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OUTLINE

e Space plasmas: Main features and debated questions
« How to model collisionless plasmas ?

e FLR-Landau fluid simulations



Space plasmas: Main features and debated questions

Space plasmas are magnetized and turbulent

B parameter is usually close to or larger than unity
Sonic Mach number is of order unity

Fluctuations cover a huge range of scales,
displaying power-law spectra that extend down to the
lon gyroscales where kinetic effects cannot be ignored.

Presence of coherent structures

Among the debated questions:

» Spectral energy distribution and its anisotropy
 Dissipation mechanisms

» Heating of the plasma: temperature anisotropy
 Particle acceleration

The concepts of waves make sense even in the strong turbulence regime.
Dispersion is non negligible at the ion scales: coherent structures.



Main features of solar wind plasma
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FIG. 2 (color online).

The parallel (black) and perpendicular

(red) magnetic spectra of FGM data (f < 33 Hz) and STAFF-SC
data (respectively, light line: green online and dark line: blue
online); 1.5 < f << 225 Hz). The STAFF-SC noise level as mea-
sured in the laboratory and in-flight are plotted as dashed and
dotted lines, respectively. The straight black lines are power law
fits to the spectra. The arrows indicate characteristic frequencies

defined in the text.

k-filtering -> wave vectors are highly oblique relatively

to the ambient field (6=869

Sahraoui et al. PRL 102, 231102 (2009)
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and by Helios 2 (dashed-dotted line)

Alexandrova et al. Planet. Space Sci. 55, 2224 (2007)

Excess of magnetic energy in the
transverse components

Several power-law ranges:
Which waves? Which slopes?
Important to estimate the heating.
(Ng et al. JGR 115, A02101, 2010)

At what scales does dissipation take place?
By what mechanism?



Spectral anisotropy
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FIG. 6: Wave number spectra with estimated erro bars for the
four time intervals in the parallel (bottom) and perpendicular
(top) directions to the local mean field. The vertical dotted
line shows the proton inertial length.

Quasi-transverse cascade
No power law in the parallel direction

Non resonnant heating of the
protons, possibly via Landau damping
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FIG. 3: B. spectra measured by FGM (blue) and STAFF-SC
(green) in DSI from 06:15 to 06:25 (Hattening for f > 3 Hz is
due to hitting the noise floor of the FGM). The black dotted
line is the in-flight sensitivity floor of STAFF-SC.

Sahraoui et al. PRL 105, 131101 (2010)



Main features of terrestrial magnetosheath plasma

Important role of the temperature anisotropy: leads to micro-instabilities
AIC (near quasi-perpendicular shock) and mirror instabilities (further inside magnetosheath)

Presence of mirror modes

- Have essentially zero frequency in the plasma frame

- ldentified using k-filtering technique
(Pincon & Lefeuvre, JGR 96, 1789, 1991).

- Spatial spectrum steeper than temporal one

and of coherent structures:

- Current filaments and Alfvén vortices
- Mirror structures (magnetic holes and humps)

Drift kinetic Alfvén vortices also

observed in the cusp region.
(Sundkvist et al. Nature, 436, 825, 2005)
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Figure 8. Magnetic field fluctuations, taking T ~ —420 s

(1755:16 UT) as the origin of time. (a) Fluctuations 08,
during 10 s around . (b) Fluctuations of the magnetic field
components (88, 8By, &B.) for the 2-s period around T.
(c) The z-aligned current tube simulation (8B8., 6B, 6B.).

Signature of magnetic filaments
(Alexandrova et al. JGR 2004)
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FIG. 1. A large scale soliton observed by Cluster spacecraft

C2 (dashed) and C4 (solid) in the total magnetic field. Marked
curve shows fit of by sech®[(r — 13)/81] with by = —33 nT and
8t = 4.4 s. The soliton moves with velocity uy = 250 km/s
and has a width of 2000 km. The position of Cluster satellites
was (—4, 17, 5) Rg GSE.

