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1. Introduction

We study the uncertain dichotomous choice model, which goes back as
far as Condorcet (1785). In this model a group of n decision makers is
required to select one of two alternatives, only one of which is correct.
We assume that the alternatives are symmetric. Each expert i selects
independently of the others and has his own correctness probability
pi, indicating his ability to identify the correct alternative. A decision
rule translates all the individual opinions of the members into a group
decision. A decision rule is optimal if it maximizes the probability of
the group to make a correct choice, for all possible combinations of
opinions.

Nitzan and Paroush (1982, 1984a, 1985) obtained a criterion to
identify the optimal decision rule for known values of correctness prob-
abilities. They proved that the optimal decision rule is always one of
the weighted majority rules.

However, in a variety of situations the values of the correctness prob-
abilities are unknown. Thus we assume that the correctness probabili-
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ties pi or, equivalently, the logarithmic expertise levels f(pi) = ln pi
1−pi

are independent random variables, distributed according to some known
distribution function. We assume that pi ∈ [12 , 1], i = 1, . . . , n (cf.
Nitzan and Paroush (1982, 1984a, 1985)). If the ranking of the members
in the group is known, then one can follow rules based on this ranking.
The extremes are the expert and majority rules. The expert rule assigns
zero weights to all members of the group but the most qualified one,
so that the group always follows his decision. The majority rule assigns
equal weights to all decision makers, so that the group always follows
the majority opinion.

A general comprehensive study of weighted majority rules is a very
complicated task, since the class of such rules becomes very large as the
number of group members increases. For example, for committee size
n = 3 it includes 2 weighted majority rules, for size four − 3 rules, for
size five − 7, for size six − 21 (von Neumann and Morgenstern (1944)),
for size seven − 135 (Isbell (1959) and Fishburn and Gehrlein (1977)),
for size eight − 2470 (cf. Karotkin (1993)) and for size nine − 172958
rules (Muroga et al (1967)). Karotkin (1994, see also. 1998) coded a
general algorithm to identify all the weighted majority rules for any
group size. Nitzan and Paroush (1985), by Monte Carlo simulation,
calculated the probabilities of such rules to be optimal for n ≤ 5, under
the assumption of uniform distribution on [ 1

2 , 1] of the pi’s. Table I
provides their results.

Table I. Optimality probabilities of all weighted majority rules for n ≤ 5 for pi ∼ U[1/2, 1]

n Rules

3 (1,0,0) (1,1,1)

0.675 0.325

4 (1,0,0,0) (1,1,1,0) (2,1,1,1)

0.373 0.277 0.350

5 (1,0,0,0,0) (1,1,1,1,1) (1,1,1,0,0) (3,1,1,1,1) (2,1,1,1,0) (3,2,2,1,1) (2,2,1,1,1)

0.199 0.022 0.175 0.107 0.229 0.194 0.074

Table II represents the optimality probabilities of the same rules
under the assumption of exponentially distributed logarithmic expertise
levels f(pi), as found in Sapir (1998).

In both cases the expert rule is far more likely to be optimal than
the majority rule. Note that for n = 5 the “leaders” were the expert
rule, (1, 0, 0, 0, 0), for the exponential distribution and some rule “close”
to the expert rule, called balanced expert rule, (2, 1, 1, 1, 0), for the
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Table II. Optimality probabilities of all weighted majority rules for n ≤ 5 for f(pi) ∼ E(λ)

n Rules

3 (1,0,0) (1,1,1)

0.75 0.25

4 (1,0,0,0) (1,1,1,0) (2,1,1,1)

0.5 0.25 0.25

5 (1,0,0,0,0) (1,1,1,1,1) (1,1,1,0,0) (3,1,1,1,1) (2,1,1,1,0) (3,2,2,1,1) (2,2,1,1,1)

0.312 0.010 0.157 0.104 0.208 0.157 0.052

uniform distribution, while the “loser” in both of the situations was
the majority rule.

The probabilities Pe(n) and Pm(n) of the expert and majority rules
being optimal were calculated or estimated in a series of papers for
a variety of distributions (Nitzan and Paroush (1985), Berend and
Harmse (1993), Berend and Sapir (2001, 2002a, 2002b), Sapir (1998,
1999, 2002)). The comparison of Pe(n) and Pm(n) shows that typi-
cally the expert rule has a much better chance of being optimal than
the majority rule, especially for large n (Berend and Harmse (1993),
Berend and Sapir (2002a), Sapir (1998, 1999, 2002)). This conclusion is
not valid for any distribution, though (see Berend and Sapir (2002b),
where the range of possible asymptotic behaviour of Pe(n) and Pm(n)
is explored).

