and one can read from the data that

the elastic energy of the membrane barely increases for x & 0.5. The interpretation of this

finding is that one needs a semi-dilute distribution of about one bond per area ξ2
γ to cause
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Figure 3.3: The free energy, normalized per lattice site and given in kBT units, as a function
of φ for ξγ = 10 and (h0/∆)2 = 20. The dashed line is the elastic deformation energy, while
the solid line represents the free energy of mixing.

the membrane to adopt nearly flat configurations with h ∼ h0. Above the scaled density

x ∼ 0.5, the membrane elastic energy becomes thermodynamically irrelevant, leaving us

with only the mixing entropy term which always favors uniform distributions. This explains

why phase separation into regions with distinct concentrations of bonds is possible only

at densities below φ ∼ 0.5ξ−2
γ . To state the last conclusion somewhat differently – the

elasticity-mediated PMF induces an attraction between the bonds only if their separation is

larger than ξγ. This is an interesting collective (many-body) effect, exhibiting an “opposite”

trend compared to the pair PMF, which is attractive at separations smaller than ξγ and is

screened off at larger distances [see first term on the r.h.s. of eq. (1.33)]. The pair PMF

may play an attractive role only between two relatively isolated bonds in inhomogeneous

distributions, but such configurations fall outside the framework of the mean-field picture

presented in this work.

To put our findings in a biological context, we look at the example of the immunological

synapse (IS), which forms at the contact area between the T-cell lymphocyte and a target

cell. We analyze the thermodynamic forces driving this process in detail in the following

chapter 4. Here, we wish to demonstrate that the elasticity-mediated PMF is likely to play an
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important role in IS formation. In this specific example, the cell-cell adhesion is mediated

via binding between T-cell receptors (TCR) and MHC-peptide (pMHC) complexes, and

between integrin LFA1 and its ligand ICAM1 [73]. These two types of adhesion bonds

form a unique structure, in which TCR-pMHC bonds are clustered in its center, while

the LFA1-ICAM1 bonds aggregate in the periphery of synapse. It is believed that the

central domain, i.e., the TCR-pMHC rich area, plays a pivotal role in regulating T-cell

activation [74]. Typically, the bond density within the synapse is around 100 bonds per

µm2, and the bond lengths are 14 nm and 41 nm for TCR-pMHC and LFA1-ICAM1 bonds,

respectively [75, 76]. We recall that in the model presented here, h0 represents the local

membrane deformation imposed by a bond relative to the resting height of the membrane.

Thus, if we consider the resting separation between the two membranes in the IS to be

dictated by the longer bonds, we can estimate the deformation to simply be the difference

between the two bond lengths, h0 ' 27 nm. Taking the membrane bending rigidity to be

κ ' 15 kBT and the harmonic potential strength as γ ' 6 · 105kBT µm−4 [77], we arrive

to the values x ' 0.5 and (∆/h0)2 ' 0.057 for the coordinates of this point in the phase

diagram displayed in Fig. 3.2. Remarkably, the point lies in the two-phase region of the

phase diagram, close to the binodal line. This raises the possibility that the TCR-pMHC

rich domain may be the semi-dilute phase coexisting with a dilute phase of vanishingly small

density. Thus, we speculate that the elasticity-mediated interactions may play an important

role in the condensation of the TCR-pMHC signaling domain. They provide attraction

which enables the TCR-pMHC bonds to spontaneously aggregate into domains with density

comparable to that existing in the IS central zone.

3.4 Summary

In this chapter we analyzed the formation of adhesion domains in the van der Waals regime.

In this regime, the thermal fluctuations of the membrane are small and, therefore, the system

free energy is dominated by the energy, which is determined by the elastic bending energy and

the harmonic confining potential. We have presented a novel mean-field approach to study

the condensation transition of the system. Our approach is based on an empirical expression

for the average elastic deformation energy of a membrane as a function of the density of
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adhesion bonds, which was obtained numerically for random distributions of adhesion bonds.

We found that the phase diagrams of dilute systems with different values of densities φ and

healing lengths ξγ are practically identical when the inverse deformation energy (∆/h0)2 ∼

T/Tc is plotted against the rescaled density x = ξ2
γφ. Our results show that the phase

coexistence regime is largely concentrated in a region where 0 < x . 1, and that the critical

point is located at very small of x. Therefore, the curvature-mediated interactions may cause

the system to phase separate into an extremely dilute phase with x ' 0 and a semi-dilute

phase x ' 1. Highly condensed domains with x� 1 can only be formed if the membrane is

considerably deformed, but in such cases one can no longer use the Monge representation to

study the system. Thus, we conclude that the curvature-induced interactions are too weak to

promote formation of tightly packed domains, but can lead to semi-dilute adhesion domains

where the typical separation between the adhesion bonds is set by the healing length ξγ.

Interestingly, we find that the mature immunological synapse (IS) between a T cell

and an antigen-presenting cell is characterized by an adhesion domain of TCR-pMHC bonds

with densities of roughly x ' 1. For the system parameters of the IS, we find that our

mean-field model for domain formation driven by membrane curvature is indeed able to

generate domains with comparable densities to those found in the IS. This finding is in line

with several recent studies suggesting that passive thermodynamic processes can describe the

short-time condensation of adhesion clusters of the IS, without evoking any active processes

in the cytoskeleton (see, e.g., [78], and refs. therein). Forces stemming from cytoskeletal

activity may be essential during the later stages of IS pattern formation and stabilization [79,

80]. In the following chapter, we take a closer look at the manner by which active and

thermodynamic (passive) mechanisms govern the process of IS formation.
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Chapter 4

Passive and active mechanisms in the

formation of the immunological

synapse

4.1 Introduction

The adaptive immune system heavily relies upon the ability of T cells to properly interact

with antigen-presenting cells (APCs). The contact area between the two cells is established

by specific receptor-ligand bonds that crosslink the plasma membranes of the T cell and

the APC. The key players in this cellular recognition process are the two T cell membrane

proteins T cell receptor (TCR) and lymphocyte function-associated antigen 1 (LFA1) that

respectively bind to peptide displaying major histocompatibility complex (pMHC) and in-

tercellular adhesion molecule 1 (ICAM1) embedded in the APC’s plasma membrane [2, 81].

During T cell activation, the TCR-pMHC and the LFA1-ICAM1 receptor-ligand bonds are

redistributed and form a unique geometric pattern of concentric supra-molecular activation

centers (SMACs) within approximately 15-30 minutes of initial contact [73,82]. In this special

arrangement, which is commonly referred to as the immunological synapse (IS), TCR-pMHC

bonds are concentrated into a central SMAC (cSMAC), while the LFA1-ICAM1 adhesion

bonds form a surrounding ring termed the peripheral SMAC (pSMAC) [74,83]. This molec-

ular redistribution is thought to play an important role in signal regulation [84], T cell
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proliferation [85], and focalized secretion of lytic granules and cytokines [86].

