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We predict analytically that diagonal correlations of amino acid positions within protein sequences
statistically enhance protein propensity for nonspecific binding. We use the term “promiscuity” to
describe such nonspecific binding. Diagonal correlations represent statistically significant repeats of
sequence patterns where amino acids of the same type are clustered together. The predicted effect is
qualitatively robust with respect to the form of the microscopic interaction potentials and the average
amino acid composition. Our analytical results provide an explanation for the enhanced diagonal
correlations observed in hubs of eukaryotic organismal proteomes [J. Mol. Biol. 409, 439 (2011)]. We
suggest experiments that will allow direct testing of the predicted effect. © 2011 American Institute
of Physics. [doi:10.1063/1.3624332]

I. INTRODUCTION

Recent experimental evidences that proteins within a cell
maintain a high degree of nonspecificity have challenged the
understanding of molecular mechanisms providing the speci-
ficity of protein-protein binding.1–3 Such nonspecific binding
is often termed protein “promiscuity.” Numerous organismal-
scale measurements of binary protein-protein interactions
(PPI) suggest that organismal proteomes possess a higher
degree of nonspecific binding.4–10 The dominant amount of
such experimental PPI data comes from the high-throughput
yeast two-hybrid (Y2H)7, 11, 12 and affinity purification fol-
lowed by mass spectrometry (AP/MS).13–15 Although these
experiments do not provide dynamical and functional prop-
erties of interactions,7 they do provide a snapshot of binary,
physical interactions that might be functionally important in
a living cell. These experiments show that a small fraction of
proteins (termed “hubs”) are physically interacting with tens
and even hundreds of partners. It appears that protein promis-
cuity is a selectable trait enabling proteins to adopt more ef-
ficiently to changing conditions or emerging needs within a
living cell.1

The key question is what makes a protein promiscuous,
i.e., prone to nonspecific interactions? Are there generic se-
quence signatures of promiscuity? In this paper we predict
one such generic signature. We show analytically that protein
sequences with enhanced correlations of sequence positions
of amino acids of the same type generally represent more
promiscuous sequences. We use the term “diagonal” to de-
scribe such correlations. Intuitively, sequence “correlations”
mean statistically significant repeats of sequence patterns.
Our findings suggest that symmetry properties and strength of
sequence correlations are important factors that control global
connectivity properties of PPI networks.

Using a bioinformatics analysis, we have recently shown
that hubs of eukaryotic (e.g., yeast and human) proteomes
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possess a higher level of diagonal correlations compared to
non-hubs.16 In particular, we have shown that in human PPI
network, His, Phe, Ile, Pro, Gly, and Tyr exhibit significantly
stronger diagonal correlations in hubs than in non-hubs.16

Here, we develop an analytical theory that explains why this
might be the case. Since many hub proteins detected in Y2H
and AP/MS experiments are confirmed to be functionally
multi-specific in vivo, our theoretical predictions suggest that
enhanced nonspecific binding and functional multi-specificity
might be tightly linked. We suggest that a significant frac-
tion of functionally multi-specific proteins might be inher-
ently highly promiscuous.

This article is organized as follows. First, we introduce
a precise, statistical measure of promiscuity. Second, we
present a simple model that describes protein-protein bind-
ing. This model uses a two-letter alphabet, linear protein se-
quences, and it is analytically solvable in the Gaussian ap-
proximation. We develop a stochastic procedure allowing us
to design protein sequences with a controlled symmetry and
strength of sequence correlations. We analyze statistical, in-
teraction properties of such sequences. Third, we qualitatively
describe possible implications of our results for protein fold-
ing. We conclude by proposing experiments that will allow
direct testing of the predicted effect.

