
LUBA SAPIR

THE OPTIMALITY OF THE EXPERT AND MAJORITY RULES
UNDER EXPONENTIALLY DISTRIBUTED COMPETENCE

ABSTRACT. We study the uncertain dichotomous choice model. In this model a
set of decision makers is required to select one of two alternatives, say ‘support’ or
‘reject’ a certain proposal. Applications of this model are relevant to many areas,
such as political science, economics, business and management. The purpose of
this paper is to estimate and compare the probabilities that different decision rules
may be optimal. We consider the expert rule, the majority rule and a few in-
between rules. The information on the decisional skills is incomplete, and these
skills arise from an exponential distribution. It turns out that the probability that
the expert rule is optimal far exceeds the probability that the majority rule is
optimal, especially as the number of the decision makers becomes large.

KEY WORDS: Decision rule, Expert rule, Majority rule, Optimal rule, Partial
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1. INTRODUCTION

Condorcet first regarded the dichotomous model in hisEssai(1785).
He considered the case of a group of decision makers reaching a
decision on some issue using the simple majority rule. He made the
statement that the group would be likely to make the correct choice
as the size of the group becomes large. Moreover, the probability
of a correct decision increases to 1 as the number of individuals
in the group tends to infinity. In the following, by ‘Condorcet Jury
Theorem’ (henceforward CJT) we mean a formulation of conditions
under which Condorcet’s statement is in fact valid. One of the most
popular among such conditions is the condition that the members of
the group vote independently and the probabilities that the members
will make the right choice are equal and exceed 1/2.

Researchers have extended and completed Condorcet’s work in
different directions. A generalization of CJT has been presented
by Grofman, Owen and Feld (1983), who relaxed the assumption
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that the correctness probability of each member must exceed 1/2.
Instead, they only required the average competence of the group
to exceed 1/2. In another direction, Sven Berg (1993) and Ladha
(1995) relaxed the independence assumption, allowing correlated
votes. Paroush (1996) and Berend and Paroush (1996) obtained ex-
actly necessary and sufficient conditions for CJT in the case of in-
dependence. Other approaches have been tried by other authors as
well.

Many works exploring the dichotomous choice model assume
a known ‘expertise level’, i.e. a known probability for each group
member to make the right choice. This assumption makes it easy to
find the optimal decision rule – the one maximizing the probability
for the group to obtain the correct alternative. In the case of sym-
metric alternatives (i.e., equiprobablea priori with equal penalties
for each type of error), the optimal rule is a weighted majority rule,
the weights being given by the logarithms of the members’ odds
of making the right choices (see Nitzan and Paroush 1982; Shapley
and Grofman 1984). However, the assumption of full information re-
garding the decision makers’ competence is very restrictive and of-
ten far from being fulfilled. thus, the case of incomplete information
on decisional skills seems to better approximate practical situations.
While no direct information on the ‘expertise level’ is available,
some information does exist regarding the distribution of decisional
competence in the population from which the individual members
were drawn. The case of log-normal distribution of individual odds
of choosing correctly was tackled by Nitzan and Paroush (1984,
1985). The case where the probabilities of being right for each ex-
pert are uniformly distributed in [1/2, 1] was discussed by Berend
and Harmse (1993). This paper continues the exploration in the
same direction under the assumption that the ‘logarithmic expertise
level’ is exponentially distributed. The main accomplishment is the
derivation of exact formulas for the probability of optimality of the
expert and majority rules in this case (see Theorem 1 and Theorem 3
in Section 3). These probabilities are independent of the value of the
parameter of the distribution. Section 2 is devoted to a more accurate
description of our model. In Section 3 we present the main results,
and their proofs in Section 4.
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2. THE MODEL

The group consists ofn members, and each advocated one of two
alternatives. The probability that theith member will make the right
choice is denoted bypi . A decision rule is a rule for translating the
individual opinions into a group decision. Such a rule isoptimal if
it maximizes the probability that the group will make the correct
decision for all possible combinations of opinions. If the members
indexed by some subsetA ⊆ {1, 2, . . . , n} of the group recommend
the first alternative, while those indexed byB = {1, . . . , n}\A rec-
ommend the second, then the first alternative should be chosen if
and only if∑

i∈A
ln

(
pi

1− pi
)
>
∑
i∈B

ln

(
pi

1− pi
)

(2.1)

(see Nitzan and Paroush 1985). It is therefore natural to define the
expertiseof an individual, whose probability of being correct isp,
asp/1− p, and hislogarithmic expertiseas ln(p/1− p). It will be
convenient to consider the functionsF andf defined by:

F(p) = p

1− p ,

f (p) = ln

(
p

1− p
)
= ln(F (p)).

