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Planetary magnetic fields in our solar system



  

Les champs magnétiques stellaires

● Dynamos oscillantes vs dynamos dipolaires

● L'origine physique de la bistabilité. (Donati et al 2008) 

● Quel est le rôle de la rotation différentielle ?

Schrinner M., Petitdemange L., Dormy E. (2011) A&A sous Presse. 

Donati et al 2008



  

Oscillatory Dynamos

Stellar dynamos other than the sun:               
dynamo periods from 2 to 25 years                 
(Baliunas et al. 1995)

Solar dynamo: 11-year activity cycle

Butterfly diagram  



  

Earth's field variations

Measured Intensity 

Million years

 Variations on
 Different timescales

Jerks (Magnetic impulses) on 
only a few months
 (Olsen et al 2008).



  

Observations of Differential Rotation

● Planetary interiors
– Earth's outer core

Seismologycal data: 
inner core rotation 
0.15o per year.

– Jupiter and Saturn

● Stellar interiors

Solid Body Rotation

Solar Differential Rotation



  

Kinematic dynamo

α effect (Parker) induced by an helical velocity fieldω  effect

α

Poloidal magnetic field lines are 
distorted by differential rotation into
toroidal magnetic field.



  

Dynamo types

Poloidal B Poloidal B

Toroidal B Toroidal B

ω effectα effect α effect α effect

αω dynamo α2 dynamo

Oscillatory dynamos !?
Stationary dynamos !?



  

Natural candidates for the MRI:
Accretion Disks

Planet and Stellar Formation                                  
                                                                             
                                                                             
                                                                             
                       



  

MRI triggers turbulence 
which allows accretion process

Bz

Reference state

Keplerian rotation rate



  

Dynamo process in accretion disks

● Cyclic time variations observed in local and 
global models

By (azimuthal average)

Gressel  2010



  

Dynamo process in accretion disks

● Cyclic time variations observed in local and 
global models

● Dynamo could provide large-scale poloidal field 
which allows MRI (Beckwith et al 2011)

– Correlation observed between poloidal magnetic 
flux and Maxwell stress.

– Dynamo affects the level of angular momentum 
transport.

● Convergence issue in local simulations if Pm<2
– Without a net vertical magnetic flux: for small 

Pm, dynamo action is harder to excite.



(Goudard & Dormy, EPL, 83, 59001, 2008)

From the Earth to the stars…



  

Dynamo Models

• Conducting Boussinesq fluid in a rotating 
spherical shell

• Convection driven by temperature gradient 
between inner and outer shell 

• Aspect ratio: ri/ro

• MHD-code:                                                           
Parody (Dormy et al. 1998)

•Mixte mechanical boundary conditions: Rigid/Stress-Free

Ω

ro ri



  

MHD-Equations (Boussinesq)

Solver:  (Pseudo-)Spectral code, developed by  Glatzmaier (1984),  used here in the 
Version of Christensen et al. (1999) 

PARODY, Dormy et al.  (1998)



Christensen & Aubert, 2006

Ro=V/(ΩL)= « inertial/Coriolis »

Dipole field strenght f
dip

: time-average ratio on the outer

shell boudary of the mean dipole field strength to the
field strength in harmonic degrees l=1-12.

Two distinct regimes in geodynamo models



Fixed parameter set:



  

Impact of the Aspect ratio
(Goudard & Dormy  2008)

Time and azimuthal average 
     of the zonal flow

X=Ri/Ro=0.50                                 X=0.55              

                      Stable dipolar dynamos

X=0.65

Oscillatory dynamo

Ro

Ri



  

The same Dynamo Models

• Conducting Boussinesq fluid in a rotating 
spherical shell

• Convection driven by temperature gradient 
between inner and outer shell 

• Aspect ratio: ri/ro

• MHD-code:                                                           
Parody (Dormy et al. 1998)

•We determine dynamo coefficients

•Tracer field equations without ω effect

�

ro ri



Transition: 
Dipolar stationary dynamos to oscillatory dynamos

Boundary conditions
Δ Rigid/Stress-Free
□  Stess-Freed/Stress-Free 
◊  Rigid/RigidGeodynamos simulations

using different dimensionless parameters



  

Test-field method

• Perform MHD-simulation. 

• « Measure » the mean electromotive force     generated by 
the action of the velocity field on certain test-fields.

•   Extract coefficients out of expansion of     ,

Schrinner et al. 2005, 2007

Brandenburg, Rädler, Schrinner 2008

Tilgner, Brandenburg 2008

Rädler, Brandenburg 2009

…



  

Eigenvalue Problem

α,β : Tensors of second and third rank respectively, 
depending on the velocity field. 

They are determined with the help of the test-field method.