Slow magnetosonic solitons
(Stasiewicz et al. PRL 2003)

Cluster 3, 01-Mar-2006 (peakness = 0.83, MP distance = 13615.0 km)
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Mirror structures in the terrestrial
magnetosheath

(Soucek et al. JGR 2008)
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fast magnetosonic shocklets
(Stasiewicz et al. GRL 2003)

Pulse-like enhancements of the plasma density

and magnetic field measured on four Cluster spacecraft:
C1-C4, which are color coded in sequence: black, red,
green, blue. The measurements represent signatures of fast
magnetosonic shocklets moving with supersonic speed in a
high-3 plasma.



Statistical study of temperature anisotropies in the solar wind

Turbulence (and/or solar wind expansion) can generate temparature anisotropy
This anisotropy is constrained by micro-instabilities (mirror and oblique firehose) .

; Much better fits
Slow solar wind
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Figure 1. A color scale plot of the relative frequency of 0.001 0.010 0.100 1.000 10.000 100.000
Byp> T1p/T)p) in the WIND/SWE data (1995-2001) for the Bu

solar wind with v, < 600 knv/s [cf. Kasper et al., 2002,
Figure 2]. The (logarithmic) color scale is show on the right.

The over plotted curves show the contours of the maximum

growth rate (in units of w,,) in the corresponding bi- Bale et al. PRL 103, 21101 (2009)
Maxwellian plasma (left) for the proton cyclotron instability

(solid curves) and the parallel fire hose (dashed curves) and

(right) for the mimror instability (dotted curves) and the

oblique firc hose (dash-dotted curves).

Hellinger et al. GRL 33, L09101 (2006)



How to model collisionless plasmas ?

The solar wind is only very weakly collisional: this suggests kinetic simulations

Vlasov-Maxwell simulations: hardly possible on the present day computers
in three space dimensions (6 variables + time, and a broad range of time scales).

Gyrokinetic simulations (G. Howes, PoP 15, 055904 , 2008) are now feasible and show the
presence of cascades both in the physical and velocity spaces in the range k,p=1.

Gyrokinetic theory (Howes, ApJ 651, 2006, Schekochihin et al., ApJ Supp., 182, 310, 2009),
concentrates on the quasi-transverse dynamics and averages out the fast waves.

Applicability to space plasmas of the gyrokinetic theory is still to be validated.
Gyrokinetic simulations remain challenging numerically and difficult to interpret.
One needs a fluid model that (even if not rigorously justified)

» can be integrated relatively fast,

« allows for strong temperature anisotropies
» does not a priori order out the fast magnetosonic waves.



Fluid approaches: The MHD and its extensions

Simplest approach: the incompressible MHD
Provides a reasonable description at scales large compared to plasma microscales

* Only one type of waves : Alfvén waves.
* Interaction between counter-propagative Alfvén waves

 Clear concept of cascades (for the Elsasser variables)
both in the context of weak and strong turbulence.

» Balance or unbalance regime depending on equal or unequal energy fluxes
associated with Alfvén waves modes propagating along the ambient magnetic field.

» Possibility to develop a phenomenology close to K41 (in spite of less universality)

» Relatively simple equations, which permits high-resolution simulations



Observational evidence of small density fluctuations
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Fig. 2. Distribution of 8p/pg for 7300 2-hour intervals of Voy-
ager 2 data. (g) Data taken from radial distances of less than 5 AU,
(b) Data taken between 5 and 10 AU. Here, 8pis computed from the
rms of p over each 2-hour interval. Note that Sp/py is scaled
logarithmically.

Matthaeus et al. JGR 1991
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Compressibility cannot be totally neglected



For incompressible homogeneous isotropic MHD turbulence, there exists of an
analogous to the 4/5 law of Karman-Howarth for fluid turbulence, giving
statistics of 34 order moments for velocity increments

Elsasser variables: 7zt — v+ b
(Zr (1)~ 2 (0)i2 (X 1)~ 2 () = et
(x4 1)~ 2(0)z (x+1) 2 ()= e r

/

Longitudinal components

(Politano & Pouquet, GRL 25, 273, 1998).