Thecombined expertiseof a set ofl experts with correctness proba-
bilitiesp1, . . . , pl is

F(p1, . . . , pl) =
l∏

j=1

F(pj ),

and thecombined logarithmic expertiseof the same experts is

f (p1, . . . , pl) =
l∑

j=1

f (pj ).
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3. THE MAIN RESULTS

In this paper we are concerned with the probabilities that various de-
cision rules may be optimal. Specifically, we consider the expert rule
(Theorem 1) and the majority rule (Theorem 3). We also estimate
the probability that the optimal rule belongs to certain sets of rules
(Theorem 2). Obviously, the results depend onn, and a comparison
of the asymptotics of the answers is of primary importance. We will
assume that the expertise levelsf (pi), i = 1, . . . , n, are distributed
Exp(λ). In other words, the density function of eachpi is

gp(t) =
{
λ(1−t)λ−1

tλ+1 , t ∈ [12, 1],
0, otherwise,

and its distribution function is

Gp(t)


0, t 6 1

2,

1− e−λ ln t
1−t = 1− (1−t

t

)λ
, 1

2 < t 6 1,
1, t > 1.

THEOREM 1. The probabilityPe(n) that the expert rule is optimal
is:

Pe(n) = n

2n−1
.

Unlike most other results of the paper, one can provide a short proof
of Theorem 1. In fact, as the top expert may be any of then, the prob-
ability in question is exactlyn times the probability that the expertise
of a randomly selected expert exceeds the combined expertise of the
rest. Letf (p), f (q1) . . . f (qn−1) be independent random variables
distributed Exp(λ). Clearly:

Pe(n) = n · Prob

{
f (p) >

n−1∑
i=1

f (qi)

}

= n · P {f (p) > f (q1)} ·
n−1∏
k=2

P

{
f (p) >

k∑
i=1

f (qi)|f (p) >
k−1∑
i=1

f (qi)

}
.
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Now, due to the lack-of-memory property of the exponential distri-
bution, each of these probabilities is equal to 1/2. Hence:

Pe(n) = n ·
(

1

2

)n−1

.

Table 1 illustrates the likelihood of optimality of the expert rule as
obtained by Theorem 1, for 36 n 6 9.

TABLE 1

Expert rule – optimality probability

Number of experts 3 4 5 6 7 8 9

Pe(n) 0.750 0.500 0.312 0.187 0.109 0.062 0.035

For two mutually exclusive and complementing subsets of experts
A andB, we writeA � B if the probability that the combined
expertise of the experts indexed byA is greater than that of the
experts indexed byB exceeds 1/2 (namely, (2.1) is satisfied with
a probability greater than 1/2). Our next result is designed to check
by how much a few of the ‘bottom’ group members add credibility
to the top expert.

THEOREM 2. For n > 2(k + 1):

P({1, n− k + 1, . . . , n− 1, n} � {2, 3, . . . , n− k})
= n!
(n− k − 1)!(n− k − 1)k2n−1

.

Remark 1. The special casek = 0 of Theorem 2 amounts to Theo-
rem 1.

Remark 2. In casen < 2(k + 1), we will get that half or more
experts from the bottom join the top expert,k > (n − 1)/2, so the
probability that the top one andk experts from the bottom will have
higher expertise than all the others can only increase in comparison
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with above case, i.e.

P({1, n− k + 1, . . . , n− 1, n} � {2, 3, . . . , n− k})

>


n!(

n+1
2

)
!(n+1)

n−3
2 2

n+1
2
, n is odd,

n!
(n2)!n

n−2
2 2

n
2
, n is even.

Table 2 illustrates the probabilities obtained by Theorem 2 for 46

n 6 13 andk 6 n
2 − 1. Monte Carlo simulations provided very

similar data. (The≈ sign in Table 2 provides data obtained only by
Monte Carlo method. All blank entries are trivially 1.)

