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Abstract Understanding design principles of biomolecular recognition is a key question
of molecular biology. Yet the enormous complexity and diversity of biological molecules
hamper the efforts to gain a predictive ability for the free energy of protein-protein, protein-
DNA, and protein-RNA binding. Here, using a variant of the Derrida model, we predict that
for a large class of biomolecular interactions, it is possible to accurately estimate the relative
free energy of binding based on the fluctuation properties of their energy spectra, even if a
finite number of the energy levels is known. We show that the free energy of the system
possessing a wider binding energy spectrum is almost surely lower compared with the sys-
tem possessing a narrower energy spectrum. Our predictions imply that low-affinity binding
scores, usually wasted in protein-protein and protein-DNA docking algorithms, can be effi-
ciently utilized to compute the free energy. Using the results of Rosetta docking simulations
of protein-protein interactions from Andre et al. (Proc. Natl. Acad. Sci. USA 105:16148,
2008), we demonstrate the power of our predictions.
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1 Introduction

Recent high-throughput experiments demonstrate a high level of multi-specific and non-
specific binding in protein-protein [1], protein-DNA [2], and protein-RNA [3] interactions
in a living cell. These observations challenge a conventional approach of molecular biology
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usually focusing on just a single pathway or function, or a single binding partner for a pro-
tein. This suggests that in order to predict correctly the properties of molecular interaction
networks, one needs to take into account the effect of multiple binding, essentially com-
puting the free energy of the system rather than the energy of individual states. The latter
statement is quite intuitive as any protein in a cell interacts with thousands of proteins (or
DNA binding cites), and even if one (or few) of its interaction partners have stronger binding
affinity than others, still weaker interactions are not negligible and they may become even
dominant. Yet the complexity of biological molecules and a lack of knowledge of accurate
inter-molecular interaction potentials hamper computational efforts to predict the free en-
ergies of protein-protein, protein-DNA, and protein-RNA binding. A key question is how
to estimate the binding free energy based on the partial knowledge of the binding energy
spectrum. Each energy in the binding energy spectrum is defined here as the inter-molecular
interaction energy of a particular bound state of interacting molecules (e.g., particular bind-
ing configuration of protein-protein or protein-DNA complex).

It was recently shown that global symmetry properties of proteins, both on structural
and sequence levels, generically define the properties of their binding energy spectrum [4–
9]. In particular, it was shown analytically in [4] that the probability distribution for the
interaction energies of homodimers, P (E), is always wider as compared to heterodimers,
σhomo/σhetero = √

2, where σ is the dispersion of P (E). This statistical law was also con-
firmed computationally, using one of the most advanced methods for computing protein-
protein interactions applied to a large dataset of protein complexes from the protein data
bank (PDB) [6]. It was also predicted that proteins possessing a higher level of structural
correlations (clustering) of amino acids in their interfaces, demonstrate a wider binding en-
ergy spectrum, as well [7]. It was shown recently that protein sequences with enhanced
strength of diagonal correlations of amino acid positions demonstrate a similar property
[8, 9]. Intuitively it means that the clustering of amino acids of the same type statistically
enhances the dispersion of the binding energy spectrum [8, 9]. Sequences with a higher
level of such clustering will possess a larger dispersion than sequences with a lower level of
clustering [8, 9]. We have recently analyzed the properties of the energy spectrum of non-
specific protein-DNA binding [10]. Similar to the case of protein-protein interactions, we
also observed that the width of the protein-DNA binding energy spectrum depends on the
correlation properties of DNA, such as the symmetry and the length-scale of DNA sequence
correlations [10].

We emphasize that in all of those examples the average interaction energies of the com-
pared spectra are always identical, and only the dispersions of the energy spectra are differ-
ent, Fig. 1. The predicted effects are thus essentially governed by the fluctuations of energy,
and go beyond the mean field. The case where the average energies are not equal is also
discussed below. We assume here that the probability distribution, P (E), is Gaussian. This
is an accurate assertion since, practically, the binding energy, E, is a sum of thousands of
binary inter-atomic interactions, and this sum is normally distributed according the central
limit theorem [4].