(e.g. Schrinner et al. 2005, 2007, Schrinner et al. 2010)

Averaging in azimuth:



DirectDirect  numericalnumerical  
simulationsimulation

LeadingLeading  
eigenmodeeigenmode

Schrinner, Petitdemange, Dormy, A&A (2011)Schrinner, Petitdemange, Dormy, A&A (2011)



Dynamo mechanism

Tracer field without Tracer field without 
omega-effectomega-effect

Eigenmode  (for Eigenmode  (for αα22))



Results

● The transition is still caused by small scale 
convective motions.

● This oscillatory dynamo is of α2ω type:
–  α2  dynamo is also oscillatory

Differential rotation alone  is not responsible for 
oscillatory behavior

–  αω  Dynamo is dipolar and stationary ! 

● We use the same method in order to 
understand bistability in numerical models with 
stress-free mechanical Boundary conditions.



  

The same Dynamo Models

• Conducting Boussinesq fluid in a rotating 
spherical shell

• Convection driven by temperature gradient 
between inner and outer shell 

• Aspect ratio=0.35: ri/ro=

• MHD-code:                                                           
Parody (Dormy et al. 1998)

•Stress-Free boundary conditions

•Two distinct regime obtained for 

different initial conditions

�

ro ri



Strong field branch

Dipolar and stationary

Weak fild branch

Oscillatory dynamos

Schrinner, Petitdemange, Dormy (2011b)
In prepartion



Bistability induced by large-scales 
differential rotation

Boundary conditions

Δ Rigid/Stress-Free
□  Stess-Freed/Stress-Free 
◊  Rigid/Rigid



A model for stellar dynamos ?

● Weak/strong field branches could explain bistability

● Problems with butterfly diagram

– Towards poles rather than the equator.

– If Rm>250, no coherent butterfly diagrams

● Aditional physical processes are needed:

– Compressible effects, tachocline...

– Parameter regime allowing MRI modes.



MRI and planetary interiors

Using simple models of planetary interiors



  

Rapidly rotating systems

Geostrophic balance

Proudman-Taylor Theorem: 

     Magnetostrophic balance

MHD stationnary solution
 with only vertical B field

Angular velocity



  

Local Description



  

The Instability Mechanism



  

Dispersion Relation

Elsasser number

MS-MRI could explain time variations 
From 1 year to 10000 years.



  

Direct Linear Numerical Simulations (DNS)

L.Petitdemange, E.Dormy, S.Balbus, GRL (2008)



  

  Axisymmetric Non-linear Developments  

L. Petitdemange, GAFD,  (2010).



  

Saturation of the MS-MRI

=0.062

Angular velocity (z-averaged)

S: cylindrical radius

Profil initial

Début du processus 
de saturation

À la fin

Bs



  

3-D MS-MRI modes 
without curvature terms

Local framework with background shear             
requires the use of shearing coordinates 



  

3-D MS-MRI modes (Bz)



  

3-D MS-MRI modes (β=Bφ/Bz=3)



  

Helical background field on 
axisymmetric disturbances

● Linear DNS with background Bϕ=2βs and Bz

– Applied Lorentz force balanced by pressure gradient

– Such a helical field avoids Acheson-type instability 

● Local description: in considering curvature terms
– It highlights the physical mechanism.

– It is used for a direct comparison with DNS.

– It allows to consider Planetary Interiors regime.

– Any radial dependency for Bϕ can be used.



  

Non-linear axisymmetric DNS
with an applied velocity Uo

and helical background B, β=10

The wave paquet drifts at a fixed rate even if saturation occurs.



  

3-D MS-MRI modes
cylindrical shearing coordinates

(with curvature terms)

F=VAФ/s

From DNS:

m=3:

Isosurface of
Kinetic (blue)
Magnetic (red)
energies

Numerical Results



  

The MS-MRI 
and the

 magnetic gradient instability
(Acheson & Hide 1973, Fearn 1994)

Instability  criteria:



  

Non-linear DNS

Angular velocity

Azimuthal field



  

Action of the MS-MRI in the 
Spherical Couette Flow 

Angular velocity

Induced toroidal field



  

Wave generation 

Time in 1/Ω

Butterfly diagram
  bs=br cos(θ)

Numerical results for 3D DNS.
Axisymmetric simulations show non-oscillatory field.

Bφ in color,
Angular velocity contours (black)



  

Summary (MS-MRI)

● MS-MRI: possible explanation of magnetic variations

● MS-MRI could regulate angular momentum.

● Wave genration, secular variation

● Detection of MS-MRI modes in global numerical dynamos



  

Conclusion

● The observed transition from dipolar to oscillatory 
dynamos in numerical models is still caused by 
Rol>0.1.

– α2 dynamos could be oscillatory.
● Numerical models with Stress-Free boundary 

conditions could explain bistability.

● Additional physical effects must be taken into account 
in order to explain sun-like butterfly diagram.
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