II. RESULTS AND DISCUSSION

A. Statistical measure for interaction promiscuity

We begin by introducing a statistical measure of promis-
cuity for a given protein, A. Such measure can be defined as
the probability distribution of the interaction energies, P (EA),
of this protein with a set of target proteins, where EA is the
interaction energy between protein A and a protein from the
target set. Now we can compare the promiscuity of two pro-
teins A and B interacting with the same target set, assuming
that the corresponding average interaction energies are the
same, 〈EA〉 = 〈EB〉. This latter target set is not supposed to be
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optimized in any way for stronger binding with either protein
A or protein B. If the dispersion, σA, of P (EA) is greater than
the dispersion, σB , of P (EB), then protein A is statistically
more promiscuous than protein B. This is because if σA > σB ,
the mean free energies of binding obey the inequality, FA

< FB .17 In particular, we have recently shown analytically
that if P (EA) and P (EB) are Gaussian, then the mean
free energy difference always satisfies, FA − FB = −(σ 2

A

− σ 2
B)/2kBT .17 The assumption that 〈EA〉 = 〈EB〉 corre-

sponds to the constraint that the sequences of two proteins A
and B have the same average amino acid composition (see be-
low). The latter constraint is necessary for a fair comparison
of promiscuities, since the differences in the average amino
acid composition would produce a trivial shift of the average
interaction energies. The predicted effect is induced exclu-
sively by sequence correlations and goes beyond the mean-
field. The above argument holds true if instead of two pro-
teins A and B, we consider two sets of proteins (A1, . . . , AM )
and (B1, . . . , BM ) interacting with the same set of random
binders, as above, and characterized by analogous distribu-
tions of the binding energies, P (EA) and P (EB). Our ob-
jective is to compute the properties of P (E) for model pro-
teins with controllable strength and symmetry of sequence
correlations, interacting with a set of random binders, reflect-
ing the statistics of interaction strengths in crowded cellular
environments.

B. Analytical model for “random” and “designed”
interacting sequences

We introduce now a simple model for “random” and “de-
signed’ (or “correlated”) protein-like, linear sequences, Fig. 1.
Despite its one-dimensional origin, the model is not exactly
solvable because of the generally long-range nature of the
potentials that we use below. For simplicity we use a min-
imalistic sequence alphabet with only two types of amino
acids. Random sequence is obtained by distributing Np and
Nh amino acids of types P and H, respectively, at random
within a linear sequence of the total length L = Np + Nh.
Our simplistic approach therefore does not take into account
the folding of the sequence. The average linear fraction of P
and H amino acids is thus fixed and given by φp,0 = Np/L

and φh,0 = Nh/L, respectively. The notion of P and H types
stands here just in order to distinguish between two different
amino acid types, and it does not constrain our conclusions to
just hydrophobic and polar types. Our conclusions hold qual-
itatively true for any number of amino acid types.

After each random sequence is generated, amino acid
identities are fixed and not allowed to change their posi-
tions. A correlated sequence is obtained using the following
stochastic procedure. First, we generate a random sequence as
described above. Second, we allow amino acids to anneal at a
given “design” temperature, Td . We note that our notion of the
“designed” sequences stands to describe the existence of posi-
tional correlations of amino acids within linear sequences and
not the folding. We thus impose that amino acids within the
sequence under the design procedure interact through the pair-
wise additive design potential, Uαβ(x). The intra-sequence in-

FIG. 1. Cartoon illustrating different types of sequence correlations. Right
protein in each interacting pair represents a “random binder” (randomly dis-
tributed amino acids of two types). Left protein represents: (a) Random se-
quence (no correlations). (b and c) Correlated sequence (amino acids of the
same type have a tendency to cluster; we term such correlations “diagonal”).
Such sequences are predicted to possess higher propensity for nonspecific
binding. Sequence correlations in (c) have longer correlation length and such
sequence is statistically more promiscuous than (b). (d) Correlated sequence
where amino acids of the same type are alternating along the sequence. Such
sequence represents the least promiscuous sequence. The symmetry of se-
quence correlations in (d) is fundamentally different compared to (b) and (c).
In the analytical calculations we consider many statistical realizations of se-
quences for each type of correlation symmetry.

teraction energy for any given amino acid realization:

Eintra = 1

2

∫
φp(x)Upp(x − x ′)φp(x ′)dxdx ′

+1

2

∫
φh(x)Uhh(x − x ′)φh(x ′)dxdx ′

+
∫

φh(x)Uhp(x − x ′)φp(x ′)dxdx ′, (1)

where φp(x) and φh(x) are the local, linear fraction densities
of P and H amino acids, respectively. The average compo-
sition of P and H amino acids is fixed by the values, φp,0

and φh,0, respectively, and we impose that the total frac-
tion of amino acids at each sequence position, x, is unity,
φp(x) + φh(x) = 1. Here Upp(x), Uhh(x), and Uhp(x) is the
interaction potential between PP, HH, and HP amino acid
pairs, respectively. We also note that φp(x) can be repre-
sented in the form: φp(x) = φp,0 + δφp(x), where δφp(x) is
the deviation of the local density of P-type amino acids from
its average value, and analogously, φh = φh,0 + δφh(x). The
only two assumptions about the interaction potentials, Uαβ(x),
used in the sequence design procedure are that they are pair-
wise additive and have a finite range of action. We emphasize
that in Eq. (1) only a single combination of the potentials is
relevant, U (x) = Upp(x) + Uhh(x) − 2Uph(x) (see below).

We note that below, we also use the Monte-Carlo (MC)
stochastic design procedure that performs actual amino acid
swaps with the Metropolis criterion for the energy change.18

Our next step is to analyze the probability distribution
P (E) of the interaction energy, E, between random and
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correlated sequences. Every pair of interacting sequences thus
consists of one random and one correlated sequence superim-
posed in a parallel configuration, thus the problem is a quasi
one-dimensional one. We show below that enhanced corre-
lations between amino acids of the same type lead to the
broadening of the distribution, P (E). The resulting binding
free energy computed from the broader distribution will be
lower than the binding free energy computed from a narrower
P (E).17 The latter property implies that such correlated se-
quences will be more promiscuous, i.e., statistically prone to
a stronger binding with an arbitrary sequence. We use an en-
semble of entirely random sequences as a proxy for an en-
semble of arbitrary protein sequences. The interaction energy
between the random and correlated sequences:

E =
∫

νp(ρ) Vpp(ρ−ρ ′) φp(ρ ′) dρ dρ ′+
∫

νh(ρ) Vhh(ρ−ρ ′)

×φh(ρ ′) dρ dρ ′ +
∫

νh(ρ) Vhp(ρ − ρ ′) φp(ρ ′) dρ dρ ′

+
∫

νp(ρ) Vph(ρ − ρ ′) φh(ρ ′) dρ dρ ′, (2)

where νp(ρ) and νh(ρ) are the local, linear fraction densi-
ties of P and H amino acids, respectively, within the random
sequence, and ρ is the inter-sequence distance. Here again,
νp(ρ) + νh(ρ) = 1, and νp(ρ) = φp,0 + δνp(ρ), with δνp(ρ)
being the deviation of the P-type amino acid density from
its average value, and analogously for νh(ρ) = φh,0 + δνh(ρ).
We thus assume that the average amino acid composition is
the same for random and correlated sequences. We emphasize
that the inter-sequence interaction potentials, Vpp(ρ), Vhh(ρ),
and Vhp(ρ) = Vph(ρ), need not be identical to the potentials
Upp(x), Uhh(x), and Uhp(x) used in the sequence design pro-
cedure to generate sequences with a controlled symmetry and
strength of correlations. We note that in Eq. (2), analogously
to Eq. (1), only a single combination of the potentials is rel-
evant, V (x) = Vpp(x) + Vhh(x) − 2Vph(x) (see below). We
now describe in details the effect of the potentials Vαβ (ρ) and
Uαβ(x) on the properties of P (E).

The probability distribution for the interaction energies
between the random and correlated sequences, P (E), is char-
acterized by its mean, 〈E〉, and by the variance, σ 2. In partic-
ular, in order to compute P (E), we generate the ensemble of
interacting sequence pairs, where each pair consists of a ran-
dom sequence and “designed” (i.e., correlated) sequence. The
mean, 〈E〉, is independent on the design potential, Uαβ(x),
and therefore all the different distributions P (E) obtained at
different values of the design temperature, Td , will have ex-
actly the same mean. The variance of P (E), σ 2 = 〈(δE2)2〉,
where the only relevant term for the averaging is quadratic in
the sequence density fluctuations:

δE2 =
∫

δνp(ρ) V (ρ − ρ ′) δφp(ρ ′) dρ dρ ′, (3)

where V (ρ) = Vpp(ρ) + Vhh(ρ) − 2Vhp(ρ), and V̂ (k)
= ∫

V (ρ) e−ikρdρ. The averaging in 〈(δE2)2〉 is performed
using the Boltzmann probability distribution function for the
sequence density fluctuations of the correlated (i.e., designed)

sequences:

Pd [δφp(x)]=C1 exp

[
−

∫
δφ2

p(x)

2φp,0φh,0
dx

]
exp(−Eintra/kBTd ).

(4)
The first exponential term in Eq. (4) is the entropic
contribution19 due to the sequence density fluctuations of the
“designed” sequences, and the second exponential term rep-
resents the strength of the correlations within the “designed”
sequences, Eq. (1). The corresponding probability distribution
for the density fluctuations of the random sequences contains
only the entropic contribution:

Pr [δνp(ρ)] = C2 exp

[
−

∫
δν2

p(ρ)

2φp,0 φh,0
dρ

]
. (5)

The constants C1 and C2 in Eqs. (4) and (5) are found from
the normalization constrains applied on the probability distri-
butions. The averaging leads to the following result:

σ 2 = 4Lφp,0 φh,0

∫
dk

2π
|V̂ (k)|2 1

1/φp,0φh,0 + Û (k)/kBTd

,

(6)

where Û (k) = ∫
U (x)eikxdx, and U (x) = Upp(x)

+ Uhh(x) − 2Uph(x). The larger σ (and thus the broader the
distribution P (E) of the interaction energies between the
correlated and random sequences), the more promiscuous
are the correlated sequences. We note that our model is only
solvable analytically in the Gaussian approximation, and not
exactly solvable, unlike the one-dimensional Ising model,
due to the generally long-range nature of the intra-sequence
(“design”) potential, U (x), and the inter-sequence potential,
V (ρ). We also note the existence of the singularity in Eq. (6)
at sufficiently large and negative values of the “design”
potential, U (x), when the Gaussian fluctuation model breaks
down. In addition, the Fourier transform that we implemented
in order to diagonalize the quadratic forms, and obtain
Eq. (6), is strictly justified in the continuous limit only, for
the infinitely long sequence. The lower and upper physical
bounds for the wave-vector, k, are k ∼ 1/L and k ∼ 1/a0,
respectively, where L is the sequence length, and a0 is the
length-scale of the order of amino acid size.

We emphasize that the probability distribution, P (E), is
not the Gaussian distribution, in the general case, and thus the
analysis of higher-order moments might be required to char-
acterize P (E) at sufficiently low magnitudes of the design
temperature, when the correlation length of sequence correla-
tions gets sufficiently large. The analysis of exactly solvable,
Ising-type model for protein-DNA interactions suggests that
in the general case of non-Gaussian distribution, P (E), all the
key conclusions hold qualitatively true.20

The analysis of Eq. (6) leads to the two key conclu-
sions. First, the more negative is the “design” potential, U (x),
the larger is σ . Taking into account the definition of U

= Upp + Uhh − 2Uph, one concludes that in order to increase
σ one needs to design the sequences with the enhanced cor-
relations in the positions between the residues of similar
types. This means that correlated sequences where amino
acids of the same type are clustered together will be the more
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promiscuous ones. Second, such correlated sequences will
interact statistically stronger (than non-correlated sequences
would do) with any arbitrary sequences independently on
the sign of the inter-residue interaction potential, V = Vpp

+ Vhh − 2Vph. Third, if the design potential is overall posi-
tive, U > 0, designed sequences will be even less promiscu-
ous than random sequences. We emphasize that the predicted
effects are generic and qualitatively independent on the spe-
cific form and even sign of the microscopic interaction poten-
tials, Vαβ , and on the average amino acid composition of the
sequences.