Compressibility is relevant even at large scales
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FIG. 2 (color onling). Top panel: An example of the third-
order compressible pseudoenergy Hux W (7) during days 1-10
of 1996. Bottom panel: W (7) for days 66-75 of the same year.
In both panels, the corresponding incompressible fluxes ¥Y=(7)
(no scaling present) and a linear fit are displayed.

Carbone et al. PRL 103, 061102 (2009)



Compressible MHD retains waves that are damped by Landau resonance
In Vlasov-Maxwell description of collisionless plasmas (Howes, NPG 16, 219, 2009)

MHD overestimates compressibility and energy transfer along the ambient field.

Servidio et al. (PSS 55, 2239, 2007):

at ionic scales, spontaneous generation

of quasi-perpendicular MS waves :
magnetosonic turbulence

(anti-correlation density magnetic intensity).
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Fig. 3. The profile of fluctuating density 6» (red line) and magnetic

intensity 58 (black ling) obtained performing a cut along y-direction for
x=1025and i = [Bta.

Contrasts with solar wind observations:
turbulence of quasi-transverse (kinetic)
Alfvén waves

(Sahraoui et al. PRL 105, 131101, 2010).
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FIG. 5: Observed dispersion relations (dots), with estimated
error bars, compared to linear solutions of the Maxwell-Vlasov
equations for three observed angles ©xp (the dashed lines are
the damping rates). The black curves (L, .) are the proton
and electron Landau resonances w = kyVin, _, the curves C
are the proton cyclotron resonance w = wei — ky Vi, (the elec-
tron cyclotron resonance is also plotted but it lies expectedly
out of the plotted frequency range).



Table 1. Mecan Values of Plasma and Magnetic Ficld Data in the I : 1 ]
Analyzed Time Intervals: Characteristic Tetrahedron Size of Cluster (Mg _ ' g ]
L, Flow Speed V, Ton Number Density n, Magnitude of Magnetic i '
Field B, Ton Temperature T, Plasma Parameter Beta (for Tons)

MS
L(km) V(km/s) n(ecm ) B@mT) T(MK) Beta(l) :

Interval 1 10,000  436.11 6.76 10.74 0.36 0.73 : . E
Interval 2 1000 446.26 335 7.59 028 0.57 5 3 e 1
Interval 3 100 443.05 6.69 10.13 0.32 0.72

. . . . C 107" ¢ v E
Identification of a clear dispersion relation is diffi- : .. ' 5

cult in spite of small fluctuation amplitudes and quasi-

perpendicular propagation to the local mean magnetic field. 1 1 k.

- 107 1072 107" 10° 10" 107
. Frequency-wave number diagram exhibits KV, /)

largely scattered populations with only weak agreement N R
with magnetosonic and whistler waves. Clear identification
of a specific normal mode is difficult, suggesting that
nonlinear energy cascade is operating even on small-scale
fluctuations.

Figure 3. (top) Angles between the wave vectors and the
mean magnetic field as a function of the wave number. (bot-
tom) Frequency-wave number diagram of the identified
waves in the plasma rest frame. Dashed, straight, and dotted
lines represent dispersion relations for magnetosonic (MS),
whistler (WHL). and kinetic Alfvén waves (KAW), respec-
tively. Data from three intervals are integrated in the plots:
left population with the asterisk symbols (in blue), middle
with the plus symbols (in red), and right with the diamond
symbols (in green) for Intervals 1, 2, and 3, respectively.

Narita et al., GRL 38, L05101(2011)



Solar wind displays temperature anisotropy.

When the plasma is driven, temperature anisotropy can develop:
Beyond threshold, microinstabilities (i.e. the mirror instability) take place.

