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Overview:

A two-dimensional flow on the surface of a rotating sphere presents a simple model 
of planetary turbulence (or drift waves turbulence in plasma theory)

With finite Rossby deformation radius, the flow is known as geostrophic turbulence 
(Charney).

Even in its simplified, barotropic version (infinite Rossby radius), the commingling of 
strong nonlinearity, strong anisotropy and Rossby waves gives rise to complicated 
dynamicsdynamics

In flows with small-scale forcing, the inherent anisotropic inverse energy cascade 
may lead to the regime of zonostrophic turbulencemay lead to the regime of zonostrophic turbulence

It is distinguished by an anisotropic spectrum and stable systems of alternating zonal 
jetsj

Another important attribute of zonostrophic turbulence is a new class of nonlinear 
waves – zonons

Zonons may form coherent structures observable in physical space (solitons).



2D turbulence on the surface of a rotating sphere (BVE)

The flow is forced on small scales and linearly damped on large scales

 Δ - vorticity;   - stream function;  f = 2sin - Coriolis parameter;  

 - angular velocity of the sphere’s rotation;  - latitude;  - longitude; angular velocity of the sphere s rotation;  latitude;   longitude;     

 - hyperviscosity coefficient;  - linear friction coefficient which sets the 

large-scale friction wave number nfr. g fr

In plasma theory, this model describes drift waves turbulence in 
nonuniform, finite β plasma with infinite gyroradius
The small-scale forcing  acts on the scales n

‐1 and pumps energy into the 
system at a constant rate. This energy feeds the inverse cascade at a rate .
Beta plane app o imates a c ed sphe ical s face b a tangential planeBeta-plane approximates a curved spherical surface by a tangential plane, 

β – gradient of Coriolis parameter ( f = f 0+βy, y – northward, x – eastward )
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Turbulence and Rossby waves: The basics

Conservation of potential vorticity on a rotating sphere leads to 
generation of Rossby-Haurwitz waves (RHWs) with the dispersion relation  
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(spherical harmonics decomposition, m – zonal, n – total wave-number)

On a beta-plane: 2)( kkxR  k
RHW are solutions of barotropic vorticity equation (BVE) on a rotating 

sphere without nonlinear term.

Fully nonlinear BVE without rotation  describes classical 2D turbulence with 

inverse energy cascade.

Variation of Coriolis parameter with latitude (beta-effect) introduces 

anisotropy and Rossby waves which give rise to complicated dynamics.py y g p y

Characteristic feature of such dynamics – generation of zonal jets.



Forced 2D turbulence - simulations
In order to study nonlinear dynamics, we performed DNS of BVE on 
a rotating sphere. Spectral model is employeda rotating sphere. Spectral model is employed

R-truncation; R133 and R240 resolutions

Random energy injection with the constant rate  at about n = 100Random energy injection with the constant rate  at about n = 100

Very long-term integrations in a steady-state to compile long records for 
statistical analysisstatistical analysis

Analyze anisotropic spectrum

zonal (m=0) residualzonal (m 0) residual
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Typical flow field



Processes of turbulence on β‐plane/rotating sphere

1. How is energy delivered to kx → 0 modes?

2. How much energy those modes retain?gy

For answers we look at spectral energy transfer

Second order spectral closures yield

where is triad relaxation time



Further insight: from triad relaxation time

eddy frequency scale  at wave-number k
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Thus, at large scales, resonance condition is needed for effective

energy transfer, 0 qpk  qpk

Nonlinear interactions of turbulence 
and waves modifies the flow dynamicsand waves modifies the flow dynamics

Fi e S t l t f f tiFigure: Spectral energy transfer function 
computed from DNS of beta-plane turbulence



Development of kinetic energy spectra
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Figure: Total (a) and nonzonal (b) energy spectra at different times 



The transitional wave number, n
and Rhines’s wave number, nRand Rhines s wave number, nR

The characteristic time scale of turbulence is t = [n3E(n)]-1/2 

The characteristic time of RHWs is R = [R(n,m)]-1 

Turbulent processes prevail on small scales where t < RTurbulent processes prevail on small scales where t  R

RHWs are dominant on large scales. 

The transitional wave is at the scale withThe transitional wave is at the scale with 

leading to n = 0.5 (3/)1/5 ,  = /R

On larger scales we observe anisotropization of the inverse energyOn larger scales, we observe anisotropization of the inverse energy 

cascade

In flows with large scale drag the “final” stationary destination of theIn flows with large-scale drag the “final”, stationary destination of the 

energy front is identified with the friction wave number nfr which 

i id ith th Rhi ’ b (2V/)1/2 V i thcoincides with the Rhines’s wavenumber nR = (2V/)1/2, V is the rms

velocity 10



Zonostrophic turbulence
(f G k  b d b lt d  t i )(from Greek  - band, belt, and  - turning)

Zonostrophy index:
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Intersection of -5 and -8/3 zonal spectra
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Examples of zonostrophic turbulence ‐
h J i ithe ocean‐Jupiter connection



The zonal and residual spectra in the ocean, on giant planets and in 
simulations are indicative of zonostrophic turbulencesimulations are indicative of zonostrophic turbulence



Rossby-Haurwitz waves and turbulence y
Are RHWs present in the fully nonlinear equation and, if yes, how are 
they affected by the nonlinearity?