Here, we estimate the relative free energy of two interacting systems characterized by
the same average binding energies, 〈E1〉 = 〈E2〉, but different dispersions, σ1 > σ2, Fig. 1A.
We show that the free energy, F , of the system possessing a wider binding energy spectrum,
is always shifted towards lower free energies compared to the system possessing a narrower
P (E), even if a finite number of energy levels is known, Fig. 1A. In particular, we show
that the partition function, Z1, is almost surely larger than Z2, with the probability, P (Z1 >

Z2) ≥ 1 − C/M , where C(σ1, σ2) is a finite constant, and M is the number of the energy
levels used to compute the partition function.
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Fig. 1 Calculation of the free energy and fluctuations of the free energy from the energy spectrum. A. Ex-
ample: Gaussian probability distributions for the interaction energy, E, characterized by the identical average
energies, 〈E1〉 = 〈E2〉, and different dispersions, σ1/σ2 = √

2. E is represented in the units of kBT . B. Com-
puted average free energy differences, 〈�F 〉 = 〈F(σ1) − F(σ2)〉, as a function of the ratio of dispersions.
Circles with error bars represent the simulation results, where the quenched averaging is performed (see the
text). We used M = 1000 for each computation of the partition function, and the averaging is performed
with respect to 200 realizations. 〈�F 〉 is represented in the units of kBT . Error bars represent free energy
fluctuations, and show two standard deviations. Solid curve represents the analytical result, (7)

We note that in his seminal work [11], Derrida has established that in the random en-
ergy model, where the energy spectrum of the system, P (E), is Gaussian, and the partition
function, Z = ∑M

i=1 exp(−E(i)/kBT ), for each realization of P (E) with M energy states,
E(i), the quenched average of the free energy, 〈F 〉q = −kBT 〈lnZ〉, is equal to the annealed
average, 〈F 〉 = −kBT ln〈Z〉, in the thermodynamic limit of large M :

〈F 〉 = −kBT lnM − σ 2

2kBT
, (1)

if the temperature T is above some critical temperature, T > Tc , where kBTc ∼ σ/
√

lnM

[11], and σ is the standard deviation of P (E). Using an example from the Rosetta docking
simulations of protein-protein interactions, we show below that (1) provides an accurate
estimate for the relative free energy, when M reaches only few thousands.

We stress that our model is applicable to interacting systems without a pronounced low-
energy (ground) state in their energy spectra. The existence of such a ground state corre-
sponds to a strong, specific binding. On the contrary, a large class of weakly interacting
biomolecules in a living cell, such as nonspecific protein-protein, protein-DNA, or protein-
RNA binding, represents the systems where our model is operational. Such relatively weak,
nonspecific interactions, often called “promiscuous interactions”, have been shown to play
an important role in different cellular processes, and in many cases, the effect of such weak
interactions becomes the dominant factor in a living cell [12].

2 Results

We consider the ensemble of the interaction energies, {E(i)}, of two interacting biomolecules,
where each energy, E(i), corresponds to a given conformation (i.e., a given interaction state),
i, of these molecules.

We begin with the definition of the free energy of the system, F = − lnZ, where the
partition function, Z = ∑M

i=1 e−E(i)
, and we assume for simplicity that kBT = 1, and the en-

ergy, E, is represented in the units of kBT ; here kB is the Boltzmann constant, and T is the
absolute temperature. We also assume that the energy, E, obeys the Gaussian distribution,
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P (E), with zero mean, 〈E〉 = 0, and standard deviation, σ . The set of M energy values,
E(i), is obtained as a statistical realization of P (E). In what follows we compare the statis-
tical properties of Z computed based on the realizations drawn from two distributions with
different values of standard deviation, σ1 > σ2, Fig. 1A.