TABLE 2

Top and bottom versus middle

n\k 1 2 3 4 5

4 0.750

5 0.417 ≈0.848

6 0.234 0.417 ≈0.917

7 0.131 0.205 ≈0.522 ≈0.964

8 0.073 0.105 0.205 ≈0.604 ≈0.978

9 0.040 0.055 0.095 ≈0.249 ≈0.723

10 0.022 0.029 0.046 0.095≈0.291

11 0.012 0.015 0.023 0.042≈0.120

12 0.006 0.008 0.011 0.019 0.042

13 0.001 0.001 0.002 0.003 0.006

Remark 3. Looking at Table 2, one immediately recognizes some
patterns. For example, we always have

P({1, k + 4, k + 5 . . . , 2k + 3} � {2, 3, . . . , k + 3})
= P({1, k + 4, k + 5, . . . , 2k + 4} � {2, 3, . . . , k + 3}).

While this result follows by a simple substitution in Theorem 2, it
is instructive to note that it can be proved easily using the lack-of-
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memory property of the exponential distribution. More generally, if
n is even andA andB are equinumerous with, say,n ∈ A, then
P(A � B) = P((A\{n}) � B).

The casek = 1 of Theorem 2 gives

COROLLARY 1.

P({1, n} � {2, 3, . . . , n− 1}) = n(n− 1)

2n−1(n− 2)
.

Employing Theorem 1 we also obtain

COROLLARY 2.

P({1, n} � {2, 3, . . . , n− 1}, {1} ≺ {2, 3, . . . , n})
= n(n− 1)

2n−1(n− 2)
− n

2n−1
= n

(n− 2)2n−1
.

Note that the left hand side is the probability that the decision rule
(n − 1, 1, . . . , 1) is optimal. It is worthwhile mentioning that, per-
haps somewhat surprisingly, even though this decision rule seems
to be more ‘balanced’ than the expert rule, its probability of being
optimal is quite a lot smaller than that of the expert rule.

THEOREM 3. For oddn = 2s+1 the probability that the majority
rule is optimal is:

Pm(n) = 1

2s(s + 1)s{
1−

(2s+1
s

)
(s + 1)

(2s)s

s−1∑
i=0

(s − i − 1)s(−1)i

s + i + 1
·
(
s

i

)}

In Table 3 we present the few initial values relating to Theorem 3.
We added here also, for comparison, the corresponding probabilities
for the expert rule. The table shows very distinctly that the expert
rule is far more likely to be optimal than the majority rule for even
quite small values ofn.

It is interesting to compare, for the casen = 5, the probability of
the optimality of each of the seven weighted majority rules with the
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TABLE 3

Optimality probability – expert versus majority rule

n 3 5 7 9 11

Pe(n) 0.75 0.31 0.11 0.04 0.01

Pm(n) 0.25 0.01 1.8 · 10−4 1.7 · 10−6 1.0 · 10−8

TABLE 4

Optimality likelihoods of all weighted majority rules forn = 5

Distribution

Rule f (pi) ∼ Exp(λ) pi ∼ U(1
2,1)

(1,0,0,0,0) 0.312 0.199

(1,1,1,1,1) 0.010 0.022

(1,1,1,0,0) 0.157 0.175

(3,1,1,1,1) 0.104 0.107

(2,1,1,1,0) 0.208 0.229

(3,2,2,1,1) 0.157 0.194

(2,2,1,1,1) 0.052 0.074

results of Nitzan and Paroush (1985) obtained for the uniformly dis-
tributedpi . The point of the above comparison is that it substantiates
the robustness of the conclusion that the expert rule is far more likely
to be optimal than the majority rule, even for quite small values of
n, for instance, forn = 5.

4. THE PROOFS

Proof of Theorem 1. As the top expert may be any of then, the
probability in question is exactlyn times the probability that the
expertise of a randomly selected expert exceeds the combined exper-
tise of the rest. Letf (p), f (q1) . . . f (qn−1) be independent random
variables distributed Exp(λ). Puttingt = ∑n−1

i=1 f (qi) we havet ∼
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Gamma(λ, n− 1), i.e. the density function oft is given by:

ρt(x) =
{
λn−1xn−2e−λx
0(n−1) , x > 0,

0, otherwise.

Thus:

Pe(n) = n · Prob

{
f (p) >

n−1∑
i=1

f (qi)

}

= n
∫ ∞

0

λn−1tn−2e−λt

0(n− 1)

∫ ∞
t

λe−λs ds dt

= n
∫ ∞

0

λ(n−1tn−2e−λt

0(n− 1)
· e−λt dt

= n

2n−1

∫ ∞
0

(2λ)n−1tn−2e−2λt

0(n− 1)
dt = n

2n−1
.