Extensive research effort has been devoted to understanding the mechanisms govern-

ing the formation of the special architecture of the IS. Mounting evidence from experimental

studies point to the actin cytoskeleton as a vital element in controlling the centripetal mo-

tion of TCR-pMHC and LFA1-ICAM1 bonds towards their final locations [87]. In the early

stages of IS formation, the T cell’s actin meshwork reorganizes into actin-free and actin-rich

zones in the center and periphery of the contact area, respectively. Later on in the process,

the actin-depleted area constitutes the location of the cSMAC of the IS, while the pSMAC

is located at the peripheral actin-rich zone [88]. Moreover, actin polymerization occurring

at the periphery of the contact area results in centripetal actin retrograde flow that is cru-

cial for protein translocation [89, 90]. It has been hypothesized that actin retrograde flow

produces viscous forces on the intracellular part of TCRs, which lead to their centripetal

motion [91–94]. Furthermore, directed transport by dynein motor proteins along the cy-

toskeletal microtubules has been identified as another adenosine triphosphate (ATP)-driven

process contributing to protein localization in the IS [95, 96]. These experimental evidences

have led to the notion that IS formation is governed by active cellular processes related to

the cytoskeleton activity.

Interestingly, several theoretical studies have suggested that passive (non-active) mech-

anisms may also be involved in the formation process of the IS [78, 97, 98]. Membrane-

mediated attraction emerges as one of these mechanisms, as demonstrated by our calcula-

tions in the previous chapter, and by other theoretical studies also considering the binding

kinetics of the adhesion bonds [99]. It has been argued that membrane-mediated interactions

between adhesion bonds in the IS may result in patterns that are not only extremely similar

to those observed experimentally, but also form on biologically relevant timescales [78,97,98].

In chapter 3, we have analyzed the curvature-induced interactions between adhesion

bonds and demonstrated that TCR-pMHC bonds can phase separate from LFA1-ICAM1

bonds and form domains with similar densities to those in the IS [100]. However, conven-

tional phase separation theories are insufficient to explain the bullseye pattern of the IS,

i.e., the aggregation of TCR-pMHC bonds at the central contact area and the accumula-

tion of LFA1-ICAM1 bonds at the periphery. This very particular structure seems to be

directly linked to the activity of the actin cytoskeleton, especially to directed transport of
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TCR-pMHC by dynein motors along microtubules [96], and the actin retrograde flow which

induces a centripetal force on the TCR-pMHC bonds [79,101]. It may also be related to the

depletion of actin from the center of the contact area, which occurs at the very beginning

of the IS formation process. The cytoskeleton is also expected to have a direct influence

on the membrane-mediated interactions between the TCR-pMHC bonds. This follows from

the attachment of the T cell’s membrane to the actin cytoskeleton by various molecules,

such as proteins from the ezrin-mesoin-radixin (ERM) family [102], phosphatidylinositol

4,5- bisphosphate (PIP2) [103, 104] and coronin 1 [105]. This coupling between the mem-

brane and the cytoskeleton directly impacts the shape of the membrane and, thus, may

modify the membrane-mediated PMF. Here, we extend the analysis of chapter 3 on the

membrane elasticity-induced formation of TCR-pMHC domains, by including the aforemen-

tioned cytoskeleton-related effects, and studying the interplay between the passive and active

mechanisms.

In order to follow the process of IS formation, we develop and simulate a simple lattice

model that constitutes a discrete representation of the contact region between the T cell

and the APC. A schematic picture depicting the contact area and its lattice representa-

tion is shown in Figs. 4.1(A) and (B), respectively. The lattice sites can be: (i) empty, or

singly occupied by either (ii) a mobile point representing a TCR-pMHC bond, or by (iii)

an immobile point representing an attachment protein between the membrane and the cy-

toskeleton. The latter are absent from the actin-depleted central region of the contact area.

In this coarse-grained physical framework, the cell membranes are implicitly accounted for

by nearest-neighbor interactions that represent the PMF originating from the membrane

deformation energy. The cell cytoskeleton is not modeled explicitly in our coarse-grained

simulations, but is implicitly introduced via an effective potential that generates the active

cytoskeleton forces. Moreover, since we focus on the aggregation dynamics of TCR-pMHC

bonds, we do not study the very rapid remodeling process of the actin cytoskeleton (which

is completed within less than a minute from the initial contact between the T cell and the

APC [88]), but consider a system where a central actin-depleted region has already been

formed. Below, we elaborate on the specifics of the model and simulations.
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Figure 4.1: (A) Schematics of the contact area between the membranes of the T cell and the
APC. The two membranes are connected by two types of adhesion proteins: LFA1-ICAM1
and TCR-pMHC with bond lengths of 41 nm and 14 nm, respectively. The T cell’s membrane
is attached to the cytoskeleton by a set of actin pinning proteins. A central region in the
contact region of diameter ' 4 µm is devoid of actin filaments. (B) Schematics of the lattice
representation of the contact area shown in (A). The lattice sites can be either empty (in
which case they are marked by the “x” symbols), or occupied by a single TCR-pMHC bond
(black circles) or by a single actin pinning point (red circles). The latter are immobile and
are excluded form the actin-depleted central region of the system, represented by the dashed
circle.

4.2 Model and simulations

4.2.1 Nearest-neighbor approximation

The membrane-mediated interactions between TCR-pMHC bonds can be studied within

the van der Waals regime. We focus on dilute systems, where the many-body PMF is well-

approximated by the sum of pairwise interactions that depend only on the distance r between

the adhesion bonds (see section 1.2.2.3). From eq. (1.33), the pairwise curvature-induced

attraction between a pair of TCR-pMHC is given by

Φatt(r)

kBT
=

Φ2(r)− Φ2(r →∞)

kBT
=

(
h0

∆

)2

4

π
kei

(
r

ξγ

)
1− 4

π
kei

(
r

ξγ

) , (4.1)

where we have shifted the PMF such that it vanishes for large separations (r → ∞). For

T cells, the values of the healing length and the thermal roughness are roughly given by

ξγ ' 100 nm and ∆ ' 8 nm [65], respectively, while the value of the deformation caused by a
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TCR-pMHC bond is set by the mismatch in bond length with respect to the LFA1-ICAM1

bonds, h0 = 41 − 14 = 27 nm [75, 76]. The pair PMF, Φatt/kBT (expressed in units of the

thermal energy), is depicted by the solid line in Fig. 4.2 as a function of the normalized pair

distance r/ξγ, for the aforementioned values of the systems parameters ξγ, ∆ and h0. In

addition to the membrane-mediated interactions between TCR-pMHC bonds, we also need

to calculate the pair PMF between the TCR-pMHC bonds and proteins that pin the T cell

membrane to the actin cytoskeleton. These interactions are obviously repulsive due to the

large differences in the height of the membrane at the locations of these two proteins (h = 0

at the pinning sites compared to h = h0 = 27 nm at the sites of the TCR-pMHC bonds).

The repulsive pair PMF can be derived from the partition function

ZB =

∫
D [h(r)] e−βHδ (h(0)− h0) δ (h(r)) , (4.2)

which differs from the partition function (1.32) by one height constraint. The resulting

repulsive pair PMF is given by

Φrep(r)

kBT
=

1

2

(
h0

∆

)2

(
4

π

)2

kei2
(
r

ξγ

)
1−

(
4

π

)2

kei2
(
r

ξγ

) (4.3)

and is depicted by the dashed line in Fig. 4.2 for similar values of system parameters. From

Fig. 4.2 it is clear that Φrep is a purely repulsive potential of range r ' ξγ that quickly decays

to zero at larger separations.