Since Y = e−E is a lognormal random variable, it is well-known [14] and can be readily
verified that the expectation, 〈Y 〉, and the variance, VAR(Y ), of Y are given by 〈Y 〉 = eσ 2/2

and VAR(Y ) = e2σ 2 − eσ 2
. We note that (1) simply follows from 〈F 〉 = − ln(M〈Y 〉).

For a large number M , let Y (1), Y (2), . . . , Y (M) be independent random variables, so that
each of them is distributed identically to Y . Since Z = ∑M

i=1 Y (i), by linearity of the expec-

tation, 〈Z〉 = M · eσ 2/2. Also, since Y (1), Y (2), . . . , Y (M) are independent, it follows that

VAR(Z) = VAR

(
M∑

i=1

Y (i)

)

=
M∑

i=1

VAR(Y (i)) = M · (e2σ 2 − eσ 2
), (2)

and the standard deviation of Z, σ(Z) = √
VAR(Z).

Consider now two normal independent random variables E1 and E2, both having zero
mean. We assume further that the standard deviation σ1 of E1 is greater than the standard
deviation σ2 of E2, i.e., σ1 > σ2 > 0. Let Y1 = e−E1 and Y2 = e−E2 be the corresponding
lognormal random variables. Next we show that asymptotically almost surely it holds that
Z1 > Z2, where Z1 = ∑M

i=1 Y
(i)

1 and Z2 = ∑M

i=1 Y
(i)

2 .

Lemma 1 Let σ1, σ2, σ1 > σ2 > 0, be two positive constants. Then

P (Z1 > Z2) ≥ 1 − 1

M
· f (σ1, σ2), (3)

where

f (σ1, σ2) = 4 · (e2σ 2
1 − eσ 2

1 ) + (e2σ 2
2 − eσ 2

2 )

(eσ 2
1 /2 − eσ 2

2 /2)2

is a positive constant that depends only on σ1 and σ2.

Proof Chebyshev’s inequality (see, e.g., [13], p. 43) states that for any random variable X

with expectation 〈X〉 and standard deviation σX , and any b > 0,

P (|X − 〈X〉| ≥ b · σX) ≤ 1

b2
. (4)

By the preceding argument (see (2)), for i = 1,2,

〈Zi〉 = M · eσ 2
i
/2, σ (Zi) = √

M ·
√

e2σ 2
i − eσ 2

i .

Let

A = 〈Z1〉 + 〈Z2〉
2

= M · eσ 2
1 /2 + eσ 2

2 /2

2
.

Hence

〈Z1〉 − A = A − 〈Z2〉 = 〈Z1〉 − 〈Z2〉
2

= M · eσ 2
1 /2 − eσ 2

2 /2

2
. (5)

Denote Q = e
σ2

1 /2−e
σ2

2 /2

2 and D = M · Q. Observe that since σ1 > σ2, both D and Q are pos-
itive. Consequently, 〈Z1〉 − D = 〈Z2〉 + D = A. Also, by Chebyshev’s inequality (see (4)),
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P (|Z1 − 〈Z1〉| ≥ D) = P

(

|Z1 − 〈Z1〉| ≥
√

M · Q
√

e2σ 2
1 − eσ 2

1

· σ(Z1)

)

≤ 1

M
· e2σ 2

1 − eσ 2
1

Q2
.

It follows that

P (Z1 ≤ A) = P (Z1 ≤ 〈Z1〉 − D) = P ((〈Z1〉 − Z1) ≥ D)

≤ P (|〈Z1〉 − Z1| ≥ D) ≤ 1

M
· e2σ 2

1 − eσ 2
1

Q2
.

Analogously,

P (Z2 ≥ A) = P ((Z2 − 〈Z2〉) ≥ D) ≤ P (|Z2 − 〈Z2〉| ≥ D)

≤ 1

M
· e2σ 2

2 − eσ 2
2

Q2
.

Hence, by union bound,

P ((Z1 > A) and (Z2 < A)) ≥ 1 − 1

M
· 1

Q2
· ((e2σ 2

1 − eσ 2
1 ) + (e2σ 2

2 − eσ 2
2 )).