�

Proof of Theorem 2.Let Yi , i = 1, 2, . . . , n, be the order statis-
tics off (pi), namely:

Y1 = maxf (pi), . . . , Yn = minf (pi),

Yn 6 Yn−1 6 · · · 6 Y1.

Let ai be fixed values ofYi for i = n − k + 1, . . . , n. The random
variablesYi , i = n − k + 1, . . . , n, represent thek bottom experts
and their densities are:

ρYi |Yi+1=ai+1(t) =
{
iλe−iλ(t−ai+1), t > ai+1

0, otherwise.

Here we tookYn+1 = an+1 = 0.
Fix Yi , i = n− k + 1, . . . , n. Clearly, if we add to the bottomk

experts one of the topn − k, but not the top expert, their combined
expertise will be less than that of the others. Hence,

P({1, n− k + 1, . . . , n− 1, n} � {2, 3, . . . , n− k})
= (n− k)P ({l, n− k + 1, . . . , n− 1, n}
� {1, . . . , n− k}\{l}),
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wherel is chosen uniformly among the numbers 1, 2, . . . , n− k.
Let f ∗(pi), i = 1, . . . , n − k, be independent, identically dis-

tributed random variables, representing the topn − k experts, after
thek bottom ones have been fixed. Then:

P(D|Yn−k+1 = an−k+1, . . . , Yn = an)
= P(Y1+ an−k+1+ · · · + an > Y2+ · · · + Yn−k)

= (n− k)P
(
f ∗(p1)+ an−k+1+ · · · + an >

n−k∑
i=2

f ∗(pi)
)

Due to the lack-of-memory property of the exponential distribution
it is possible to writef ∗(pi) = an−k+1 + Zi , i = 1, . . . , n − k,
whereZ1, Z2, . . . , Zn−k are independent,Zi ∼ Exp(λ). Hence

P(D|Yn−k+1 = an−k+1, . . . , Yn = an)

= (n− k)P
{
Z1 > (n− k − 3)an−k+1−

n∑
i=n−k+2

ai +
n−k∑
i=2

Zi

}

= (n− k)P
{
Z1 > X + (n− k − 3)an−k+1−

n∑
i=n−k+2

ai

}
,

where

X =
n−k∑
i=2

Zi ∼ Gamma(λ, n− k − 1).

Consequently:

P(D|Yn−k+1 = an−k+1, . . . , Yn = an)

= (n− k)
∫ ∞

0

λn−k−1xn−k−2e−λx

0(n− k − 1)

∫ ∞
x+(n−k−3)an−k+1−∑n

i=n−k+2 ai

λe−λt dt dx

= (n− k)
∫ ∞

0

λn−k−1xn−k−2e−2λxe−λ((n−k−3)an−k+1−∑n
i=n−k+2 ai)

0(n− k − 1)
dx

= (n− k)e−λ((n−k−3)an−k+1−∑n
i=n−k+2 ai)

2n−k−1

∫ ∞
0

(2λ)n−1−kxn−k−2e−2λx

0(n − k − 1)
dx.
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The last integrand is the density function of a Gamma(2λ, n−k−1)
random variable, so that∫ ∞

0

(2λ)n−k−1xn−k−2e−2λ

0(n− k − 1)
dx = 1,

and therefore:

P(D|Yn−k+1 = an−k+1, . . . , Yn = an)

= (n− k)e
−λ((n−k−3)an+1−k−∑n

i=n+2−k ai )

2n−k−1
.

Denote:

Pj = P(D|Yn−k+1+j = an−k+1+j , . . . , Yn = an), j = 0, . . . , k.

Thus, we have computed

P0 = P(D|Yn−k+1 = an−k+1, . . . , Yn = an),
and our aim is to computePk = P(D). More generally, let us show
by induction onj that

Pj = (n− k) · · · (n− k + j)
(n− k − 1)j2n−k+j−1

e
−λ((n−k−j−3)an−k+j+1−∑n

i=n−k+j+2 ai),

j = 1, 2, . . . , k.