Mirror instability is driven by Landau damping, that is thus to be modelized.

For the problem to be linearly well-posed, instabilities should be arrested at
small scales.

Finite Larmor corrections (non gyrotropic contributions) are to be retained
to arrest the mirror instability at small scales.



It is necessary to retain

Landau damping

* t0o deplete sonic waves (and ensure a weaker compressibility)
* to correctly capture the mirror instability threshold

FLR corrections to arrest the mirror instability at small scales

These low-frequency kinetic effects should be included in a fluid approach
(in a way that does not induce spurious small-scale instabilities).

Gyrofluids: consists in closing the hierarchy of moment equations derived
from the gyrokinetic equation.

Landau fluids: extension of anisotropic MHD including low-frequency
kinetic effects: consistent with the linear kinetic theory,
even at small transverse scales.



Fluid description retaining low-frequency kinetic effects: Landau fluid models

* Introduced by Hammett & Perkins (PRL 64, 3019, 1990) as a closure retaining linear
Landau damping.

» Applied to large-scale MHD by Snyder, Hammett & Dorland (PoP 4, 3974, 1997)
to close the hierarchy of moment equations derived from the drift kinetic equation.

» Extended to dispersive MHD with Hall effect and large scale FLR corrections
(Passot & Sulem, PoP 10, 3906, 2003;Goswami, Passot & Sulem, PoP 12, 102109, 2005)

 Inclusion of quasi-transverse scales extending beyond the ion gyroscale, under the
gyrokinetic scaling (Passot & Sulem, PoP 14, 082502, 2007) : FLR-Landau fluids.

FLR-Landau fluids are based on a full description of the hydrodynamic
nonlinearities, supplemented by a linear (or semi-linear) description of
low-frequency kinetic effects (Landau damping and FLR corrections).

In contrast with gyrokinetics, Landau fluids retain fast waves that are accurately
described up to the ion gyroscale.

Landau fluids (and also gyrofluids) neglect wave particle trapping, i.e. the effect
of particle bounce motion on the distribution function near resonance.



Landau fluids

For the sake of simplicity, neglect electron inertia.

lon dynamics: derived by computing velocity moments from Viasov Maxwell equations.

Ohpp+ V- (ppip) =0 £, =mn
: .- l o € 1 quasi-neutrality (n. = n,)
gy + iy -V, + —V - p, — —(E + —u, x B) =0 e P
Py My c
| 1 7 L _ c
(}tB = —f‘v b E -

FLR corrections

Pp = pip + ppp7T + 11 withn =1 — boband 7 =0 b, where b=B/ B.

Electron pressure tensor is taken gyrotropic
(considered scales >> electron Larmor radius)
and thus characterized by the parallel and transverse pressures Pjle a1d pie.



For each particle species, heat flux tensor

Perpendicular and parallel pressures / /

op, +V-(up)+p, V -u- pr Vu-b + [trV - q -

] dT Work of the nongyrotropic
+ > tr(IL- Vu)® = (IL - Vu)*: 7+ H:E =0 ﬁ pressure force

Equations for the parallel and perpendicular (gyrotropic) heat fluxes

— — — P o~ ..N . .. N

\ QgL + V- (ugr) + 1V - u+py(b- VJ(%) + %(@HM + 81,111,)
+V - (Fjb) + (tpn - m)% — 711+ F’”L) (V-b) +8.RYY =0

2
)
I/ =T = %J:l

Involve the 4h-rank gyrotropic cumulants: ?:||||* ?:HL* Tl

R|“|\ ¢ and RYC stand for the nongyrotropic contributions 2
of the 4"-rank cumulants. Fl =r, —2—=



Two main problems:

(1) Closure relations are needed to express the 4th-rank cumulants 7, 7L, 7L L
(closure at lower or higher order also possible)

(2) (non gyrotropic) FLR corrections to the various moments are to be evaluated.

