# Nonlinear waves (zonons) in zonostrophic turbulence

# Semion Sukoriansky and Nadejda Dikovskaya

Ben-Gurion University of the Negev, Israel

# **Boris Galperin**

University of South Florida, USA

Maves and instabilities in space and astrophysical plasmas

Eilat, June 19-24, 2011

### **Overview:**

- **❖**A two-dimensional flow on the surface of a rotating sphere presents a simple model of planetary turbulence (or **drift waves turbulence in plasma theory**)
- ❖With finite Rossby deformation radius, the flow is known as geostrophic turbulence (Charney).
- ❖ Even in its simplified, barotropic version (infinite Rossby radius), the commingling of strong nonlinearity, strong anisotropy and Rossby waves gives rise to complicated dynamics
- ❖ In flows with small-scale forcing, the inherent anisotropic inverse energy cascade may lead to the regime of zonostrophic turbulence
- It is distinguished by an anisotropic spectrum and stable systems of alternating zonal jets
- ❖Another important attribute of zonostrophic turbulence is a new class of nonlinear waves – zonons
- ❖Zonons may form coherent structures observable in physical space (solitons).

#### 2D turbulence on the surface of a rotating sphere (BVE)

The flow is forced on small scales and linearly damped on large scales

$$\frac{\partial \zeta}{\partial t} + J(\psi, \zeta + f) = \nu \nabla^{2p} \zeta - \lambda \zeta + \xi,$$

 $\zeta = \Delta \psi$  - vorticity;  $\psi$  - stream function;  $f = 2\Omega \sin\theta$  - Coriolis parameter;

 $\Omega$  - angular velocity of the sphere's rotation;  $\theta$  - latitude;  $\phi$  - longitude;

 $\nu$  - hyperviscosity coefficient;  $\lambda$  - linear friction coefficient which sets the large-scale friction wave number  $n_{fr}$ .

# In plasma theory, this model describes drift waves turbulence in nonuniform, finite $\beta$ plasma with infinite gyroradius

The small-scale forcing  $\xi$  acts on the scales  $n_{\xi}^{-1}$  and pumps energy into the system at a constant rate. This energy feeds the inverse cascade at a rate  $\epsilon$ . **Beta-plane** approximates a curved spherical surface by a tangential plane,

 $\beta$  – gradient of Coriolis parameter ( $f = f_0 + \beta y$ , y – northward, x – eastward)

$$\frac{\partial \zeta}{\partial t} + \frac{\partial (\nabla^{-2}\zeta, \zeta)}{\partial (x, y)} + \beta \frac{\partial (\nabla^{-2}\zeta)}{\partial x} = \nu \nabla^{2p}\zeta - \lambda \zeta + \xi$$

### **Turbulence and Rossby waves: The basics**

Conservation of potential vorticity on a rotating sphere leads to generation of Rossby-Haurwitz waves (RHWs) with the dispersion relation

$$\omega_R(m,n) = -\frac{2\Omega}{R} \frac{m}{n(n+1)}$$

(spherical harmonics decomposition, m – zonal, n – total wave-number)

On a beta-plane:  $\omega_R(\mathbf{k}) = -\beta k_x/k^2$ 

**RHW** are solutions of barotropic vorticity equation (BVE) on a rotating sphere without nonlinear term.

Fully nonlinear BVE without rotation describes classical 2D turbulence with inverse energy cascade.

Variation of Coriolis parameter with latitude (beta-effect) introduces anisotropy and Rossby waves which give rise to complicated dynamics. Characteristic feature of such dynamics – generation of zonal jets.