At separations smaller than ξγ, one has to take into account direct excluded volume

(hard core) interactions between the adhesion proteins. Since these are missing in the cal-

culation of the partition functions, a purely repulsive potential diverging for r → 0 must be

added to Φatt. The full pair potential between TCR-pMHC bonds is, thus, reminiscent of a

Lennard-Jones potential, i.e., repulsive at very short distances and attractive at an interme-

diate finite range. Conversely, from Fig. 4.2 we see that for r < ξγ, Φrep sharply increases

similarly to an excluded volume potential. We thus conclude that the membrane curvature

itself serves as a source of repulsion between TCR-pMHC bonds and actin pinning proteins,

which renders the addition of explicit excluded volume (hard core) interactions unnecessary
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in this case.
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Figure 4.2: Curvature-induced interactions: the solid line depicts the curvature-induced
attraction between two TCR-pMHC bonds, while the dashed line stands for the curvature-
induced repulsion between a TCR-pMHC bond and a membrane-cytoskeleton pinning point.

4.2.2 Lattice-gas model

Domain formation under the influence of short-range pairwise attractive interactions can be

conveniently studied within the framework of the classical discrete lattice-gas (Ising) model

with a nearest-neighbor attraction of strength ε (see also our discussion on the WF model in

section 1.2.1.3). In this framework, each lattice site can be occupied by at most one lattice

point, in order to account for the short-range excluded volume repulsion. Here, we study the

IS formation process by considering a triangular lattice with lattice spacing ξγ = 100 nm,

which is comparable to the range of the membrane-mediated interactions between the TCR-

pMHC bonds, and also to the typical spcaing between them in the central domain of the IS.

This sets the spatial resolution of our model, and allows us to ignore direct (e.g., van der

Waals and diploar [28]) and lipid-mediated [109] interactions between the various proteins in

the system since, typically, the range of these interactions does not extend beyond . 10 nm.

The linear size of the system is roughly L = 10 µm (we simulate a lattice of 99 × 114
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sites with an aspect ratio close to unity), which is representative of the dimensions of the

contact area. The model includes two types of lattice points representing the TCR-pMHC

bonds (type A) and the membrane-cytoskeleton pinning proteins (type B). The former are

mobile, while the latter are located at fixed lattice sites. Both A-A and A-B interactions

are purely repulsive at short separations (see section 4.2.1), and this feature is accounted for

by prohibiting multiple occupancy of a lattice site. At a distance ξγ, the A-A interactions

are attractive [see eq. (4.1) and Fig. 4.2], and this is represented in the model via a nearest-

neighbor interaction energy of strength ε = Φatt(r = ξγ) = −4.5 kBT . We do not consider

next-nearest-neighbor interactions, despite of the fact that the Φatt does not fully decay at

r = ξ. The reason for this decision is the many-body nature of the membrane-mediated PMF,

which becomes important at the onset of the formation of adhesion clusters. In high density

domains, each adhesion bond interacts with the proximal bonds in the first surrounding

shell, whose very presence screens the interactions with the slightly more distant bonds in

the next shells [46]. The model does not include explicit representation of the LFA1-ICAM1

bonds. The effect of these bonds is incorporated in the statistical-mechanical calculations of

the PMFs through the parameter h0 = 27 nm [see eqs. (4.1) and (4.3)], which is the bond

length mismatch between LFA1-ICAM1 and TCR-pMHC bonds1.

The densities of the TCR-pMHC bonds (type A lattice points) and the membrane-

cytoskeleton pinning proteins (type B) greatly vary between different experimental works

(if reported at all). We therefore set their values in the simulations based on the following

considerations: Type A points aggregate to form the cSMAC, which is a circular domain

of radius ∼ 2 µm that almost fills (at the end of the process) the actin-depleted central

region. The latter includes about 1200 lattice sites, and the number of type A points is

set to a slightly smaller value NA = 1000. We note that since the lattice spacing is set to

ξγ = 100 nm, the density of the TCR-pMHC bonds in a cluster is ' 80 bonds/µm2, which

is indeed above the threshold density required for full T cell activation [73,74]. A reasonable

estimate for the spacing, lP, between membrane-cytoskeleton pinning proteins is a distance

of a few hundred nm [110]. In what follows, we show results for systems where the average

1More accurately, the effect of the LFA1-ICAM1 bonds is represented by the uniform harmonic potential
in Hamiltonian (1.20). The utility of this approach was demonstrated in chapter 3, where we employed a
more fine-grained lattice model with a microscopic spacing of 5 nm and an explicit representation of the
membrane.
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spacing between type B points is set to lP = 300 nm. To avoid further complication of our

model, we neglect the binding/unbinding kinetics of the membrane-cytoskeleton linkers and

assume that the number of type B points is fixed. Nevertheless, we note here that results of

simulations with lP = 500 nm (i.e., with a fewer number of type B points) exhibit negligible

differences. The type B points can be found everywhere on the lattice, except for the central

actin-depleted region. They are randomly distributed to account for local variations in lP,

but we do not allow two type B points to occupy nearest-neighbor lattice sites in order to

ensure a fairly uniform distribution and avoid type B clusters.

4.2.3 Monte Carlo simulations

We perform Monte Carlo (MC) simulations to study the evolution of the lattice model. While

MC simulations are designed for statistical ensemble sampling at equilibrium, they can be

also used to effectively generate Brownian dynamics in lattice models. The simulations

consist of move attempts of a randomly chosen type A point to a nearest lattice site, which

is accepted according to the standard Metropolis criterion [62]. During a single MC time

unit, τMC, each type A point experiences (on average) one move attempt. Mapping the

MC time unit to real time, t, can be achieved by considering the two-dimensional diffusion

relation 〈r2〉 = 4Dt, where 〈r2〉 denotes the mean square displacement and D is the diffusion

coefficient. For the MC simulations, each point moves a distance of the lattice spacing

ξγ = 100 nm and, therefore, τMC = ξ2
γ/4D. This can be compared to typical values for

the diffusion coefficient of T cell membrane proteins D ' 0.1 µm2/sec [111], which yields

τMC ' 25 msec.

4.2.4 Active cytoskeleton forces

Active cytoskeleton processes are not modeled explicitly in our simulations, but are instead

represented by the effective forces that they induce on the TCR-pMHC bonds. Two active

processes are considered, namely (i) actin retrograde flow, and (ii) dynein minus-end directed

transport toward the microtubule organizing center (MTOC) that is translocated towards

the central actin-free area [88]. These may be viewed as complementary mechanisms since

they produce the same net effect of transport toward the center, while operating at different
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regions of the system. Explicitly, dynein-driven transport governs the dynamics at the central

actin-depleted area, while actin-retrograde flow is believed to predominate at the periphery

of the system.