The starting point is the linear kinetic theory in the low-frequency limit:
Q: ion gyrofrequency %,f’g"g ~ € << 1

For a unified description of fluid and kinetic scales, FLR Landau-fluids retain
contributions of:

* quasi-transverse fluctuations (& /k; ~¢) with kprp ~ 1
* hydrodynamic scales with  /rp ~ k7, ~ e

r . . .
tk,r, L: lon Larmor radius




Brief description of the closure procedure

The closure is usually performed at the level of the 4-rank moments
(model retaining full nonlinear dynamics of fourth order moments and closure at the level of fifth rank
cumulants is in progress: aimed to a better description of departure from bi-Maxwellian regime).

The 4h-rank cumulants are obtained from the linearized kinetic theory,
assuming

small frequencies with respect to the ion gyrofrequency.

This requires

either long wavelengths with respect to the ion gyroradius

or

guasi-perpendicular directions.

The non-gyrotropic parts of the pressure, heat flux and 4-rank tensors are also
expressed using the kinetic theory.

IN PRACTICE:
The above kinetic expressions typically depend on electromagnetic field components
and involve the plasma dispersion function (which is nonlocal both in space and time).

These various expressions can be expressed in terms of other fluid moments
in such a way as to minimize the occurrence of the plasma dispersion function.

The latter is otherwise replaced by suitable Padé approximants, thus leading to
local-in-time expressions. At some places, a Hilbert transform with respect
to the longitudinal space coordinate appears, that modelizes Landau damping,.



CLOSURE RELATIONS are based on linear kinetic theory (near bi-Maxwellian
equilibrium) in the low-frequency limit.

For example, for each species, (assuming the ambient magnetic field along the z direction),

(0)2
' b. Al
TIL = fﬂ(o) [1 — R(C) + QC‘JHEQ}] [2bT°6(b) — T'g(b) — 261" (b)] B& + b[Tp(b) — I'y ()] e(o)
P 0 TJ_
[',(b) = e_bf.n_(b), b = (Ati']‘[f])/(flzm.) , 1,,(b) modified Bessel function, £, = —0, ¥

R is the plasma response function, { = T o (For electrons, b = 0, T'g = 1, I'; = 0)

| 1ven

It turns out that 7| can be expressed in terms of perpendicular gyrotropic heat
flux ¢ | and of the parallel current j.. One has

(0) o (0), (0) .
= 21,71 — R(¢) 4+ 2¢°R(¢) 4L+ To(b) — T (b)fﬂ P) (Tf) e
I . 2CR(C) ° )2 (0 en(0)

The approximation consists in replacing the plasma response function R by the
2 —/7¢
2 — 3i/m¢ — 4¢% + 2i/7CP

three pole Padé approximant R;(¢) =



This leads to the approximation: 1 — R(C) + 2¢"R(C) N ST

2¢R(¢) g

After substitution one gets an initial value problem:

Hilbert transform

d 274" / 21" 1 ao=i/\m, a,=3/2
jao| P+

— =2 H_0.
dt m

pO(TO_TON
X 4. |:6]L +[I'o(b) - Fl(b)] ( " )enzo)} =0.
p '

A

m

In order to take into account the global evolution of the plasma,
replace equilibrium quantities by instantaneous mean values.

Similarly, the gyroviscous tensor is computed by combining various fluid quantities
obtained from the linear kinetic theory, allowing to eliminate most occurrences of the

plasma dispersion function.