Finally,

P (Z1 > Z2) ≥ P ((Z1 > A) and (Z2 < A))

≥ 1 − 1

M
· 1

Q2
· ((e2σ 2

1 − eσ 2
1 ) + (e2σ 2

2 − eσ 2
2 )). (6)

�

Since the right-hand side of the inequality (3) tends to 1 as M grows, it follows that the
event Z1 > Z2 occurs asymptotically almost surely. This argument generalizes directly to the
scenario when Z1 = ∑M1

i=1 Y
(i)

1 and Z2 = ∑M2
i=1 Y

(i)

2 , where M1 and M2 are (not necessarily
equal) large integers. The generalized inequality is

P (Z1/M1 > Z2/M2)

≥ 1 − 4

(eσ 2
1 /2 − eσ 2

2 /2)2

(
1

M1
· (e2σ 2

1 − eσ 2
1 ) + 1

M2
· (e2σ 2

2 − eσ 2
2 )

)

.

It is easy to understand the obtained results intuitively. In the calculation of the partition
function, Z = ∑M

i=1 e−E(i)
, M energies E(i) are drawn from the Gaussian distribution. How-

ever, only a subset of lowest energies provides the dominant contribution to Z. The contri-
bution from high energies is small, e−|E| � 1. Since this dominant subset is localized in the
low energy tail, the distribution with a larger standard deviation will obviously deliver the
larger partition function.

The major practical implication of our result is the ability to estimate the relative free
energy of biomolecular interactions without performing the actual calculations of the free
energy. We establish that a simple, direct relationship between the average free energy dif-
ference and the standard deviations of the energy spectra, (1),

〈�F 〉 = 〈F(σ1) − F(σ2)〉 = −σ 2
1 − σ 2

2

2
, (7)
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Fig. 2 Snapshot of asymmetric (we use the term “heterodimeric” to describe such symmetry) (A), and sym-
metric (we use the term “homodimeric” to describe such symmetry) (B) binding modes from Rosetta docking
simulations of protein L (PDB code: 1hz6). The structures represent the lowest energy binding modes (using
the same energy term as in Ref. [6], the interchain pair potential in the Rosetta low resolution docking energy
function) from an asymmetric or symmetric docking simulation of protein L dimers. Position of centroid
atoms, representing the sidechain atoms, is shown as spheres

is accurate for a system where only a finite number of energy levels is known. We note that
our analytical definition of the average free energy relies on the annealed definition of the
average, 〈F 〉 = − ln〈Z〉. In systems without frustration the latter definition is known to be in
excellent agreement with the quenched averaging, 〈F 〉q = −〈lnZ〉, unlike the case of highly
frustrated systems such as spin glasses [11] or proteins below the glass transition tempera-
ture [15]. Indeed, the quenched averaging performed numerically is in excellent agreement
with the analytical result, Fig. 1B. The error bars in this plot represent the magnitude of the
free energy fluctuations. Yet, our central result in this paper is stronger than the statement
described by (7). Here we predict for two systems, that even if a single calculation of the free
energy is performed for each system, using a single realization of the probability distribu-
tions, P (E1) and P (E2), and it is known that σ1 > σ2, then we guarantee that F1 < F2 with
the probability approaching one, provided that the number of measured energy levels, M , in
each realization is sufficiently large. Finally we note that if one of the distributions, P (E1),
is shifted from zero mean by the energy, 〈E1〉 = E0, the free energy, (7) gets trivially shifted
exactly by this magnitude, 〈�F 〉 = E0 − (σ 2

1 −σ 2
2 )/2. This is because the fluctuation contri-

bution to the free energy difference depends exclusively on the widths of the corresponding
energy spectra.

