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1. Introduction

Discrete-time molecular dynamics (MD) is one of the
most common methods for simulating molecular sys-
tems.[1] MD simulations are performed by numerically in-
tegrating NewtonÏs equations of motion to advance the
coordinates of the particles in discrete time. The most fre-
quently used numerical integrator for performing MD is
based on the Størmer-Verlet algorithm,[2] which, for
a closed system, can be written:

rnþ1 ¼ rn þ dtvn þ dt2

2m
f n ð1Þ

vnþ1 ¼ vn þ dt
2m
ðf n þ f nþ1Þ ; ð2Þ

where rn, vn, and f n ¼ f ðrnÞ denote the position, velocity,
and force of a particle, respectively, at time tn. The Størm-
er-Verlet algorithm is a second-order integrator in dt. It is
considered favorable over other, higher order in dt, inte-
grators due to its simplicity, computational efficiency, and
global conservation properties. For a closed system, these
properties ensure optimal stability, time reversibility, and
e.g., effective energy conservation over long time integra-
tions.[3] Despite these attractive features, a little-appreci-
ated fact is that the parameter we assign to represent ve-
locity (or momentum) in discrete-time dynamics is not
exactly the conjugated variable to the simulated position.
The conjugated relationship between the position and ve-
locity coordinates is recovered only in continuous time
(see Appendix A in Ref. [4] and references therein). The
consequences of this fundamental artifact are significant,
as one must accept that kinetic and configurational meas-

ures cannot be obtained correctly from the same simula-
tion, unless a simulation is conducted with a very small
time step.

The Størmer-Verlet algorithm addresses dynamics in
closed (microcanonial) systems, characterized by conser-
vation of the total energy. However, the microcanonial
ensemble is less relevant for most MD applications than
its canonical counterpart, where the temperature, rather
than the energy, is constant. This is especially true for the
relatively small systems that are often simulated as
a proxy for thermodynamically large ensembles. A
number of methods for constraining the temperature of
a simulated system (“thermostats”) exists; two represen-
tative ones are the deterministic (e.g., Nos¦-Hoover)[5,6]

and stochastic (Langevin) thermostats.[7] Here we focus

Abstract : We implement the statistically sound G-JF thermo-
stat for Langevin dynamics simulations into the ESPResSo
molecular package for large-scale simulations of soft-matter
systems. The implemented integration method is tested
against the integrator currently used by the molecular pack-
age in simulations of a fluid bilayer membrane. While the
latter exhibits deviations in the sampling statistics that in-

crease with the integration time step dt, the former reprodu-
ces near-correct configurational statistics for all dt within
the stability range of the simulations. We conclude that,
with very modest revisions to existing codes, one can signif-
icantly improve the performance of statistical sampling
using Langevin thermostats.

Keywords: computational chemistry · molecular dynamics · simulations · soft matter

[a] E. Arad, O. Farago
Department of Biomedical Engineering
Ben Gurion University of the Negev
Be’er Sheva 84105 (Israel)

[b] O. Farago
Ilse Katz Institute for Nanoscale Science and Technology
Ben Gurion University of the Negev
Be’er Sheva 84105 (Israel)

[c] N. Grønbech-Jensen
Department of Mechanical and Aerospace Engineering
University of California
Davis CA 95616 (USA)
e-mail: ngjensen@ucdavis.edu

[d] N. Grønbech-Jensen
Department of Mathematics
University of California
Davis CA 95616 (USA)

Isr. J. Chem. 2016, 56, 629 – 635 Ó 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 629

FFuullll PPaappeerr



on integration methods for Langevin dynamics (LD). In
LD, two terms are added to NewtonÏs equations of
motion: 1) friction proportional and opposite to the ve-
locity; and 2) an accompanying delta-function correlated
(“white”) thermal noise. LangevinÏs equation is thus
given by:[8]

_r ¼ v ð3Þ

m _v ¼ f ðr; tÞ ¢ avþ bðtÞ ; ð4Þ

where f ðr; tÞ is the deterministic force acting on the parti-
cle, a > 0 is a constant friction coefficient, and bðtÞ de-
notes the thermal noise. To satisfy EinsteinÏs fluctuation-
dissipation theorem, it can be assumed that the noise is
Gaussian-distributed, with the following statistical proper-
ties:[9]

hbðtÞi ¼ 0 ð5Þ

hbðtÞbðt0Þi ¼ 2akBTdðt ¢ t0Þ ; ð6Þ

where kB is BoltzmannÏs constant and T is the thermody-
namic temperature.