Passot & Sulem, PoP 14, 082502 (2007)



Finite Larmor radius effects: o, — ( g Iy )
Yy

Hyy
Gyroviscous tensor: IT = I1 | + Iy @b+ b®1l I, = (a2, Iyz, I1:2)
It is convenient to write &loyVL II, = -V, A+ V| x(B2).
pJ_p

By combining expressions of the various fields provided by the kinetic theory in
order to eliminate the plasma response function, one gets

(1)
_ T'y(b) INOIRD R TR
A= [1 T B[To(b) — Th ()] To(b)] gl )2 Lo(®) (")
~ [To(b) =1 T (b) _ B Lop(b) —T'1(b) B 1 -To(b)
5 [ +2(T0(0) = Tu(b) + =P LT (b) = Tah) - ) |
1 . 1 —Tq(b)
g TR X BL) 2+ s | To(b) = T 6) = =22 ik sy
2 (0)
In the large scale limit b = (TL?' v 0, the usual fluid estimates are recovered:
Q2 m, |
Aftwia = 56(VL Xul) 2, Bfuia=35(Vi-ul)

In order to reproduce the Ieadlng order nonllnear fluid theory, replace p by Plp
Similar analysis for II. = (Hp IL,.,11..).

In order to take into account the global evolution of the plasma,
replace equilibrium quantities by instantaneous mean values.



The model conserves the total energy:

-

pu* b* B I
E={ | >t +§(ﬁu;+;"-ueJrEUH;HrPuel)]ff%

Conservation of energy is independent of the heat fluxes and subsequent equations,
but requires retaining the work done by the FLR stress forces.

Implementation of the Landau damping via Hilbert transforms, and also of the
FLR coefficients as Bessel functions of k. p, is easy in a spectral code.

Electron Landau damping is an essential ingredient in many cases
(limiting the range of validity of the isothermal models).

Possibility of including weak collisions (Gross and Krook 1956, Green 1973)
in a form that preserve energy conservation.



Mirror modes growth rate: comparison of FLR-Landau fluid with kinetic theory

. (WHAMP code)
Normalized growth rate w; /€2, versus kj rp,
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Frequency and damping rate of Alfvén waves:
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FIG. 3: Normalized frequency w,/(kjva) (left) and damping

rate —wz;’(k”f.‘A‘) (right) for KAWs with 7= = 0.01,
versus k7, for @ = tan='(10) (top), # = 60° (bottom).
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Nonlinear regime

Numerical simulations in one-space dimension:
talk by T. Passot

A 3D code is presently under development
(some simplifications seem possible and are under test)



In some instances,the model can simplify by taking the large scale limit

One gets (in the local reference frame): Heat flux contribution
requires special attention
(p1) as it may in some instances
Mo = =Ty = — 20, (O tx + Dxuy). lead to spurious instabilitites
(pL) in oversimplified models.
My =My = — 20, (Oyuy — Oxuy). l
1
Myz =Tz = Q. [2<p||>8zux + (p1)(Oxuz — Jzux) + 8XQJ_]
1
1
My =Tz = _Hf [2<p||>azuy + (P )(Oy Uz — Dzuy) + ayql-}
I_Izz — O

The inclusion of FLRs in the MHD equations is considered in many models
aiming to modelize the slow or drift dynamics in fusion plasmas.

The above simplified FLR can be inappropriate in the presence of temperature anisotropy:

When using the above simplified FLR’s, the mirror instability is stabilized only very close to
threshold and spurious instabilities can develop at smaller scales.

(the functions I'; and ', are to be retained).
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Electron FLR corrections and electron inertia
neglected in the FLR Landau fluid




Examples of use of the simplified FLR Landau fluid
Decay instability of parallel Alfvén waves in the long-wavelength limit
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Landau fluid simulation

Maximum growth rates of the density modes versus wavenumber (normalized
by the pump wavenumber) resulting from the decay instability of a non dispersive Alfvén

wave of amplitude by = 0.447 in a plasma with 3, = 0.3 and isotropic temperatures
such that 7" /T\" = 33 (left), TV /T = 5 (middle) and 7" /7" = 1 (right).

Reducing electron temperature tends to broaden the spectral range and to reduce

the growth rate of the instability.

Decay instability of Alfvén wave produces a forward propagating acoustic wave
and a backward Alfvén wave with a wavenumber smaller than that of the pump.