(Here, forj = k − 1 andj = k the sum in the exponent is empty.)
In fact, this has been shown forj = 0, and for 16 j 6 k − 2 we
have:

Pj =
∫ ∞
an−k+j+1

Pj−1ρYn−k+j (t) dt

=(n− k + j)!e
λ((n−k+j)an−k+j+∑n

i=n−k+j+2 ai)

(n− k − 1)! ∗ (n− k − 1)j−12n−k+j−2∫ ∞
an−k+j+1

λe−λx(n−k−j−2)e−(n−k+j)λx dx

=(n− k) · · · (n− k + j)
(n− k − 1)j2n−k+j+1

e
−λ((n−k−j−3)an−k+j+1−∑n

i=n−k+j+2 ai).
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In particular:

P(D) = Pk = (n− k) · · · (n− 1)n

(n− k − 1)k2n−1

= n!
(n− k − 1)!(n− k − 1)k2n−1

. �

Proof of Theorem 3. LetYi , i = 1, . . . , 2s+1, be the order statistics
of f (pi), as in the proof of Theorem 2. PutM = {Y1+ Y2+ · · · +
Ys 6 Ys+1 + · · · + Y2s+1}. Obviously, the probability sought for in
the theorem isP(M). Letai be arbitrary fixed values of the variables
Yi . DenoteAs+j =∑n

i=s+j ai , j = 1, 2, . . . , s + 1.
Then:

P(M|Ys+1 = as+1, Ys+2 = as+2, . . . , Yn = an)
= P(Y1+ Y2+ · · · + Ys 6 as+1+ · · · + an)
= P(f ∗(p1)+ · · · + f ∗(ps) 6 as+1+ · · · + an),

wheref ∗(pi) are independent variables representing each of thes

nonranked experts, after we have also fixed the(s+1) bottom ones.
According to the lack-of-memory property of the exponential dis-

tribution these variables can be represented asf ∗(pi) = Zi + as+1,
Zi ∼ Exp(λ), i = 1, . . . , s, andX = ∑s

i=1Zi ∼ Gamma(λ, s).
Hence:

P(M|Ys+1 = as+1, Ys+2 = as+2, . . . , Yn = an)

= P
(
X + sas+1 6

n∑
i=s+1

ai

)

= P
(
X 6

n∑
i=s+2

ai − (s − 1)as+1

)
.

If as+1 > (1/s − 1)As+2 the last expression clearly vanishes. For
as+1 < (1/s − 1)As+2 we have

P(M|Ys+1 = as+1, Ys+2 = as+2, . . . , Yn = an)
=
∫ As+2−(s−1)as+1 λsxs−1e−λx

0(s)
dx
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=
∫ ∞

0

λsxs−1e−λx

0(s)
dx −

∫ ∞
As+2−(s−1)as+1

λsxs−1e−λx

0(s)
dx

= 1− e−λ(As+2−(s−1)as+1) ·
s−1∑
i=0

(λ(As+2− (s − 1)as+1))
i

i! .

Put:

Ps+k = P(M|Ys+k+1 = as+k+1, Ys+k+2 = as+k+2, . . . , Yn = an),
k = 0, . . . , s.

Thus, we have calculatedPs+k for k = 0, whereas the theorem
concernsk = s + 1. We shall make the transition by increasing
k gradually. For the next calculation let us introduce:

bi = As+i − (s − i + 1)as+i−1, i = 2, 3, . . . , s + 1,

Cj = (s + 1)(s + 2) . . . (s + j) = (s+j)!
s! , j = 1, 2, . . . , s + 1,

C0 = 0.

We have shown that (in the non-trivial caseas+1 <
1
s−1As+2):

Ps = 1− e−λb2

s−1∑
i=0

(λb2)
i

i! .

Then

as+2 6 as+1 6
1

s − 1
As+2

and

Ps+1 =(s + 1)λeλ(s+1)as+2 ·
(∫ 1

s−1As+2

as+2

e−(s+1)λt dt

−e−λAs+2

s−1∑
i=0

1

i!
∫ 1

s−1As+2

as+2

e−2λtλ(As+2− (s − 1)t)i dt

)
.

Using the change of variablesy = λ(As+2− (s − 1)t) we find that
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Ps+1 =(s + 1)λeλ(s+1)as+2 ·
e−(s+1)as+2λ − e− (s+1)

(s−1) As+2λ

(s + 1)λ

−e−λAs+2− 2λ
s−1As+2

s−1∑
i=0

1

i!
∫ λ(As+3−(s−2)as+2)

0

e
2y
s−1

λ(s − 1)
yi dy

]

=1− e−λ s+1
s−1 (As+3−(s−2)as+2) − (s + 1)e−λ

(s+1)
(s−1) (As+3−(s−2)as+2)

·
s−1∑
i=0

(s − 1)i

i!2i+1 ·
∫ 2λ

s−2 (As+3−(s−2)as+2)

0
e

2y
s−1

(
2y

s − 1

)i
d

(
2y

s − 1

)
.