Experimental studies reveal that the velocity of the actin retrograde flow towards the

center of the contact area achieves a maximal value of vmax ' 0.1 µm/sec at the periphery

of the contact area. As the flow proceeds toward the center of the contact area, it decreases

to approximately 0.5vmax, and finally vanishes at the edge of the central actin-depleted

region [89, 112]. The flow generates a centripetal force on the TCR-pMHC bonds with

magnitude proportional to the flow velocity. Inside the actin-depleted region, the centripetal

motion of the TCR-pMHC bonds continues, but is now driven by the activity of dynein

motors. This has been concluded by experiments showing that in the absence of dynein

motor activity, the TCR-pMHC bonds do not penetrate into the actin-depleted region, but

instead accumulate around it [96]. These experiments also suggest that the centripetal

velocity of TCR-pMHC bonds transported by both actin retrograde flow and dynein motors

is roughly twice larger than the velocity in the absence of motor activity, which suggests that

the effective centripetal force induced by both mechanisms is of the same order of magnitude.

Taking these various considerations into account, the combined active cytoskeleton forces are

introduced to the model via the following effective potential that depends on the distance r

from the center of the system

Φactive(r) =

 f0 r r ≤ RP

2f0 (r −RP) + f0RP r > RP,
(4.4)

where RP is the outer radius of the pSMAC, which is the region where the flow of actin

becomes weaker [112]. This effective potential generates a centripetal force of magnitude

f0 for r ≤ RP, and 2f0 for r > RP. The former region includes the actin-depleted region

(0 < r < RC), where the force is associated with dynein transport, and the pSMAC (RC <

r < RP), where the force originates from actin retrograde flow. The latter region corresponds

to the periphery of the contact area, where actin retrograde flow is stronger and produces

an effective force which is twice larger. A schematic depicting the forces associated with

the potential Φactive at different regions of the contact area is shown in Fig. 4.3. Based
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Figure 4.3: Effective active cytoskeleton forces acting on the TCR-pMHC bonds in different
regions of the T cell-APC’s contact area. The inner dashed circle marks the edge of the
central actin-depleted region with radius RC = 2µm, while the outer dotted circle marks
the edge of the pSMAC, and has a radius RP = 4µm. The black and blue arrows represent
effective centripetal forces arising from the actin retrograde flow and directed transport by
dynein motors, respectively. For r < RP, the magnitude of the active centripetal force is set
to f0 = 0.1 pN (small arrows), while for r > RP the force is set to a twice larger value of
2f0 = 0.2 pN, and is indicated by large arrows.

on confocal images, we set RC = 2 µm and RP = 4 µm [91]. In order to determine the

value of f0, we use the observation that the actin retrograde flow causes a small peripheral

microcluster (a few hundred nanometers in size) to move toward the cell’s center at a velocity

of vc ' 20 nm/sec [113]. We, thus, performed short MC simulations for a single microcluster

composed of 10 TCR-pMHC bonds, which is initially located at the outer region of the

system. We measured the velocity of the centripetal movement of the microcluster as a

function of f0, and found that it attains the value of vc for f0 = 0.1 pN. Comparable

forces have been measured in experiments of optically trapped microbeads coupled to actin

retrograde flow of similar velocity [114].

4.3 Results

The spatio-temporal evolution of the system has been analyzed from 10 independent MC

runs starting with different random distributions of both type A and B points. Typical

snapshots from different stages of the process are shown in Fig. 4.4, with the type A and

B points presented by black and red dots, respectively. At t = 0, the type A points are
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randomly distributed outside of the inner actin-depleted regime (Fig. 4.4a). Within less than

one minute, the type A points coalesce and form small peripheral microclusters consisting

of . 20 points (Fig. 4.4b), which begin to move centripetally. Several type A points have

already reached the center system at this stage. The peripheral microclusters are believed

to play a vital role in initiating and sustaining TCR signaling [106, 115]. As time proceeds,

the clusters further coarsen, which decreases their mobility and slows down their centripetal

motion (Figs. 4.4c-e). The increase in the size of the clusters also causes them to be more

affected by the presence of the type B points that act as repelling obstacles. This further

restrains the centripetal movement of the microclusters, which have to “navigate” their way

through the “curvature corrals” that the type B points form. We also observe in Figs. 4.4c-e

the gradual increase in the size of the central domain, which is the destination where the

microclusters accumulate. After 45 minutes (Fig. 4.4f), almost all type A points reside

in the central domain. The dynamics of the MC simulations, as depicted in Figs. 4.4a-e,

closely resembles epifluorescence and total internal reflection fluorescence (TIRF) microscopy

images of the IS formation process. Specifically, the microscopy images show the generation

of similar microclusters, their drift to the center of the contact area, and their accumulation

at the center of the contact area [94, 116]. The simulations exhibit a very good agreement

with the experimental observations not only with regard to spatial evolution of the system,

but also with respect to the time scales of the different stages of the process. Fig. 4.4g

depicts the percentage of type A points located in the central domain at the actin-depleted

area. About 90% of the lattice points have been accumulated at the center after roughly

40 minutes, which agrees very well with the times reported in the literature for cSMAC

formation.

Figs. 4.5a-c show snapshots from simulations in which dynein activity is turned off.

This is done by modifying the effective potential (4.4) such that Φactive (r < RC) = f0RC =

Constant, and thus, the associated force vanishes at the actin-depleted area where the dynein

motors operate. For this model system, we observe formation of peripheral microclusters

that move centripetally, but do not enter the actin-depleted area. Instead of forming a

central quasi-circular domain, the type A points now accumulate in a ring-shaped domain

at the edge of the actin-depleted region. Interestingly, very similar ring-like structures have

been observed in experiments where dynein activity was inhibited by dynein heavy chain
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ablation [96]. From the agreement with the experimental results we conclude that cSMAC

formation requires that centripetal forces act on the TCR-pMHC bonds in the actin-depleted

area, and that the origin of these forces is the action of the dynein motors.
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Figure 4.4: Simulation snapshots depicting the aggregation process of the TCR-pMHC bonds
(type A, black dots) at different times: (a) The random initial distribution, (b-d) early stage
formation, coarsening, and centripetal drift of microclusters, and (e,f) late stage accumula-
tion of microclusters and cSMAC formation. The red dots represent the cytoskeleton pinning
proteins (type B). (g) The percentage of type A bonds located at the central actin-depleted
area as a function of time.

The results displayed in Figs. 4.4 and 4.5 appears to be in agreement with the widely-

held view that the active cytoskeleton forces due to actin retrograde flow and the dynein

motors determine the final destination of the TCR-pMHC bonds (i.e., the center of the con-

tact area when dynein activity is enabled, and the inner edge of the actin-rich zone when

it is disabled). The results also demonstrate that while a central domain located inside

the actin-depleted area constitutes the equilibrium state of the system from a pure ther-
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(a) t = 20 min t = 45 mint = 10 min (b) (c)

Figure 4.5: Simulation snapshots depicting the evolution of the system in the absence of
dynein forces at the center. Color coding as in Fig. 4.4.