The two extreme rules attracted most of the attention in many re-
spects, and in particular regarding their probabilities of being optimal.
However, other (families of) rules are also mentioned in the literature.
Gradstein and Nitzan (1986) explored the families of the balanced
expert rules and restricted majority rules. For given correctness proba-
bilities, they found a simple criterion for optimality of such rules. They
explain in length how these rules may be viewed as mixtures of the
extreme rules. Thus, the study of these rules, interesting in its own sake,
may also shed more light on the two extreme rules. For any group size,
Karotkin (1998) arranged all the weighted majority rules in a graph,
where the nodes are the rules and the edges represent voting profiles.
In this graph, the restricted majority rules are always the leaves. The
graph provides the ranking of all rules by their efficiency.

In this paper we are concerned with the abovementioned two families
of rules – balanced expert rules and restricted majority rules. (These
rules will be defined rigorously in Section 2.) In each families, the rule
is determined by the number of group members having an influence
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on the group decision. However, under the restricted majority rules,
each of these members is equally influential, the balanced expert rule
gives the top member almost all the power, and he is outvoted only if
opposed by all other influential members. It is important to note that
the family of restricted majority rules contains the expert and majority
rules as special instances.

As mentioned earlier, we consider the situation of incomplete infor-
mation about the decisional skills. More specifically, we assume that the
logarithmic expertise levels are independent exponentially distributed
random variables. This situation was considered by Sapir (1998, 1999),
who calculated the probabilities of the expert, simple majority and so-
called balanced expert rule of order n being optimal. The following
theorem was obtained:

THEOREM A. Suppose f(pi), i = 1, 2, ..., n, are i.i.d. exponential

variables. The probability of:

(i) the simple majority rule being optimal ( for odd n = 2s + 1 ) is

Pm(n) =

(n−1
s

)

(n2 − 1)s
.

(ii) the expert rule being optimal is

Pe(n) =
n

2n−1
.

(iii) the balanced expert rule of order n being optimal is

Pbe(n, n) =
n

(n − 2)2n−1
.

In this paper we generalize the results of Sapir (1998, 1999) obtaining
explicit formulae for the probabilities of being optimal of the rules
from the above families. It is interesting to note that our result for
the family of restricted majority rules contains the expert and simple
majority rules as special cases, and in particular we provide a unified
proof which covers both extremes. In addition, we rank the rules in
each family according to optimality probabilities, compare between the
families and compare all rules with the two extremes.

In Section 2 we present the definitions of the rules of the two families
and the criteria for the optimality. Section 3 contains the main results,
and Section 4 is devoted to the proofs.
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2. Restricted Majority and Balanced Expert Rules

The criterion obtained by Nitzan and Paroush (1982, 1984a, 1985)
to identify the optimal decision rule for known values of correctness
probabilities pi is as follows:

The group recommends the first alternative if and only if
∑

i∈A

f(pi) ≥
∑

i∈B

f(pi),

where A ⊆ {1, 2, ..., n} is the set of group members recommending the

first alternative, and B = {1, ..., n} \ A− of those recommending the

second.

Thus, the optimal decision rule is always a weighted majority rule,
with weights f(pi), i = 1, 2, . . . , n.

Now we define the rules which are the subject of the paper − the
restricted majority rules and the balanced expert rules.

DEFINITION 1. The restricted majority rule of (odd) order k = 2s+1
(where 1 ≤ s < n/2) is characterized by assigning equal weights to the

k most competent group members and zero weights to the remaining

members.

In the particular cases k = 1 and k = n we obtain the expert rule and
the simple majority rule, respectively. The rules obtained for 1 < k < n
lie in-between the extreme two. If the values of the logarithmic expertise
levels are f(p1), f(p2), ... , f(pn), then the restricted majority rule of
order k = 2s + 1 is optimal if and only if

n−s
∑

i=n−2s

wi ≥
n−2s−1
∑

i=1

wi +
n
∑

i=n−s+1

wi, (1)

where w1 ≤ ... ≤ wn are the ordered values of f(p1), ... , f(pn)
(Gradstein and Nitzan, 1986).

DEFINITION 2. The balanced expert rule of order k (where 1 ≤ k ≤
n) is characterized by assigning weight of k − 2 to the most competent

member, weight 1 to each of the next k − 1 members, and weight 0 to

the remaining n − k members.