Now, since∫ h

0
ezzi dz = eb

i∑
j=0

hj
i!
j !(−1)i−j + (−1)i−1i!

andb3 = As+3− (s−2)as+2 we obtain a more convenient form for
Ps+1:

Ps+1 =1− e−λ s+1
s−1b3 − (s + 1)e−λ

s+1
s−1b3

·
s−1∑
i=0

(s − 1)i

i!2i+1

e 2λ
s−1b3

i∑
j=0

(
2λ

s − 1

)j
b
j

3
i!
j ! (−1)i−j + (−1)i−1i!


=1− e−λ s+1

s−1b3 + (s + 1)

2
e−λ

s+1
s−1b3

·
s−1∑
i=0

(
s − 1

2

)i
(−1)i − e−λb3

s−1∑
i=0

(λb3)
i

i!

(
1−

(
1− s

2

)s−i)
.

Thus:

Ps+1 =1−
(

1− s
2

)i
e−λ

s+1
s−1b3

− e−λb3

s−1∑
i=0

(λb3)
i

i!

(
1−

(
1− s

2

)s−i)
.

In the same way we can continue the process of obtainingPs+k:

(1) Ps+k =
∫ 1

s−k As+k+1

as+k+1

Ps+k−1(t) · ρys+k (t) dt,

k = 1, 2, . . . , s − 1,
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whereρys+k (t) is the density function of the order statisticsYs+k. By
induction we can prove

Ps+k =1+ (−1)kCk
sk−1

k∑
j=1

(−1)j−1jk−1

(j − 1)!(k − j)!(s + j)

·
(
j − s

2j

)s+k−1

e
− s+j
s−j λbk+2 − e−λbk+2

s−1∑
i=0

·
1+ (−1)kCk

sk−1

k∑
j=1

(−1)j−1jk−1

(j − 1)!(k − j)!(s + j)

·
(
j − s

2j

)s+k−1−i]
(λbk+2)

i

i! , 06 k 6 s − 1.

Then the last probability calculated is

P2s−1 =1+ (−1)s(2s − 1)!
ss−2s!

s−1∑
j=1

(−1)j j s−2

(j − 1)!(s − 1− j)!(s + j)

·
(
j − s

2j

)2s−2

e
− s+j
s−j λa2s+1 − e−λa2s+1

·
s−1∑
i=0

1+ (−1)s(2s − 1)!
ss−2s!

s−1∑
j=1

· (−1)j j s−2

(j − 1)!(s − 1− j)!(s + j)
(
j − 2

2j

)2s−2−i]
(λa2s+1)

i

i! .

Proceeding to the next state,bs+2 is undefined, but it is easy to
check thatP2s−1 = P2s , becauseP2s−1 is independent ofa2s and
the integration region in (1) is the support ofY2s .

P2s+1 =P {M} = Pm(n) = (2s + 1)
∫ ∞

0
e−(2s+1)λt dt

+ (2s + 1)(2s − 1)!
s!ss−2

s−1∑
j=1

(−1)s+j j s−2

(j − 1)!(s − 1− j)!(s + j)
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×
(
j − s

2j

)2s−2

· I1− (2s + 1)
s−1∑
i=0

1+ (2s − 1)!
ss−2s!

s−1∑
j=1

× (−1)s+j j s−2

(j − 1)!(s − 1− j)!(s + j) ·
(
j − s

2j

)2s−2−i]
I2,

where

I1 =
∫ ∞

0
e
−λt

(
2s+1+ s+js−j

)
dt = s − j

2s(s − j + 1)λ
,

I2 =
∫ ∞

0
e−λt (2s+2) (λt)

i

i! dt = 1

(2(s + 1))i+1
.

Then we obtain:

Pm(n) = 1

2s(s + 1)s

[
1+ (2s + 1)!

2ssss!

·
s−1∑
j=1

(−1)j (s − j)s
(j − 1)!(s − j + 1)!(s + j)

 .
The last expression can finally be rewritten as:

Pm(n)

= 1

2s(s + 1)s

[
1−

(2s+1
s

)
(s + 1)

(2s)s

s−1∑
i=0

(s − i − 1)s(−1)i

s + i + 1

(
s

i

)]
.

�
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