Developing an accurate numerical integrator for Lan-
gevinÏs equation is not trivial, due to the nonanalytic
nature of the thermal noise and the fact that the friction
force is velocity-dependent. If the friction and noise
terms are treated on equal footing with f ðr; tÞ, one ob-
tains the frequently used BBK (Brînger, Brooks, Kar-
plus) integrator, which is simple, yet known to be inaccu-
rate when employed with a moderate to large integration
time step, dt.[10] Specifically, the BBK, as well as most
other existing integrators (including Nos¦-Hoover), tend
to exhibit increasing artificial changes in the configura-
tional sampling statistics as the time step is enlarged. This
is rooted, in part, in the above-mentioned discrete-time
artifact that momentum and position are not strictly mu-
tually conjugated variables for dt > 0. Recently, a new
and improved thermostat (a temporal discrete-time
propagator of the Langevin equation) was introduced by
Grønbech-Jensen and Farago (G-JF),[11] which reads:

rnþ1 ¼ rn þ b½dtvn þ dt2

2m
f n þ dt

2m
bnþ1¤ ð7Þ

vnþ1 ¼ avn þ dt
2m
ðaf n þ f nþ1Þ þ b

m
bnþ1 ; ð8Þ

where

a ¼ 1¢ adt
2m

1þ adt
2m

ð9Þ

b ¼ 1

1þ adt
2m

: ð10Þ

The discrete-time noise is:

bnþ1 ¼
Z tnþ1

tn

bðt0Þdt0 ; ð11Þ

which results in an uncorrelated Gaussian random
number with zero mean and a variance given by the tem-
perature and friction coefficient:

hbni ¼ 0 ð12Þ

hbnbli ¼ 2akBTdtdn;l : ð13Þ

Notice that the limiting case, a ¼ 0, of the G-JF method
outlined in Eqs. (7–13) reduces the method to the stan-
dard Størmer-Verlet algorithm of Eqs. (1) and (2).

The core of the G-JF method is that the fluctuation-dis-
sipation relationship is intact in discrete-time with respect
to the balance between the energy lost by friction over
the actual distance traveled and the accumulated noise
over the time step.[11] This implies that the resulting dis-
crete-time trajectory is thermodynamically sound. It
therefore enables simulations of diffusion and configura-
tional space without compromising the sampling statistics,
as the time step is varied throughout the numerical stabil-
ity range.[11,12] The objective of this paper is to illuminate
the statistical performance of the method for both low-di-
mensional systems, as well as complex, soft-matter sys-
tems for which we have implemented the G-JF algorithm
in the simulation suite, ESPResSo, to demonstrate the re-
sulting improvements that can be attained by modest re-
visions to existing molecular dynamics codes.

2. Application to Simple Oscillators

To appreciate the sampling strength of the G-JF thermo-
stat, we first study a particle moving in one-dimensional
space with potential energy UðrÞ. We investigate the equi-
librium statistics of the system by integrating Eqs. (3) and
(4) with

f ðrÞ ¼ ¢ @U
@r

: ð14Þ

We can regard Eqs. (3) and (4) as normalized, along with
all variables, if we assume that r is normalized to a charac-
teristic displacement r0, m is measured in units of m0,
energy U is in units of E0, time t is in units of
t0 ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=E0

p
, velocity v is in units of v0 ¼ r0=t0, and nor-

malized temperature is given by q ¼ kBT=E0. Our simula-
tion results shown in this paper are for m ¼ q ¼ 1.
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In what follows, we consider confining potentials,
where an object with coordinate r has a localized equilib-
rium distribution function 1eq / exp½¢UðrÞ=kBT¤. We sim-
ulate the Langevin dynamics with three discrete-time al-
gorithms: G-JF,[11] BBK,[10] and one by Stoll and Schneid-
er (SS)[13] (where we have set the algorithm parameter to
p ¼ 1). The reason for the two latter choices is that they
represent commonly used methods in distributed MD
suites. From the simulations, we obtain the normalized
distribution function 1ðrÞ, which we use to generate the
normalized potential of mean force Upmf ðrÞ ¼ c¢ qln1ðrÞ,
where c is a constant. A measure of the quality of the ap-
plied algorithm is then the difference Upmf ðrÞ ¢UðrÞ, with
an appropriate choice of the constant c. We use a total of
1010 time steps for each acquired distribution function.
From these simulations, we also derive the important nor-
malized configurational temperature qC ¼ kBTC=E0,

[14,15]

TC ¼
E0

kB

hð@U=@rÞ2i
h@2U=@r2i ; ð15Þ

which is a condensed measure of how well the configura-
tional space is sampled.