3 Example: Free Energy of Nonspecific Protein-Protein Interaction

We now apply our results to the calculation of the free energy of nonspecific protein-protein
interactions. We use an example from Andre et al. [6], where the Rosetta docking simu-
lations of self-interacting protein L in homodimeric and heterodimeric conformations were
performed [6] (see Fig. 2). In particular, these simulations provide the interaction energies of
∼ 30,000 homodimeric and ∼ 22,000 heterodimeric conformations, respectively, Fig. 3A.
Each of these conformations is chosen randomly, without any energy optimization. Based
on these energies, we computed the free energy difference �F = Fhomo − Fhetero, as a func-
tion of the energy sample size, M , where, Fhomo = ∑M

i=1 exp(−E
(i)

homo), and analogously for
Fhetero (see Fig. 3B). The key result here is that the free energy of homodimeric conforma-
tions is always lower then the corresponding free energy of heterodimeric conformations,
Fig. 3B. After the sample size, M , reaches only few thousands conformations, the free en-
ergy difference reaches its expectation value, 〈�F 〉, with the accuracy reaching 90–95%
(see inset in Fig. 3B). The estimate performed above, (6), gives: P (Zhomo > Zhetero) ≥ 0.95,
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Fig. 3 Example: Calculation of the free energy of nonspecific self-binding for protein L, using the Rosetta
docking scores obtained by Andre et al. in Ref. [6]. A. Computed probability distributions, P(E), of the
Rosetta docking energies for protein L in symmetric (i.e. homodimeric, shown in black) and nonsymmetric
(i.e. heterodimeric, shown in gray) conformations [6]. Snapshots from these Rosetta docking simulations
are shown in Fig. 2. The interaction energy, E, is in dimensionless Rosetta score units. There are overall

29,976 homodimeric, {E(i)
homo}, and 22,038 heterodimeric, {E(i)

hetero}, conformations sampled, respectively.
B. Computed free energy difference between homodimers and heterodimers, �F = Fhomo − Fhetero, as a

function of the energy sample size, M , where, Fhomo = ∑M
i=1 exp(−E

(i)
homo), and analogously for Fhetero.

The horizontal line represents the expectation value, 〈�F 〉 = −(σ 2
homo − σ 2

hetero)/2, (7), where σhomo and
σhetero are the standard deviations of the corresponding energy spectra. Inset represents the relative deviation
of �F from the expectation value, δ = |�F − 〈�F 〉|/|�F + 〈�F 〉|, as a function of M

if M = 5000, where Zhomo and Zhetero are the corresponding partition functions, each ob-
tained based on M energy values. We suggest therefore that our method should provide an
efficient way to estimate the free energies of nonspecific biomolecular binding.

4 Conclusion

The majority of macromolecular docking algorithms rejects the lower-affinity binding scores
and retain only one or few lowest energy conformations. We suggested here a simple method
based on Derrida-type random energy model [11], how those wasted scores can be used in
order to estimate the free energy of binding. Our conclusions can be applicable to different
biomolecular systems, such as protein-protein, protein-RNA, and protein-DNA complexes.
The input energy spectra, P (E), may come from different configurations of two interacting
biomolecules, or they can come from a single biomolecule interacting with a set of partner
binders. It is important to note that our conclusions hold true even when the probability
distribution, P (E1) with a larger standard deviation than P (E2), σ1 > σ2, is sampled by
a smaller number of states, M1 < M2! The free energy F1 will be reduced compared with
F2 in the latter case due to the fact that the dominant contribution to the partition function
comes from the lower-energy tails of P (E1) and P (E2), and thus a wider energy spectrum
will always deliver a lower free energy.

In conclusion, we stress that our model is applicable to weakly interacting systems, with-
out a pronounced energy minima in the interaction energy spectrum. We use the term “non-
specific binding” or “promiscuous binding” to describe such systems. Nonspecific binding
is widespread in a living cell. In practice, the majority of the interactions are actually non-
specific. Traditionally, such nonspecific interactions are neglected, which leads to significant
inaccuracies in the computation of the free energy of the system. Here, we suggested a pos-
sible method to estimate the relative free energies of nonspecific binding.
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