### Forced 2D turbulence - simulations

In order to study nonlinear dynamics, we performed DNS of BVE on a rotating sphere. Spectral model is employed

$$\Psi(\mu, \phi, t) = \sum_{n=1}^{N} \sum_{m=-n}^{n} \psi_n^m(t) Y_n^m(\mu, \phi)$$

- R-truncation; R133 and R240 resolutions
- $\clubsuit$  Random energy injection with the constant rate  $\epsilon$  at about  $n_{\xi}$  = 100
- Very long-term integrations in a steady-state to compile long records for statistical analysis
- Analyze anisotropic spectrum

$$E(n) = \frac{n(n+1)}{4R^2} \sum_{m=-n}^{n} \langle |\psi_n^m|^2 \rangle = E_Z(n) + E_R(n)$$
 zonal (m=0) residual

## **Typical flow field**



### Processes of turbulence on β-plane/rotating sphere

- 1. How is energy delivered to  $k_x \rightarrow 0$  modes?
- 2. How much energy those modes retain?

For answers we look at spectral energy transfer

$$\begin{split} & \left[ \frac{\partial}{\partial t} + 2\nu_o k^2 \right] \Omega(\mathbf{k}, t) = \mathcal{T}_{\Omega}(\mathbf{k}, t) \\ & \mathcal{T}_{\Omega}(\mathbf{k}, t) = \iint_D T(\mathbf{k}, \mathbf{p}, \mathbf{q}, t) d\mathbf{p} d\mathbf{q}. \end{split}$$

Second order spectral closures yield

$$\begin{split} &T(\mathbf{k},\mathbf{p},\mathbf{q}) = \Theta_{-\mathbf{k},\mathbf{p},\mathbf{q}}(p^2 - q^2) \sin \alpha \\ &\left[ \frac{p^2 - q^2}{p^2 q^2} \Omega(\mathbf{p}) \Omega(\mathbf{q}) - \frac{k^2 - q^2}{k^2 q^2} \Omega(\mathbf{q}) \Omega(\mathbf{k}) \right. \\ &\left. + \frac{k^2 - p^2}{k^2 p^2} \Omega(\mathbf{p}) \Omega(\mathbf{k}) \right] + \text{similar terms.} \end{split}$$

where  $\Theta_{-\mathbf{k},\mathbf{p},\mathbf{q}}$  is triad relaxation time

### Further insight: from triad relaxation time

$$\begin{split} \Theta_{-\mathbf{k},\mathbf{p},\mathbf{q}} &= \frac{\mu_{\mathbf{k}} + \mu_{\mathbf{p}} + \mu_{\mathbf{q}}}{[\mu_{\mathbf{k}} + \mu_{\mathbf{p}} + \mu_{\mathbf{q}}]^2 + [\omega_{-\mathbf{k}} + \omega_{\mathbf{p}} + \omega_{\mathbf{q}}]^2}, \\ \mu_{\mathbf{k}} &\propto \tau_{tu}^{-1}, \quad \text{eddy frequency scale at wave-number } k \\ \theta_{-\mathbf{k},\mathbf{p},\mathbf{q}} &\to \pi \delta(\omega_{-\mathbf{k}} + \omega_{\mathbf{p}} + \omega_{\mathbf{q}}) \quad \text{in the limit } \frac{(\mu_{-\mathbf{k}} + \mu_{\mathbf{p}} + \mu_{\mathbf{q}})^2}{(\omega_{-\mathbf{k}} + \omega_{\mathbf{p}} + \omega_{\mathbf{q}})^2} \to 0 \end{split}$$

Thus, at large scales, resonance condition is needed for effective

energy transfer,  $\omega_{-\mathbf{k}} + \omega_{\mathbf{p}} + \omega_{\mathbf{q}} \rightarrow 0$ 