modynamic perspective, membrane-mediated interactions do not contribute significantly to

the centripetal accumulation of the TCR microclusters over the biologically relevant time

scales. This is demonstrated in Fig. 4.6a-d showing snapshots from simulations where Φactive

is completely turned off, leaving the system to evolve only under the influence of the pas-

sive membrane-mediated interactions. Neither centripetal motion nor central accumulation

of TCR-pMHC bonds are observed in this set of simulations. However, the data seems to

indicate that the membrane-mediated interactions play an important role in facilitating the

formation and coarsening of peripheral TCR microclusters, which are known to be essen-

tial for an adequate T cell immune response. The importance of the passive interactions in

inducing the formation of the TCR microclusters is also illustrated in Fig. 4.7, showing snap-

shots from yet another set of simulations. Here, the nearest-neighbor membrane-mediated

attraction between the type A points is muted by setting ε = 0, while the effective centripetal

potential Φactive (4.4) is retained. The simulations reveal that, in this case, the type A points

do not form microclusters but instead move individually and quickly accumulate at the cen-

ter of the system. Since the mobility of a single point is higher than that of a cluster, it is

expected that the aggregation process is completed in a shorter time than required in the

presence of membrane-mediated interactions. Our computational results show that, indeed,

all type A points arrive at the central area in less than 6 seconds (see Fig. 4.7g). We note

here that the rate of the accumulation process depicted in Fig. 4.7 may be exaggerated, since

it implies that individual (non-clustered) TCR-pMHC move centrally at a velocity which is

about 5 times larger than the velocity of the actin retrograde flow. This problematic dynamic

feature is an artifact of the lattice MC dynamics that we employ. Since the focus of interest
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Figure 4.6: Simulation snapshots depicting the aggregation process in the absence of active
cytoskeleton forces. Color coding as in Fig. 4.4. The type A points form microclusters that,
on time scales of hours, barely grow and do not exhibit a drift toward the central area.

is the evolution of the system over durations of minutes and hours, the actin retrograde

flow force has been calibrated to produce correctly the centripetal velocity of small clusters

on these temporal scales (see detailed discussion in section 4.2.4). The consequence of this

choice is that the velocity of the individual TCR-pMHC bonds turns out to be too high. A

reasonable estimation for the centripetal velocity of individual bonds at the periphery of the

system is 20 < v < 100 nm/sec, i.e., higher than the velocity of a single small microcluster

but lower than the actin retrograde flow velocity. The accumulation time of bonds moving

at such speeds is 0.5-2 minutes, which is still more than an order of magnitude smaller than

the IS formation time. The comparison between the results of Fig. 4.7 from simulations that

miss the membrane-mediated attraction and Fig. 4.4 highlights two important aspects of

membrane elasticity: First, it facilitates early microcluster formation that play a vital role

in T cell activation. Second, it leads to coarsening dynamics that results in a decrease in the

mobility of the clusters and, thereby, regulates the duration of the aggregation process.
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Figure 4.7: Simulation snapshots depicting the aggregation process in the absence of
membrane-mediated attraction. (a-f) The type A points do not form microclusters, and
accumulate at the central area within a few seconds. Color coding as in Fig. 4.4. (g) The
percentage of type A bonds located at the central actin-depleted area as a function of time.

4.4 Summary

The formation of the immunological synapse (IS) is a complex biological process involv-

ing multiple molecular components, including several adhesion proteins, motor proteins, the

actin cytoskeleton, and the membranes of both the T cell and the antigen-presenting cell.

Adhesion between the two cell membranes is established by two types of receptor-ligand

bonds, namely, TCR-pMHC and LFA1-ICAM1. At the onset of the process, the T cell’s

cytoskeleton remodels and an actin-depleted region is formed at the center of the contact

area between the cells. Within several tens of minutes, the adhesion bonds segregate such

that the TCR-pMHC bonds aggregate into a quasi-circular domain located at the actin-

depleted region. The macroscopic time evolution of such a complex system can be only
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addressed through coarse-grained models employing simplified molecular representation and

focusing on the most dominant biophysical mechanisms. In this chapter, we present a min-

imal computational lattice model aiming to study the dynamics of the TCR-pMHC bonds

(represented as lattice points). The model takes into account several forces that emerge in

the literature as key factors in TCR-pMHC localization. One is a passive thermodynamic

force associated with the membrane curvature energy, which induces attraction between the

TCR-pMHC bonds, and provides repulsion between the TCR-pMHC bonds and the pro-

teins connecting the actin cytoskeleton to the membrane. The others are centripetal forces

exerted on the TCR-pMHC bonds due to the actin retrograde flow and directed transport

by dynein motors along microtubules, which constitute active (non-equilibrium) forces, since

they originate from processes consuming ATP chemical energy. Only in simulations where

all the driving forces are present, the signature features of the IS formation process are

observed. These include microclusters formation and coarsening dynamics, their transport

to the central actin-depleted area, and their aggregation into a single quasi-circular domain

(the cSMAC). Moreover, the simulated system evolves at the experimentally observed rates;

microclusters are formed early in the process within roughly a minute from the beginning of

the process, and the final bullseye structure is formed within 15-30 minutes.

Our coarse-grained simulations provide a clear and intuitive picture for the respec-

tive roles played by active and passive forces and into the intricate interplay between them

that regulates the spatio-temporal pattern formation of the IS. Membrane-mediated attrac-

tion facilitates the formation of TCR-pMHC microclusters at the periphery of the contact

area. These peripheral microclusters, which initiate biological cues necessary for T cell ac-

tivation, are rapidly formed and continue to grow by coarsening dynamics over a period of

approximately 10 minutes. The TCR-pMHC microclusters are corralled by the membrane-

cytoskeleton binding proteins of the T cell, with which they have repulsive membrane-

mediated interactions. As the microclusters grow in size, the corralling effect becomes more

significant and their diffusivity decreases. This inhibits their accumulation in a central

quasi-circular domain, despite the fact that this configuration constitutes the equilibrium

state of the system. What speeds up the dynamics of the microclusters and directs their

movement toward the center of the contact area is a centripetal active force induced by

actin retrograde flow at the periphery of the synapse. This observation corroborates the
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largely consensual view about the importance of actin remodeling and retrograde flow for

the centripetal translocation of TCR-pMHC bonds at the IS. It is, however, important to

emphasize that in simulations without membrane-mediated attraction, a central domain

forms very rapidly without exhibiting intermediate microclusters. This observation high-

lights the, rather overlooked, important role played by the membrane-mediated interactions

in regulating the rate of the IS formation process. This novel conclusion drawn from our

model and simulations has not been addressed experimentally thus far. A possible setup by

which it can be tested is a model system consisting of all the molecular ingredients of the

system, except for the LFA1-ICAM1 bonds. This would shut down the membrane-mediated

interactions whose origin is the mismatch in bond length between the TCR-pMHC and the

LFA1-ICAM1 bonds.