We first consider a harmonic oscillator UðrÞ ¼ 1
2 kr2

with k ¼ 1=40. Since this results in a linear equation
of motion, the use of a Gaussian random variable will
result in a Gaussian distribution 1ðrÞ with zero mean (by
symmetry, since hbi ¼ 0). It was shown analytically in
Ref. [11] that the resulting variance of 1ðrnÞ is
Vð1ðrÞÞ ¼ 1

2 q, which implies that the G-JF algorithm
reproduces the correct Boltzmann distribution pre-
cisely in discrete time for any applied time step
dt < 2=

ffiffiffiffiffiffiffiffiffiffi
k=m

p ¼ dtmax within the stability limit of the ex-
tended Størmer-Verlet methods for Langevin dynamics.[16]

This essential feature is verified by simulations, as shown
in Figure 1 and Figure 2, where we display UðrÞ, along
with Upmf ðrÞ (Figure 1) and TC, for different values of a

and dt (Figure 2), computed using the three integration
methods mentioned above. We observe the expected per-
fect agreement between the G-JF results for Upmf ðrnÞ and
UðrÞ (G-JF results are shown with a solid curve, while
UðrÞ, which is shown dotted, is completely overlapped by
the solid curve). In contrast, Figure 2 shows considerable
deviations for both BBK (dashed) and SS (dash-dotted)
methods as dt is increased. It is obvious that BBK consis-
tently overestimates the configurational temperature,
which is consistent with the flattening of the effective
(pmf) potential seen in Figure 1. The SS method, howev-
er, has a more complex set of errors. For small dissipa-
tion, we see that this method also overestimates TC, while
large a generally underestimates the temperature. This is
consistent with the hardening of the effective potential
observed in Figure 1 for the SS algorithm. The results
imply that both BBK and SS methods should be applied

with considerable caution, and only with very small time
steps, compared with the stability limit.

Second, we validate the performance of the methods
for a highly nonlinear potential UðrÞ ¼ 1

2kr2 ¢ cosðr ¢ xÞ
for k ¼ 1=40 and x ¼ 3

4 p (which is chosen, somewhat arbi-
trarily, to create some asymmetry in the potential). The
stability limit of the Størmer-Verlet methods is given by
the maximum curvature of the potential, which in this
case is ~k ¼ kþ 1. Thus, we define the stability limit for

Figure 1. Potentials of mean force Upmf ðrÞ from simulated harmon-
ic oscillator using G-JF (solid), BBK (dashed), and SS (dash-dotted)
methods for a ¼ 2 and dt ¼ 0:8dtmax . True potential (dotted) is
precisely reproduced by G-JF.

Figure 2. Configurational temperature TC from simulated harmonic
oscillator using G-JF (solid), BBK (dashed), and SS (dash-dotted)
methods as a function of the applied time step (dtmax is the de-
fined stability limit). True temperature (dotted) q ¼ 1 is precisely
reproduced by G-JF.
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the nonlinear problem to be dtmax ¼ 2=
ffiffiffiffiffiffiffiffiffiffi
~k=m

p
. The simu-

lation results, which are displayed in Figures 3 and 4, re-
confirm that the intuition from the harmonic oscillator
generally translates to the strongly nonlinear case. The
BBK integrator overestimates the configurational temper-
ature by effectively lowering the local energy barriers,
and where the SS method continues to have complex re-
sponses to variations in a and dt. The G-JF method is no
longer exact when compared with the true (continuous
time) expectations, but it is clearly superior to the refer-
ence methods. It is important to note that the discrepan-
cies for nonlinear systems arise not from the G-JF meth-
odÏs implementation of dissipation and fluctuations,
which are correctly balanced in discrete-time, but is an ar-
tifact of the discrete-time approximations to the behavior
of the deterministic force within a single time step. This is
an unavoidable feature common and inherent to all
Verlet-type methods. The observed G-JF trend that the
configurational temperature becomes increasingly more
accurate for increasing friction coefficient a is due to the
fact that the dissipation and fluctuation terms in the Lan-
gevin equation (4) become dominant for large a. Figure 4
therefore confirms the desired thermodynamic G-JF
properties, since the G-JF method provides the correct
configurational dissipation-fluctuation relationship in dis-
crete-time. Figure 3 and Figure 4 also demonstrate that
what may look to be minor differences in configurational
temperature (see, e.g., Figure 4c for dt ¼ 0:8dtmax) can, in
fact, be masking rather large and significant deviations in
the Boltzmann distribution (seen in Figure 3). This em-
phasizes the importance of validating the actual configu-
rational distribution when considering if computer simu-
lations represent the thermodynamic situation under in-
vestigation. Notice, however, that such validation is only