Nonlinear interactions of turbulence and waves modifies the flow dynamics

nce amics

T(k|k\_c)/|min(T(k|k\_c))|

nction
turbulence

**Figure:** Spectral energy transfer function computed from DNS of beta-plane turbulence

### **Development of kinetic energy spectra**



Figure: Total (a) and nonzonal (b) energy spectra at different times

# The transitional wave number, $n_{\beta}$ and Rhines's wave number, $n_{R}$

- ❖ The characteristic time scale of turbulence is  $\tau_t = [n^3E(n)]^{-1/2}$
- ❖ The characteristic time of RHWs is  $\tau_R = [\omega_R(n,m)]^{-1}$
- **Turbulent processes prevail on small scales where**  $\tau_t < \tau_R$
- RHWs are dominant on large scales.
- The transitional wave is at the scale with  $\tau_t \sim \tau_R$  leading to  $n_\beta = 0.5 \ (\beta^3/\epsilon)^{1/5}$ ,  $\beta = \Omega/R$
- On larger scales, we observe anisotropization of the inverse energy cascade
- ❖ In flows with large-scale drag the "final", stationary destination of the energy front is identified with the friction wave number  $n_{fr}$  which coincides with the Rhines's wavenumber  $n_R = (2V/\beta)^{1/2}$ , V is the rms velocity

# **Zonostrophic turbulence**

(from Greek ζωνη - band, belt, and στροφη - turning)

E(n)



#### **Zonostrophy index:**

$$R_{\beta} = \frac{n_{\beta}}{n_{R}} > 2$$



 $\mathbf{R}_{Z}(n) = C_{Z}(\Omega/R)^{2}n^{-5}, \quad C_{Z} \simeq 0.5$ 

Intersection of -5 and -8/3 zonal spectra

$$E_R(n) = C_K \epsilon^{2/3} n^{-5/3}, \quad C_K \simeq 4 \text{ to } 6$$

# Examples of zonostrophic turbulence - the ocean-Jupiter connection

L13303 GALPERIN ET AL.: ZONAL JETS ON GIANT PLANETS AND IN OCEAN

L13303



**Figure 1.** (a) Composite view of the banded structure of the disk of Jupiter taken by NASA's Cassini spacecraft on December 7, 2000 (image credit: NASA/JPL/University of Arizona); (b) zonal jets at 1000 m depth in the North Pacific Ocean averaged over the last five years of a 58-year long computer simulation. The initial flow field was reconstructed from the Levitus climatology; the flow evolution was driven by the ECMWF climatological forcing. Shaded and white areas are westward and eastward currents, respectively; the contour interval is 2 cm s<sup>-1</sup>.

# The zonal and residual spectra in the ocean, on giant planets and in simulations are indicative of zonostrophic turbulence



# **Rossby-Haurwitz waves and turbulence**

Are RHWs present in the fully nonlinear equation and, if yes, how are they affected by the nonlinearity?

Fourier-transform of the velocity  $U(\omega,m,n)=\frac{n(n+1)}{4R^2}\langle|\psi_n^m(\omega)|^2\rangle$  autocorrelation function

 $\psi(\omega)$  is a time Fourier transformed spectral coefficient  $\psi(t)$ 

Spikes of  $U(\omega,m,n)$  correspond to the dispersion relation  $\Rightarrow$  the correlator  $U(\omega,m,n)$  is a convenient diagnostic tool for finding waves in data and in simulations

## **Waves in friction-dominated regime**

 $n_R = 9.2$   $n_\beta = 12.3$  $R_\beta = 1.34$ 

The filled triangles correspond to the RHWs dispersion relation.

| n                | 5                     | 10   | 20            | 30      | 40               |
|------------------|-----------------------|------|---------------|---------|------------------|
| n/n <sub>β</sub> | 0.41                  | 0.82 | 1.64          | 2.45    | 3.28             |
| 0.2              | 1 0                   | 5    | 5 0           |         | .2               |
| 0.4              | 0.2                   | 5    | 5 0           |         | .2               |
| 0.6              | 0.1                   | 2 0  | 5 0           | ٥       | 0.2              |
| 8.0              | 0.02                  |      | 5 0           | ٥       | .2               |
| 1.0              | 0.01<br>U<br>-0.4 ω 0 | 0.5  | 5 0 -0.1 0 -0 | 0 0.2 - | .2<br>-0.2 0 0.2 |

- ❖The large-scale modes are populated by linear RHWs
- $\clubsuit$ A strong RHW signature is present even on scales with  $n/n_{\beta} > 2$
- ❖On the smallest scales, the RHW peaks are broadened by turbulence
- ❖ Even though the flow dynamics is dominated by strong nonlinearity the flow features linear RHWs

# Waves in zonostrophic turbulence





- $U(\omega,n,m)$  is the velocity correlator
- ❖Filled triangles → RHWs dispersion relation
- ❖Filled circles → zonons.