F i t f f th l it

they affected by the nonlinearity?

Fourier-transform of the velocity 
autocorrelation function

() is a time Fourier transformed spectral coefficient (t) 

Spikes of U(,m,n) correspond to the dispersion relation 
 the correlator U( m n) is a convenient diagnostic tool the correlator U(m,n) is a convenient diagnostic tool 
for finding waves in data and in simulations  
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Waves in friction-dominated regime

n = 9 2nR = 9.2
n = 12.3
R = 1.34

The filled 
trianglestriangles 
correspond 
to the RHWs 
di idispersion 
relation.

The large-scale modes are populated by linear RHWs 
A strong RHW signature is present even on scales with n/n > 2
On the smallest scales the RHW peaks are broadened by turbulence
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On the smallest scales, the RHW peaks are broadened by turbulence
Even though the flow dynamics is dominated by strong nonlinearity the 
flow features linear RHWs 



Waves in zonostrophic turbulence

n 5 5nR = 5.5 
n = 16.2
R= 2.95R  2.95

U(,n,m) is the velocity correlator
Filled triangles  RHWs dispersion relation
Filled circles  zononsFilled circles  zonons.
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Frequencies of RHWs and zonons as functions of m for 
different ndifferent n

RHWs are evident in all modes including n > n

Along with RHWs, one discerns zonons excited by the most energetic RHWs 
with n = 4 and 5with n = 4 and 5. 
z(n,m)   m and independent of n for all zonons.
Zonons form wave packetsp
Their zonal speeds are cz = z(n,m)/m
cz are equal to the zonal phase speeds of the corresponding master RHWs

17



All zonons are ‘‘slave’’ waves excited by RHWs

Their dispersion relations differ from RHWs  zonons should be 
recognized as an entity completely different  from RHWs

How do the zonons appear in the physical space? The RHWs with n = 4 
(denoted nE) are the most energetic  their respective packets of zonons
are dominant in physical space and are easiest to observeare dominant in physical space and are easiest to observe 

The zonal speed of these packets is R(nE,m)/m =  cRE

In physical space, these wave packets are expected to form westward 
propagating eddies detectable in the Hovmoller diagrams 

The slope of the demeaned diagrams yields a velocity of the zonally
propagating eddies relative to local zonal flows p p g g

If eddies are indeed comprised of zonons, their zonal phase speed
should be equal to cz = cREshould be equal to cz  cRE
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Zonons are Rossby wave solitons

The Hovmoller diagrams reveal westward propagating eddies at three different 
l i d hi h h l j h h i i i i d l ilatitudes at which the zonal jets have their maximum, minimum, and zero velocity

The slope of the diagrams yields a velocity of the zonally propagating eddies 
relative to local zonal flows. The figure  demonstrates that cz = cRE at all latitudesg z RE

This diagram shows that zonons propagate

Homvoler diagram along a latitude

This diagram shows that zonons propagate
along a latitude with maximal shear
→ zonal flow forms a waveguide, in which 
the solitary waves propagate

19
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Energy exchange between jets and waves/turbulence

T(m=0|n)

Energy flux
from all
nonzonalnonzonal
modes < n
to mean
flowflow

Nonlinear interactions 
between jets and zonons 

ill ti
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cause energy oscillations



Jets-Zonons Symbiosis 

The zonal flow forms a waveguide in which the solitary waves propagateThe zonal flow forms a waveguide, in which the solitary waves propagate. 
Zonons and mean flow (jets) continuously exchange large amount of energy.



Conclusions

A new class of nonlinear waves in 2D turbulence with a -effect, zonons, is 
presentedpresented

Zonons are forced oscillations excited by RHWs in other modes via non-linear 
interactionsinteractions 

Zonons are an integral part of the zonostrophic regime. They emerge in the 
process of energy accumulation in the large-scale modes, formation of the steep n-5process of energy accumulation in the large scale modes, formation of the steep n
spectrum and generation of zonal jets 

Zonons have characteristic features of solitary waves. The zonal flow forms a o o a a a a u o o a y a o a o o a
waveguide, in which the solitary waves propagate.

Future research should clarify zonons’ roles in planetary circulations and their y p y
relation to large oceanic eddies detected in satellite altimetry  (provided that the 
oceanic circulation is marginally zonostrophic)
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