possible in low-dimensional systems. It is also important
to reemphasize that kinetic and configurational measures
cannot be simultaneously correct, since the velocity pa-
rameter in the numerical methods is not exactly the ve-
locity of the simulated trajectory. Thus, while the G-JF
method will not provide the expected kinetic tempera-
ture, as measured by the average kinetic energy, the
reason is that the velocity parameter is, in fact, not consis-
tent with the configurational behavior in discrete time.
The interesting complement to this observation is that
a simulation method that provides correct kinetic behav-
ior (such as kinetic temperature) cannot also reproduce
correct configurational response unless the time step is
very small.

3. Application to Soft Matter

The option to employ the G-JF thermostat has been
added to the software simulation suite LAMMPS (large-
scale atomic/molecular massively parallel simulator),
a popular MD simulator for materials modeling, devel-
oped and maintained by Sandia National Laboratories.[17]

The LAMMPS suite has the SS method as its other ther-
mostat option (see MD comparison between G-JF and SS
methods in Section 2 and in Ref. [12]). Here, we focus on
another simulation package, ESPResSo (extensible simu-
lation package for research on soft-matter systems), an
open source software which has been developed at the In-
stitute for Computational Physics of the University of
Stuttgart. ESPResSo is typically used for MD simulations
of large scale coarse-grained (CG) models of soft-matter

Figure 3. Potentials of mean force Upmf ðrÞ from simulated harmon-
ic oscillator using G-JF (solid), BBK (dashed), and SS (dash-dotted)
methods for a ¼ 2 and dt ¼ 0:8dtmax . True potential (dotted) is
closely reproduced by G-JF.

Figure 4. Configurational temperature TC from simulated nonlinear
oscillator using G-JF (solid), BBK (dashed), and SS (dash-dotted)
methods as a function of the applied time step (dtmax is the de-
fined stability limit). True temperature is shown as a dotted line.
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systems, and it includes a BBK-type discrete-time ther-
mostat.

To demonstrate the performance of the G-JF thermo-
stat for more complex soft systems, we simulated a bilayer
membrane of CG model lipids (see Figure 5) using the
ESPResSo package. Each lipid is modeled as a trimer
consisting of one hydrophilic and two hydrophobic beads
of diameter s, and the simulations are performed with no
explicit solvent and with the Cooke-Kremer-Deserno
force fields.[18] Specifically, all beads are subjected to
a short-range repulsive potential by applying a cut-off to
a standard Lennard-Jones potential, which is vertically
shifted such that:

VrepðrÞ ¼
4e

s0

r

� �12¢ s0

r

� �6þ 1
4

h i
; r < rc

0 ; r � rc

8<: ð16Þ

where s0 ¼ 0:95s for head-head and head-tail interac-
tions, s0 ¼ s for tail-tail interactions, and rc ¼

ffiffiffi
26
p

s0. The
bonds connecting the intra-lipid beads are described by
the FENE potential:

Vbond ¼ ¢
1
2

kbondr2
1ln 1¢ r

r1

� �2� �
; ð17Þ

with kbond ¼ 30e=s2 and r1 ¼ 1:5s. Each lipid is straight-
ened by a harmonic spring potential between the head
and the second tail bead, given by:

Vbend ¼
1
2

kbendðr ¢ 4sÞ2 ; ð18Þ

where the bending stiffness kbend ¼ 10e=s2. Finally, an at-
tractive nonbonded interaction energy is introduced be-
tween any pair of hydrophobic tail beads. The attractive
potential is given by:

Vattr ¼
¢e ; r < rc

¢e cos2 pðr¢rcÞ
2wc

; rc � r < rc þ wc

0 ; r � rc þ wc

8><>: ð19Þ

We choose the parameters e ¼ kBT and wc ¼ 1:35s,
which produce a bilayer membrane in the fluid state.[18]

Normalized friction coefficients, masses, and temperature
are chosen as unity. A snapshot of the bilayer membrane,
taken from one of the simulations, is presented in
Figure 5.