At the central actin-depleted region, a centripetal force (of magnitude similar to the

actin retrograde flow induced force) is effectively generated by dynein motors that walk

toward the minus-end of the microtubules. An interesting observation from our simulations is

the formation of a ring-shaped domain at the edge of the actin-depleted region in simulations

where this force is turned off. This result is in line with a recent study, in which similar

structures were observed when dynein activity was genetically impaired, but actin retrograde

flow was maintained. The inability of the system to produce a central circular domain

in the absence of dynein activity highlights the role played by these motors at the final

stage of the process, where they enable the TCR microclusters to enter the actin-depleted

region. Furthermore, the agreement between our simulation results and the experimental

data supports the notion presented here of considering two different concentric regions for

the active forces, namely a central area dominated by the dynein motors, and a more distant

one where the actin retrograde flow is the main origin of the centripetal movement of TCR

microclusters.
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Chapter 5

Conclusion

Cellular adhesion is mediated through specific receptor-ligand bonds and constitutes a vital

feature of biological systems. The formation of macroscopic adhesion domains that attach

the plasma membrane to the extracellular matrix and/or other neighboring cell membranes

not only provides mechanical stability to the cell, but is also involved in promoting im-

portant biological cues and in regulating inter-cellular communication. Gaining a thorough

understanding of the biophysical principles driving the aggregation process not only provides

insights into the biological mechanisms of life, but is also important for the development of

biosensing applications and the design of drug delivery systems that rely on efficient adhesion

between the carrier and the target plasma membrane.

This thesis aimed to develop a better theoretical understanding of membrane-mediated

mechanisms for protein clustering. Membrane thermal fluctuations and elastic curvature

energy effectively induce attractive forces between adhesion bonds. These forces originate

from the decrease in the system’s free energy upon aggregation, which enhances the thermal

fluctuations (and, therefore, the configurational entropy) of the membrane, and reduces its

bending energy. These two thermodynamic mechanisms have been studied in two distinct

regimes of the elasticity theory for lipid bilayers. In the Helfrich regime, where the membrane

undulations are strong, the thermal fluctuations induce a long-range potential of mean force

(PMF) between adhesion bonds. In contrast, in the van der Waals regime, where thermal

fluctuations are small, the membrane curvature deformations induce a finite-range PMF.

The most challenging aspect of the analysis of adhesion domains formation is the
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many-body nature of the membrane-mediated PMF. In this work, we used an arsenal of

theoretical methods, including computer simulations, statistical-mechanical calculations, and

novel mean-field theories to study the condensation transition of adhesion bonds, and to

elucidate the role played by membrane-mediated interactions in this process. We analyzed

the aggregation behavior in both the Helfrich and van der Waals regimes of strong and weak

thermal fluctuations, respectively. The former is discussed in chapter 2, where we present

results of computer simulations of a coarse-grained solvent-free model for supported lipid

bilayers. The results for non-constrained membranes were found to be in excellent agreement

with the recently proposed Weil-Farago (WF) lattice model. The WF model is based on the

notion that the local suppression of membrane thermal undulations is mainly determined

by the distance from the nearest adhesion point and can, therefore, be determined from the

Voronoi diagram corresponding to a given distribution of adhesion points. Our molecular

simulations results are in line with the conclusion emerging from lattice simulations of the

WF model, that thermal fluctuations alone are insufficient to promote cluster formation,

yet they have a considerable impact on the condensation transition. We arrive at this

conclusion by comparing simulations of supported membranes with those of non-fluctuating

flat membranes subjected to a strong physical confinement. In the latter case, the fluctuation-

induced interactions vanish; condensation may be induced by residual direct interactions (if

sufficiently strong), and the system can be described by the standard nearest-neighbor lattice-

gas (Ising) model for gas-liquid phase transitions. In the case of non-confined membranes, our

simulations demonstrate that the system remains in the Ising universality class. However,

the membrane-mediated interactions effectively reduce the thermodynamic temperature by

a factor of 2-3; i.e., they compensate for roughly half of the mixing entropy lost upon

condensation. This picture is consistent with the idea that in a distribution of adhesion

bonds, the long-range attractive PMF arising from the membrane-thermal fluctuations is

self-screened. We also performed simulations of membranes subjected to negative surface

tension that presumably enhances the thermal roughness of the membrane. We found that

the negative tension had no effect on the gas phase, where the scattered adhesion bonds

strongly suppress the thermal undulations. The influence of the negative tension is seen

in the condensed phase, where the membranes exhibit buckling instabilities and elongated

adhesion domains (stripes) are formed in the non-buckled portion of the system.
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In chapter 3, we examine the condensation transition in the van der Waals regime.

As opposed to the entropic attraction between adhesion bonds in the Helfrich regime, the

curvature-induced pair PMF in the van der Waals regime decays over a characteristic correla-

tion length of ξγ ' 50−100 nm. This feature of the pair PMF implies that the condensation

transition is expected to be of the lattice-gas (Ising) universality class. Our investigation

of the curvature-mediated many-body PMF and the condensation transition are based on a

novel mean-field approach involving numerical evaluation of the membrane’s elastic energy

for random distributions of adhesion bonds on a triangular lattice. We found that the elastic

deformation energy per adhesion bond in systems with different healing lengths ξγ and bond

densities φ exhibits data collapse when plotted against the scaled density x = ξ2
γφ. This

enabled us to obtain an empirical expression for the system energy, which is then used in

a mean-field expression for the system’s free energy. From the mean-field free energy, we

obtain the phase diagram of the system and identify the two-phase coexistence region. The

most important aspects of the phase diagram are the observations that: (i) the critical point

xc lies in regions where x attains extremely small values, and (ii) the binodal/spinodal curves

sharply decline with the deformation length, h0, imposed by a single bond for xc < x . 1.

The parameter h0 serves in the problem as a temperature variable. When assigning pa-

rameter values to the model that are characteristic of biological membranes, we show that

biological adhesion domains may, in some cases, be associated with the two-phase region

of the phase diagram. Specifically, the adhesion domains constitute a semi-dilute phase co-

existing with an extremely dilute phase that is essentially empty of bonds. The densities

in the semi-dilute domains are such that the adhesion bonds are typically separated by a

distance ξγ from each other. The formation of highly packed condensed domains requires

much stronger deformations (h0), that are often (but not always) unrealistically large. This

can be understood from the observation that for an adhesion bond density of φ ' ξ−2
γ ,

the membrane is relatively flat and, therefore, the curvature-mediated attraction effectively

saturates at these densities.

In chapter 4, we take a closer look at a specific biological example of an adhesion do-

mains, which is the immunological synapse (IS) that forms upon contact between T cells

and antigen-presenting cells. This specialized cellular junction is established by two types

of receptor-ligand complexes namely, TCR-pMHC and LFA1-ICAM1 adhesion bonds, which

74



form a unique concentric pattern where the TCR-pMHC bonds are clustered in the center of

the contact area, while the LFA1-ICAM1 bonds accumulate at the periphery. This segrega-

tion process can be partially attributed to the marked mismatch in bond lengths between the

two types of adhesion bonds, which results in substantial membrane deformations leading to

curvature-induced interactions. For the system parameters characterizing the IS, our mean-

field theory (developed in chapter 3) predicts the formation of a semi-dilute TCR-pMHC

domain with a bond density of φ ' ξ−2
γ ∼ 100µm2 that is comparable with their densities

in the IS. Nevertheless, domain formation purely driven by a spontaneous phase separation

mechanism cannot account for the concentric geometric pattern characteristic of the IS. In-

deed, active cytoskeleton processes stemming form actin polymerization/depolymerization

events and dynein motor activity are thought to be indispensable for this special molecular

arrangement. The peripheral actin retrograde flow and the more centrally located directed

transport of TCRs by dyneins generate additional centripetal forces, which are believed to

be responsible for the broken symmetry in the system. In order to investigate these issues,

we developed an implicit-membrane 2D lattice model for TCR-pMHC aggregation in the IS.