# Frequencies of RHWs and zonons as functions of m for different n



- ightharpoonup RHWs are evident in all modes including  $n > n_{\beta}$
- **❖**Along with RHWs, one discerns zonons excited by the most energetic RHWs with n = 4 and 5.
- $\bullet \omega_z(n,m) \propto m$  and independent of n for all zonons.
- ❖Zonons form wave packets
- ❖ Their zonal speeds are  $c_z = \omega_z(n,m)/m$
- ❖c<sub>z</sub> are equal to the zonal phase speeds of the corresponding master RHWs

- ❖All zonons are "slave" waves excited by RHWs
- ❖Their dispersion relations differ from RHWs → zonons should be recognized as an entity completely different from RHWs
- ♦ How do the zonons appear in the physical space? The RHWs with n = 4 (denoted  $n_E$ ) are the most energetic → their respective packets of zonons are dominant in physical space and are easiest to observe
- ❖ The zonal speed of these packets is  $\omega_R(n_E, m)/m = c_{RE}$
- ❖In physical space, these wave packets are expected to form westward propagating eddies detectable in the Hovmoller diagrams
- ❖The slope of the demeaned diagrams yields a velocity of the zonally propagating eddies relative to local zonal flows
- ❖ If eddies are indeed comprised of zonons, their zonal phase speed should be equal to  $c_7 = c_{RE}$

### **Zonons are Rossby wave solitons**



- ❖The Hovmoller diagrams reveal westward propagating eddies at three different latitudes at which the zonal jets have their maximum, minimum, and zero velocity
- ❖ The slope of the diagrams yields a velocity of the zonally propagating eddies relative to local zonal flows. The figure demonstrates that  $c_7 = c_{RF}$  at all latitudes

#### Homvoler diagram along a latitude

This diagram shows that zonons propagate along a latitude with maximal shear → zonal flow forms a waveguide, in which the solitary waves propagate



### **Energy exchange between jets and waves/turbulence**



### **Jets-Zonons Symbiosis**



The zonal flow forms a waveguide, in which the solitary waves propagate. Zonons and mean flow (jets) continuously exchange large amount of energy.

## **Conclusions**

- $\clubsuit$ A new class of nonlinear waves in 2D turbulence with a  $\beta$ -effect, zonons, is presented
- ❖Zonons are forced oscillations excited by RHWs in other modes via non-linear interactions
- ❖Zonons are an integral part of the zonostrophic regime. They emerge in the process of energy accumulation in the large-scale modes, formation of the steep n<sup>-5</sup> spectrum and generation of zonal jets
- ❖Zonons have characteristic features of solitary waves. The zonal flow forms a waveguide, in which the solitary waves propagate.
- ❖Future research should clarify zonons' roles in planetary circulations and their relation to large oceanic eddies detected in satellite altimetry (provided that the oceanic circulation is marginally zonostrophic)

#### References.

- S. Sukoriansky, N. Dikovskaya, and B. Galperin "Nonlinear waves in zonostrophic turbulence", *Physical Review Letters*, **101**, 178501 (2008), DOI: 10.1103/PhysRevLett.101.178501
- S. Sukoriansky, N. Dikovskaya, and B. Galperin "On the "arrest" of inverse energy cascade and the Rhines scale", *Journal of the Atmospheric Sciences*, Vol. 64, No. 9, September 2007, pp. 3312-3327.
- B. Galperin, S. Sukoriansky, and N. Dikovskaya, "Geophysical flows with anisotropic turbulence and dispersive waves: flows with a beffect", *Ocean Dynamics*, vol. **60**, Issue 2, 2010, pp. 427–441, doi: 10.1007/s10236-010-0278-2.

### **Acknowledgments**

This research has been supported by the US Army Research Office, Office of Naval Research and Israel Science Foundation