The bilayer membrane was simulated for 43,200 simula-
tion time units, with integration time step dt varying from
dt ¼ 0:001 up to the stability limit of the system
(dt � 0:016) in increments of Ddt ¼ 0:001. System-wide
energy measurements were taken every 12 time units, and
included the kinetic temperature Tk ¼ 2

9 hEki=N, where N

is the number of lipids (each modeled with three beads),
total potential energy hEpi, and the separate contributions
to hEpi due to the FENE bonds (17), bond-bending
energy (18), and nonbonded (NB) energy [sum of Eqs.
(16) and (19)]. The box size for the simulation was set to
ð17:6sÞ3 (corresponding to nearly tensionless conditions),
and was subjected to periodic boundary conditions. For
each dt, two sets of simulations were performed: one with
the Langevin thermostat currently used by ESPResSo,
and the other with the G-JF integrator, which was imple-
mented into the ESPResSo code. The results for hEpi and
its three constituent components are depicted in Figure 6,
as a function of the simulation time step, dt. The error
bars shown here are evaluated by the standard deviation
of the results of three-thirds of the total simulation time.
Consistent with previous studies comparing the per-
formance of various Langevin thermostats,[12] the results
here also demonstrate that, unlike other methods, and
over the entire stability range, the G-JF integrator does
not create increasing artificial variations in the sampling
statistics. We also reveal that with the thermostat current-
ly implemented in ESPResSo, the error in the potential
energy is caused mainly by the NB interactions, while
a smaller error arises from the FENE bonds. The bond-
bending interactions seem to be accurately evaluated for
all time steps. These observations can be understood by
considering the curvature of the interaction energies,
which is largest for the repulsive pair potential (16), and
smallest for the bond-bending interaction (18).

Figure 7 shows the computed results for the measure of
kinetic temperature Tk, as a function of dt. The trends ob-
served here are opposite to the ones shown in Figure 6.
The G-JF method leads to a decrease in Tk with dt, while
the ESPResSo thermostat gives kBTk=E0 ¼ 1 for all simu-
lated time steps. This feature has also been previously ob-
served and discussed.[4,11,12,19] As mentioned in the intro-

Figure 5. An equilibrium snapshot consisting of 500 lipids. Head,
first tail, and second tail beads are, respectively, depicted in blue,
red, and grey.
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duction, it stems from the fact that the discrete-time mo-
mentum mvn is not exactly conjugated to the coordinate
rn. Consequently, the kinetic temperature is not a good
measure for high-quality statistical sampling – see
Ref. [4]. In general, thermostats exhibiting the correct Tk

in discrete time must produce errors in computed config-
urational thermodynamic quantities.

4. Conclusion

In conclusion, the G-JF Langevin thermostat has been
tested on both simple linear and nonlinear oscillators, and
it has been demonstrated that the expected exact statistics
for linear systems are obtained. For nonlinear systems, we
find some deviations for large time steps. These originate
from the inherent time discretization of the deterministic
force – a feature common to all discrete-time numerical
methods. The correct discrete-time implementation of the
fluctuation relationship through the G-JF method is vali-
dated by the limit of large a, where the dynamics are do-
minated by noise and friction, and where G-JF gives
near-perfect agreement with the continuous-time expecta-
tion. We have further implemented G-JF into the ES-
PResSo molecular simulation package, and it has been
applied to simulations of a CG implicit-solvent bilayer
membrane. The simulation results presented here demon-
strate, once again, that this newly developed integrator
exhibits no shift in the values of measured configurational
thermodynamic quantities with increasing simulation time
steps. This allows one to run a simulation with considera-
bly larger time steps, and provides the user with peace of
mind about the accuracy of the configurational results.
The G-JF integrator is currently available within the
LAMMPS simulation package, and we advise users of
other popular suites, where older, considerably less accu-
rate thermostats are implemented, to run simulations
with caution and small time steps, dt.

Figure 6. The mean potential energy (A) and the separate contributions of the FENE bonds (B), bond-bending energy (C), and nonbonded
interactions (D), as a function of the time step of the simulation. Red and blue symbols represent, respectively, the results obtained with
the Langevin thermostat currently installed in ESPResSo, and those obtained when the thermostat is replaced by G-JF. Energies are normal-
ized per lipid.

Figure 7. The measured kinetic temperature as a function of dt.
Red and blue symbols represent, respectively, the results obtained
with the Langevin thermostat currently installed in ESPResSo, and
those obtained when the thermostat is replaced by G-JF. Energies
are normalized per lipid.
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