In this model, the elasticity-induced many-body PMF in the van der Waals regime is ap-

proximated by nearest-neighbor pair interactions. This approximation holds for semi-dilute

systems like the IS. The active cytoskeleton forces are modeled by an effective centripetal

potential. The spatio-temporal evolution of the system is studied using Monte Carlo simula-

tions, and the relationship between the Monte Carlo and the physical time units is established

from the diffusion coefficient of TCR proteins. The simulated aggregation process exhibits a

very good agreement with numerous experimental observations, and correctly captures the

signature features of IS formation. The process begins with the nucleation of small peripheral

TCR-pMHC microclusters. Over time, the microclusters grow by coarsening dynamics, and

exhibit centripetal motion towards the center of the system. Apart from the agreement on

the stages and the spatial evolution of the system, the simulations also show that the central

domain is formed within ∼ 30 min, which is indeed the experimentally observed timescale

for IS formation.

Consistent with previous findings, our lattice simulations point to the great importance

of active cytoskeleton forces, which drive the TCR-pMHC centripetally and allow their ag-

gregation to be completed over biologically relevant timescales. Our results also highlight
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the rather overlooked importance of membrane-mediated interactions in T cell activation.

The central accumulation of TCR-pMHC in simulations lacking these interactions occurs

too rapidly and does not exhibit the formation of peripheral microclusters, which are only

observed in systems where the curvature-induced attraction is enabled. The formation of

microclusters decreases the mobility of TCR-pMHC bonds and slows down their centripetal

movement. This provides T cells with an appropriate time window to allow biological signal-

ing via peripheral TCR microclusters, which is vital for a proper immune response. Thus,

our lattice model and Monte Carlo simulations shed light on the respective roles of pas-

sive and active mechanisms in IS formation, and the delicate interplay between them that

regulates the spatio-temporal evolution of the process.

The present work provides a comprehensive biophysical basis for the understanding of

adhesion domain formation driven under the influence of membrane-mediated interactions.

The concepts and methods developed here can be applied to the study of other biological

systems exhibiting membrane adhesion clusters. In the example of the IS, we focused on

the formation of semi-dilute adhesion domains; however, it is important to note that our

mean-field treatment suggests that densely packed clusters can, in principle, also form in

membranes subjected to strong deformations. One should keep in mind that our analysis

is based on a linear theory, where the membrane is represented in the Monge gauge using

the small gradient approximation. This approximation may not hold in the case of strongly

deformed membranes, which calls for further theoretical studies. Such investigations are

especially interesting in light of recent evidence suggesting that curvature-mediated mecha-

nisms may be responsible for integrin clustering in cancerous cells [117]. Strong membrane

deformations caused by large glycoproteins, which are commonly overexpressed in malignant

cells and can extend up to 200 nm away from the membrane’s surface [118,119], were found

to facilitate integrin clustering, unlike short (3 nm long) glycoproteins. The formation of

focal adhesion domains in tumor cells enhances metastatic capabilities and promotes cellu-

lar growth and survival, which points to an interesting mechanical role of the glycocalyx in

cellular signaling. Interestingly, our mean-field phase diagram predicts that for a membrane

deformation of h0 & 100 nm (which is much larger than the typical thermal roughness), the

condensed phase is characterized by a scaled density of x & 10, corresponding roughly to

densities of the order of & 1000 bonds per µm2, which are comparable to the typical integrin
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density in focal adhesion [120]. We hope that the present work will stimulate further bio-

physical research that will deepen our understating of nature’s ability to exploit the physical

properties of membranes to execute biological functions.
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Appendix A

With the Helfrich Hamiltonian in the van der Waals regime (1.20), the membrane’s height-

height correlations in the absence of adhesion bonds are given by

〈h(r)h(r′)〉 =

(
l

L

)4∑
q

〈
∣∣h2

q

∣∣〉e−iq·(r−r′) ≈ − 4

π
∆2kei

(
|r− r′|
ξγ

)
, (A.1)

For very small distances (r → r′), eq. (A.1) reduces to the thermal roughness ∆2 given

by eq. (1.23). Let us now look at a collection of N height variables at different positions

{ri}Ni=1 creating the vector h = [h(r1), . . . , h(rN)]T. The vector h is N−variate Gaussian

distributed, with a probability density function

p(h) =
1

(2π)N/2
√

det C
exp

(
−1

2
hTC−1h

)
, (A.2)

where Cij = 〈h(ri)h(rj)〉 is the covariance matrix of h according to eq. (A.1). To describe a

membrane locally fixed by N points at {ri}Ni=1 to a height h0, one could calculate the proba-

bility density p
(
h = h0 [1, . . . , 1]T = h0

)
that a free membrane attains such a configuration,

p(h = h0) =
1

(2π)N/2
√

det C
exp

(
−h

2
0

2

N∑
i,j=1

C−1
ij

)
(A.3)

=
1

(2π∆2)N/2
√

det M
exp

{
−1

2

(
h0

∆

)2 N∑
i,j=1

M−1
ij

}
,

where we have introduced the matrix M that satisfies C = ∆2M. Eq. (A.3) exactly equals the

ratio between the partition functions of the attached and the unbound membranes ZN/Z0,

which is reconciled with eq. (1.35) for ZN . For dilute distributions of attachments points,
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where the typical distance between them |r− r′| � ξγ, the matrix M can be approximated

by

Mij ≈ 1 + ηij, (A.4)

with ηii = 0 and ηi 6=j = − 4
π
kei (|ri − rj| /ξγ) � 1. The inverse matrix M−1 can be approxi-

mated by M−1
ij ≈ 1− ηij, and the partition function ZN reads

ZN ≈ exp

{
−1

2

(
h0

∆

)2
(
N −

∑
i 6=j

ηij

)}
. (A.5)

This form of the partition function ZN is isomorphic to that of a lattice-gas model in the

canonical ensemble, with short-range interactions of range ∼ ξγ. Thus in the dilute limit,

the many-body nature of the membrane-mediated PMF between the adhesion bonds is elim-

inated and, instead, the PMF can be described as a simple sum of pairwise interactions. If

the lattice spacing of the discrete model is set to ≥ ξγ, the interactions can be limited to

nearest-neighbor sites.
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 תקציר

 

כיווני -ממברנות ביולוגיות מהוות חוצץ טבעי בין תוכן התא וסביבתו החיצונית, ומאפשרות מעבר דו 

מבוקר של יונים, מולקולות ואותות כימיים שונים. הממברנות עשויות משכבה כפולה של מולוקלות שומן בפאזה 

חלבוני אדהזיה הינם משפחה יחודית של ידים מגוונים. קנוזלית, ומכילות סוגים שונים של חלבונים בעלי תפ

חלבוני ממברנה, שיוצרים קשרים ספציפיים עם המטריקס החוץ תאי ו/או חלבונים אחרים בממברנות של תאים 

שכנים. במקרים רבים, קשרי האדהזיה הללו מתגבשים ליצירת צמתי אדהזיה המכילים מאות עד אלפי קשרי 

ם חשובים כגון, נדידת תאים, תקשורת בין יה של תהליכים ביולוגיאדהזיה. צבירי אדהזיה אלו נחוצים לבקר