We note that the predicted effect gets even stronger when
both interacting sequences are “designed” (i.e., correlated). In
the latter case the variance, σd,d , of the corresponding P (E)
is a straightforward generalization of Eq. (6):

σ 2
d,d =4L

∫
dk

2π

∣∣V̂ (k)
∣∣2

× 1

(1/φp,0φh,0+Û1(k)/kBTd1)(1/φp,0φh,0+Û2(k)/kBTd2)
,

(7)

where U1(x) and U2(x) are defined analogously to U (x) for
each of the interacting sequences; and Td1 and Td2 are the
design temperatures for the first and second sequence, re-
spectively. If both “design” potentials, U1(x) and U2(x), are
overall negative, then σd,d > σ , and thus in the latter case
the sequences will be statistically more promiscuous than in
the case when only one of the interacting sequences is “de-
signed” (Eq. (6)). We stress that the interacting sequences are
designed independently and not optimized in any way towards
stronger binding. Therefore, the observed effect of statisti-
cally enhanced binding corresponds to nonspecific (promis-
cuous) binding. We note that in both cases, Eqs. (6) and (7),
the greatest σ and σd,d are achieved when the average amino
acid composition of sequences is uniform, φp,0 = φh,0 = 1/2.

In order to verify our theoretical predictions, we first per-
form the standard MC annealing procedure18 to design cor-
related sequences. We begin with generating a random se-
quence starting with a given amino acid composition. We next
perform the MC stochastic design procedure, where amino
acids within the sequence are allowed to exchange their po-
sitions, and each sequence configuration has the Boltzmann
weight, ∼ exp(−Eintra/kBTd ), where Eintra is the internal en-
ergy of the sequence in a given configuration given by Eq. (1).
The MC design procedure is stopped after a certain num-
ber of MC moves, and the resulting annealed configuration
is accepted as the final, designed configuration for a given
sequence. The lower Td is, the stronger are the correlations
within the sequences. Intuitively, stronger correlations cor-
respond to repetitive sequence patterns with a longer corre-
lation length. The properties of the correlated patterns de-
pend critically on the sign of the interaction potentials Uαβ(x)
used in the design procedure. If the effective design potential
U = Upp + Uhh − 2Uhp is overall negative (this corresponds
to the attraction between the amino acids of similar types), the
correlated patterns will have the form of repetitive residues of
the same type, for example: HHHHPPPPHHHPPP. . . If how-
ever, the potential U = Upp + Uhh − 2Uhp is overall positive,

x
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(x

)
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FIG. 2. Computed sequence correlation functions for the “designed” se-
quences at Td = 1 (in the units of kBT ), ηpp(x) = ηhh(x) (red squares),
ηph(x) = ηhp(x) (blue diamonds); and for the random sequences (black
circles). All the matrix elements of ηαβ (x) are the same for the random
sequences. The design potential was chosen to be Upp = Uhh = −1, and
Uhp = 1 (in the units of kBT ), and we assumed that only the nearest-neighbor
residues can interact. The sequence length was chosen to be 200 amino acids,
and we generated 5000 different sequences in each calculation. The plotted
ηαβ (x) represent the average over the entire set of the designed sequences.
The uniform amino acid composition was adopted: 50% P and 50% H amino
acids in each sequence. The error bars are smaller than the symbol size.

the correlated patterns will have the form of the alternating
H and P residues, for example: HPHPHPHPHPHPHP. . . To
characterize the correlation properties of the sequences quan-
titatively, we introduce the normalized correlation function:

ηαβ(x) = gαβ(x)/〈gr
αβ(x)〉r , (8)

where gαβ(x) is proportional to the probability to find a
residue of the type α separated by the distance x from a
residue of the type β, and gr

αβ(x) is the corresponding proba-
bility for the randomized sequence, and 〈gr

αβ(x)〉r corresponds
to the averaging with respect to different realizations of ran-
domized sequences. The computed correlation functions are
represented in Fig. 2 at the value of kBTd = 1 (in the units
of kBT ). For the entirely uncorrelated (random) sequences,
all the matrix elements of ηαβ(x) are equal to unity, Fig. 2.
The clustering of amino acids of similar types corresponds to
ηαα(x) > 1, Fig. 2.