Nonlinear simulations:

A three-dimensional parallel code was developed for the simplified FLR-Landau fluid

_ Landau fluid PIC
Comparison between Landau
fluid and hybrid PIC simulations

T, /T, =1/30
Propagation of an Alfvéen B, =03 B, =001
wave in a density inhomogeneity:
parallel high density channel

of small amplitude (10%), aligned
with the ambient field

(Borgogno et al. NPG 16, 275, 2009)



Density hump of large amplitude (100%)

Early formation of magnetic filament is followed by the onset of thin helical ribbons

t =90
0.015 a.os.s
0.013 0.027
0.010 0.022
0.008 0.018
0.005 0.011
0.003 0.005
0.000 0.000
t =120 { =160
0.035 a.asa

0.030 0.058

0.024 0.043
0.018 0.082
0.012 0.021

0.008 0.011

0.000
-15 ~10. =5 0 § 1w 13 -5 =10 =& 0 & 10 15

Cross section

0.000

Density fluctuation

L 1 L I .
-40 =20 0 20 40

Transverse direction

Borgogno et al. NPG 16, 275 (2009)

Developement of strong gradients and of scales smaller than the ion Larmor radius.
The spatial support of small-scale structures is more extended than without dispersion

(small-scales concentrated on localized oblique shocks).

“Dispersive phase mixing”: importance of 3D geometry and of ion Landau damping

This suggests to perform 3D PIC simulations similar to the 2D simulations of Tsiklauri et al.2005,

Mottez et al. 2006.



3D FLR-Landau fluid simulations in a turbulent regime
(simplified model)  Hunana et al., submitted to ApJ

Freely decaying turbulence (temperatures remain close to their initial values)

Isothermal electrons
Initially, no temperature anisotropy; equal ion and electron temperatures

Incompressible initial velocity.

Pseudo-spectral code
Resolution: 1283 (with small scale filtering)

Size of the computational domain: 32 1T inertial lengths in each direction
Initially, energy on the first 4 velocity and magnetic Fourier modes kd.= m/16 (m=1,...,4)

with flat spectra and random phase.
initial fluctuations: (u?)!/?2 = (b*)!/2 = 1/8
ion pressures: p; = p = 1 density: p = 1

ion fluxes: 1 — (|| — 0 electron temperature: Te(o) =1

ambient field: Do =1



Compressibility reduction
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FIG. 6: Compressibility for Hall-MHD (red line) and FLR-Landau fluid (blue line) evaluated as
g1k wrl?/1k?)) 2 [ukl? for 3o = B = 0.8. Both regimes start with the identical initial
condition where the velocity field is divergence free. The figure shows that the compressibility is

clearly inhibited in the Landau fluid simulation.



Identification of the MHD modes (frequency analysis)
FLR-Landau fluid
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Hall-MHD FLR-Landau fluid

Slow (S) and fast (F) magnetosonic waves for the propagation angle of 45°
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Hall-MHD FLR-Landau fluid
Frequency shift due to FLR corrections
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Magnetosonic waves for the propagation angle of 90°

hequenm analysis of density modes with wavenumbers &k, = 0,k. = 0, k,d; = m/16,
where m = 1 (red), m = 2 (green), m = 4 (blue), m = 8 (hlac}\)
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Magnetic
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Hall-MHD

Spectral anisotropy FLR-Landau fluid
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Summary

FLR Landau fluids suitable for plasma dynamics at the ion gyroscale.
They retain

hydrodynamic nonlinearities + linear approximation of low-frequency kinetic effects
(Landau damping & FLR corrections)

Consistent with the quasi-transverse character of the turbulent cascade.
Suitable for simulations of the solar wind.

Landau damping: depletes compressible effects and inhibits longitudinal transfer
leads to a correct description of the mirror instability.

FLR corrections: arrest of mirror instability at smal scales

A sufficiently accurate description of the FLR is needed to prevent small-scale
spurious instabilities.

Suitable for addressing the problem of ion perpendicular heating (T. Passot’s talk).