תאית, היווצרות רקמות והפעלת התגובה החיסונית. אחד המנגנונים המניעים את התעבותם של קשרי אדהזיה 

לכדי צבירים גדולים נובע מאינטרקציות אפקטיביות בינהם המושרות על ידי הממברנה. מקור האינטקרציות 

האלה טמון בתנודות התרמיות של הממברנה והמעוותים האלסטיים שהיא חווה. הרווח האנטרופי האפקטיביות 

המתקבל מהגדלת הפלקטואציות התרמיות כאשר קשרי האדהזיה מתקבצים, כמו גם הקטנת האנרגיה 

אנו האלסטית המלווה בתהליך זה, מהווים מנגון תרמודינמי ליצירת צבירי אדהזיה. בעבודת המחקר הנוכחית, 

סטיסטיים, סימולציות מחשב מולקולריות ותאוריות שדה ממוצע חדשניות על מנת -משתמשים בחישובים מכנו

לחקור את האינטרקציות האפקטיביות  בין קשרי אדהזיה המושרות על ידי הממברנה, לקבל הבנה עמוקה יותר 

 .עבותהזיה, ולאפיין את מעבר הפאזה להתלגבי תפקידם בתהליך היווצרות צמתי אד

בכדי לחקור את המנגנון האנטרופי למשיכה בין קשרי אדהזיה, אנו מבצעים סימולציות מחשב של מודל   

אדהזיה. תוצאות הסימולציות מראות כי הפלקטואציות  אתרירנות המצומדות למשטח בעזרת מופשט לממב

התעבות  על שפעה חזקהה התרמיות לבדן אינן חזקות דיו בכדי לגרום ליצירת צבירי אדהזיה, אך יש להן

המערכת. מסקנה זו נובעת מסימולציות של ממברנות שטוחות שאינן מסוגלות להתנודד כלל, על ידי הגבלתם בין 

שני משטחים. מצב זה מדכא את הפלקטואציות התרמיות ולכן מכבה את האינטרקציות המושרות על ידי תנודות 

נות ללא אילוצים מתרחשת בטמפרטורה קריטית רבמשרי האדהזיה במהממברנה. אנו מוצאים כי התעבות ק

ים ימזו של ממברנות שאינן חוות פלקטואציות, בהתאמה מעולה עם מסקנות ממודלים תיאורט 2-3הקטנה פי 

קודמים. בניגוד לסימולציות המגבילות את תנודות הממברנה, סימולציות של ממברנות תחת מתח פנים שלילי, 

כי מתח הפנים השלילי כמעט שאינו משפיע על מעבר הפאזה. אולם, מתחת  המגביר את תנודתיותן, מראות

הטמפרטורה הקריטית מתח הפנים השלילי עלול להתבטא באי יציבות מכנית והופעתם של צבירי אדהזיה בעלי 

 גיאומטריות מאורכות.

ידי  על מנת לחקור את המכניזם האנרגטי להתעבות קשרי אדהזיה, בו האינטרקציות המושרות על 

ננומטרים, אנו   50-100של  קורלציה אופייני ות משיכה קצרת טווח על פני מרחקהאלסטיות של הממברנה יוצר

מציגים תאוריית שדה ממוצע המבוססת על חישובים נומריים של אנרגית הממברנה כפונקציה של ריכוז קשרי 

י אמפירי לאנרגיה רכת מתוך ביטואדהזיה. גישת השדה הממוצע מאפשרת גזירה של דיאגרמת הפאזות של המע

של המעוותים הטיפוסיים לנקודה הקריטית  בסמוךמראה כי  של המערכת. דיאגרמת הפאזותהחופשית 

גורמים להפרדת פאזות במערכת, וליצירת פאזה דלילה למחיצה בה ריכוז קשרי שרי האדהזיה ממברנות עקב ק

100µm-2~ האדהזיה הוא כ
 TCR-pMHCנפסה האימונולוגית, שבה קשרי . ריכוזים דומים נמצאים בסי

 LFA1-ICAM1לתאים מציגי אנטיגנים, בעוד שקשרי אדהזיה מסוג  Tמתקבצים במרכז הממשק בין תאי 

 דיאגרמת הפאזות חוזה יצירת, סינפסה האימונולוגיתפרמטרים הביולוגיים של היבם. עבור המתגבשים סב

 .צבירים דלילים למחצה עם ריכוזים דומים לאלו הנמדדים בסינפסה

על אף כי האנליזה שאנו מבצעים מדגישה את חשיבות אלסטיות הממברנה ליצירת הסינפסה  

, דורשת מנגון שובר תאי-לכדי צביר במרכז הצומת הבין TCR-pMHC האימונולוגית, התקבצותם של קשרי



מנגנון שכזה מיוצר על ידי תהליכים  קשרים אלו למרכז המערכת. סימטריה המכוון את התגבשותם של

 מפעיליםחלבוני מנוע מסוג דינאין, הזרימה רטרוגרדית של אקטין ופעילות עים מבהנושל שלד התא אקטיביים 

תפקידן של תהליכים פאסיביים מול . על מנת לחקור את TCR-pMHCכוחות צנטריפטליים על קשרי ה 

עם ייצוג בלתי מפורש של  אנו מציגים מודל שריג פשוט ת הסינפסה האימונולוגית,אקטיביים בהיווצרו

והתהליכים האקטיביים של שלד התא  מברנהות המאלסטיהממברנה, בו האינטרקציות המושרות על ידי 

. תוצאות הסימולציות של מודל השריג מראות התאמה טובה מאוד עם מיוצגים בעזרת פוטנציאלים פשוטים

-הבולטים המאפיינים את תהליך היווצרות הסינפסה. הסימולציות מראות כי תחילה נוצרים מיקרו הסממנים

צבירים קטנים בפריפריה של המערכת, הגדלים עם הזמן, נעים לכיוון מרכז המערכת ומתגבשים ליצירת הצבר 

ני של ומה לזמן האופיידקות, הד 30כ סקאלת הזמן להיווצרות הצביר המרכזי היא של כזי בסינפסה. בנוסף, המר

על הבקרה ההדדית בין תהליכים פאסיביים ואקטיביים בהיווצרות שופכות אור  היווצרות הסינפסה. התוצאות

 אלסטיות הממברנהעל תקפידה הקריטי של אלסטיות הממברנה בתהליך זה.  ותהסינפסה האימונולוגית, ומצביע

. T -וצים להפעלת אותות ביולוגיים לשפעולם של תאי הצבירים בפריפריית המערכת, הנח-יצירת מיקרו מעודדת

-לפני הגעתם של המיקרו זמן של כמה עשרות בודדות של דקותבנוסף, היא מאפשרת לאותות אלה לפעול לפרקי 

 צבירים למרכז הסינפסה, שמדכא את יצירת האותות הללו.

 

שריג, מודלים -י אדהזיה, מודל גזמילות מפתח: אלסטיות של ממברנות, תנודות תרמיות, צמתי תאים, צביר

מופשטים, סימולציות מונטה קרלו, מעברי פאזה, תיאוריית שדה ממוצע, סינפסה אימונולוגית, כוחות אקטיביים 

 ופסיביים.
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