The next step is to compute numerically the proper-
ties of the probability distribution, P (E), of the interaction
energies, E, between random and designed sequences (i.e.,
each interacting pair consists of a random and designed se-
quences). The results of these calculations are shown in
Fig. 3. We computed P (E) at different values of Td and
we represented the results as a ratio between the dispersion
of P (E), σ = σd,r and the dispersion of the corresponding
probability distribution where both sequences are entirely
random, σr,r (the latter corresponds to the case of a vanish-
ing design potential, Uαβ = 0). We used here the inter-residue
interaction potential, Vpp = Vhh = −1, and Vhp = 1 (in the
units of kBT ), and we assumed that the nearest neighbor
and the next-nearest neighbor amino acids can interact be-
tween the two sequences. The analytical result computed from
Eq. (6) is also plotted in Fig. 3. As expected, the Gaussian
fluctuation model becomes accurate at small values of the ra-
tio, U (a)/kBTd � 1, where a is the potential range. The inset
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FIG. 3. Computed ratio between the dispersions of the P (E) for the in-
teraction energies of the designed-random, σ = σd,r , and random-random,
σ = σr,r , sequence pairs at different values of the design temperature, Td (cir-
cles). The error bars are smaller than the symbol size. The uniform amino acid
composition was adopted: 50% P and 50% H residues in each sequence. Thin
curve represents the corresponding analytical result, Eq. (6). Inset (adopted
from Ref. 16): Computed probability distribution function, P (E), for the in-
teraction energies between the pairs of two random sequences (black), and
pairs consisting each of a random and a designed sequences, where the de-
signed sequences were generated at Td = 1 (in the units of kBT ) (red). The
energy E is normalized per one amino acid.

of Fig. 3 shows the computed P (E) in the case of designed-
random and random-random sequence pairs, respectively.16

The key conclusion here is that in accordance with the an-
alytical predictions, the dispersion of P (E) is larger for the
sequences designed with the overall negative U , as compared
to the dispersion of P (E) in the case where both interacting
sequences are entirely random, σd,r > σr,r . The effect is the
opposite for overall positive U , σd,r < σr,r . We stress that
these conclusions are qualitatively insensitive to the sign of
the inter-residue interaction potential, V (x). We emphasize
also that the interaction energy mean-value, 〈E〉, is identical
in all cases, it depends on the average amino acid composition
of sequences, and it is insensitive to the correlation properties
of interacting sequences.

C. Implications of sequence correlations for protein
folding

A key limitation of our theoretical analysis is the fact
that the presented simplified model does not explicitly take
into account protein folding, and therefore, underestimates
the effect of longer-range sequence correlations induced by
the presence of a protein chain. Taking protein folding into
account should provide additional insights into the effect of
long-range sequence correlations on protein promiscuity and
structural disorder. Elucidation of the latter issue is the subject
of our future work.

Using a bioinformatics analysis, we have recently shown
that enhanced diagonal sequence correlations are strongly
overrepresented in structurally disordered proteins, as com-
pared to structurally ordered proteins (such as all-alpha and
all-beta proteins).16 In particular, we have observed that in
a set of experimentally known disordered proteins, diagonal

correlations are significantly enhanced for Gly, Tyr, Arg, Trp,
Ser, Glu, Pro, Asp, Gln, Ala, Lys, and Thr.16

Our simplified analysis suggests that such enhanced di-
agonal correlations generically widen the energy spectrum of
nonspecific states within the proteins, which leads to the low-
ering of the energy for disordered conformations. We use the
term “intra-protein promiscuity” to describe increased prob-
ability for thermodynamically allowed, non-native conforma-
tional states. Specifically, it was shown21–24 that statistics of
energies of misfolded conformations which are structurally
dissimilar to native state obeys the random energy model,25

so that the energy gap between the native state and the lowest
energy misfolded conformation can be estimated as:

� = Enat − 〈E〉 − σ√
2 ln γ

, (9)

where Enat is effective free energy of native state (which in-
corporates energetic and entropic solvent effects, as well as
the entropy of small motions around the native conformation),
σ is the standard deviation of the energies of misfolded con-
formations, and γ is effective number of conformations per
amino acid.26 The physical intuition behind Eq. (9) is that the
total energy of a protein in any conformation is a sum of en-
ergies of many interacting fragments leading to the Gaussian
distribution of energies of protein conformations. To that end,
the one-dimensional model developed in this paper applies to
the interaction of fragments, providing a corrected value of
σ . In particular, diagonal correlations increase the variance of
energies of misfolded conformations, decreasing the energy
gap, �, which leads to a higher likelihood that the protein
chain will end up in a misfolded conformation and a slower
folding rate to the native state.27, 28 While these considera-
tions are suggestive, a straightforward analysis based on the
replica theory of protein-like heteropolymers29 is required to
quantitatively assess the impact of diagonal correlations on
stability of unique folded states of proteins. Such analysis is
forthcoming.

III. CONCLUSIONS

In summary, we predict here analytically that sequence
correlations statistically shape the energy spectrum of non-
specific inter-protein binding (we term such nonspecific bind-
ing “inter-protein promiscuity”). In particular, correlated se-
quences with enhanced diagonal correlations of the type HH-
HHHPPPPPPHHHHHPPPP, where amino acids of the same
type are clustered together will bind statistically stronger to an
arbitrary target sequence set, compared to either random se-
quences, or correlated sequences of the type HPHPHPHPH-
PHPHPHPHP. Sequences possessing the latter symmetry of
correlations will constitute the least promiscuous sequences.
In general, the longer is the length scale of homo-oligomer re-
peats, the wider the inter-protein interaction energy spectrum,
and the more promiscuous are the sequences. This effect is
qualitatively robust with respect to the specific form and even
sign of the microscopic inter-sequence interaction potential,
and it is controlled by the length scale and symmetry of se-
quence correlations. Despite the one-dimensional nature of
our model, its results are directly applicable to protein-protein
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interaction networks since the most recent, whole-organism
experimental and bioinformatics data suggest that 15%–40%
of all protein-protein interactions are mediated by linear se-
quence motifs, and not by large protein surfaces.30 Our an-
alytical predictions provide an explanation for the enhanced
diagonal correlations observed in hubs of human and yeast
PPI networks.16 Our key objective for the future theoretical
analysis is to take into account the effect of protein folding on
inter-protein interaction properties.

The widening of the interaction energy spectrum, P (E),
in the presence of enhanced diagonal correlations, which is
the key prediction of this paper, can be understood intuitively
in the following way. Due to enhanced clustering of amino
acids of the same type, Fig. 1(c), a protein sequence interact-
ing with a set of random binders will locally, along its length,
encounter either a more significant amount of favorable con-
tacts, or on the contrary, a more significant amount of unfavor-
able contacts, compared with the sequence lacking such cor-
relations, Fig. 1(a). The latter property stems from the fact that
each amino acid in one sequence can interact with more than
only one, nearest-neighbor amino acid in the other sequence,
and hence, the clustering of amino acids of the same type in-
duces an enhanced cooperativity, which in turn, enhances the
fluctuations of E.

We also note that qualitatively, not only enhanced clus-
tering of entirely identical amino acids (we used the term “di-
agonal correlations” to describe such clustering) should lead
to enhanced protein promiscuity. We suggest that sequences
with enhanced clustering of amino acids possessing similar
structural and physicochemical properties, for example, Asn
and Glu, should also exhibit the predicted effect.

There are several possible strategies to test our predic-
tions. The direct experimental test would utilize a protein
chip31 or microfluidic protein chip32 technology. The tar-
get protein data set would be attached to the chip surface.
The test proteins or peptides would be synthesized with a
varying strength and symmetry of sequence correlations but
keeping the average amino acid composition fixed. Titra-
tion experiments should allow measuring directly the bind-
ing affinity31, 32 as a function of sequence correlation proper-
ties. We expect that protein sequences with enhanced diagonal
correlations will generically represent more promiscuous se-
quences. Another possibility is to use a recent genome-wide
protein over-expression analysis.33 Since the over-expression
of highly promiscuous proteins should presumably be toxic
to a cell, the correlation analysis of such toxic proteins (hun-
dreds of them are known33) will show whether the predicted
effect plays a significant role in a living cell.34
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