The balanced expert rule of order k is optimal if and only if

n−k
∑

i=1

wi +
n−1
∑

i=n−k+2

wi − wn−k+1 ≤ wn ≤
n−1
∑

i=n−k+1

wi −
n−k
∑

i=1

wi, (2)

(Gradstein and Nitzan, 1986).
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Thus, the rule is identical to the expert rule, except that, if all
members, ranking from the second up to the k-th place oppose the top
expert, we follow their opinion. Clearly, the balanced expert rule of
order 3 coincides with the restricted majority rule of order 3.

3. Main Results

3.1. Restricted majority rule

THEOREM 1. Suppose f(pi), i = 1, 2, ..., n, are i.i.d. exponential

variables. For odd k = 2s + 1, 1 ≤ k ≤ n, the probability of the

restricted simple majority rule of order k being optimal is:

Prm(n, s) =
n

2n−1
·

(

n − 1
s, s, n − 2s − 1

)

(2s + 1)(s + 1)n−s−1ss
.

The special cases k = 1 and k = n, where we have the expert and
the majority rules, are not new; see Theorem A.(i) and A.(ii) in the
Introduction. In Table III we present a few initial values. Note that the
first row entries relate to the expert rule, and the leftmost entries at
the other rows – to the majority rule.

Table III. Optimality probability of the restricted majority rule

P
P

P
P

P
P

P
s

n 3 4 5 6 7 8 9 10

0 0.75 0.5 0.3125 0.1875 0.1094 0.0625 0.0352 0.0195

1 0.25 0.25 0.1563 0.0781 0.0342 0.0137 0.0051 0.0018

2 0.0104 0.0104 0.0061 0.0027 0.0010 0.0003

3 0.0002 0.0002 0.0001 4 · 10−5

4 1.7 · 10−6 1.7 · 10−6

The table illustrates very distinctly that the probability of the op-
timality of the decision rule decreases upon moving from the expert to
the majority rule. Formally, this is expressed in

PROPOSITION 1. For any fixed n and 0 ≤ s ≤ n − 3

2
we have:

Prm(n, s) > Prm(n, s + 1).
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REMARK 1. A curiosity which stands out upon looking at Table III
is that:

Prm(2s + 1, s) = Prm(2s + 2, s), s ≥ 1.

The equality follows immediately from Theorem 1. We mention that
one can also give an independent proof, relying on the lack-of-memory
property of the exponential distribution. Thus, the property is not
valid for a general distribution. For example, it fails for the uniform
distribution (see Table I).

3.2. Balanced expert rule

THEOREM 2. Suppose f(pi), i = 1, 2, ..., n, are i.i.d. exponential

variables. For 3 ≤ k ≤ n the probability of the balanced expert rule of

order k being optimal is:

Pbe(n, k) =



























(n
3

)

4n−2
, k = 3,

k

2n−1
·

(n
k

)

(k − 2)(k − 1)n−k
, 4 ≤ k ≤ n.

REMARK 2. The case k = n yields Theorem A.(iii).

REMARK 3. As mentioned earlier, the restricted majority rule of
order 3 coincides with the balanced expert rule of the same order.
Indeed, for this rule we obtain either by Theorem 1 or Theorem 2:

Pbe(n, 3) = Prm(n, 1) =

(n
3

)

4n−2
.

Table IV presents a few initial values of Pbe(n, k). Of course, the
row corresponding to k = 3 coincides with the row corresponding to
s = 1 in Table III.

For fixed n and varying k the information provided by Table IV is
less clear than that given by Table III for the restricted majority rules.
The following propositions give full information in this regard.

PROPOSITION 2. We have







Pbe(n, 3) ≤ Pbe(n, 4), 4 ≤ n ≤ 7,

Pbe(n, 3) > Pbe(n, 4), n ≥ 8.
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Table IV. Optimality probability of the balanced expert rule

P
P

P
P

P
P

P
k

n 3 4 5 6 7 8 9 10

3 0.25 0.25 0.1563 0.0781 0.0342 0.0137 0.0051 0.0018

4 0.25 0.2083 0.1042 0.0405 0.0135 0.0041 0.0011

5 0.1042 0.0781 0.0342 0.0114 0.0032 0.0008

6 0.0469 0.0328 0.0131 0.0039 0.0010

7 0.0219 0.0146 0.0055 0.0015

8 0.0104 0.0067 0.0024

9 0.0050 0.0031

10 0.0024

PROPOSITION 3. For sufficiently large n























Pbe(n, k) > Pbe(n, k + 1), 3 ≤ k < k0,

Pbe(n, k) ≤ Pbe(n, k + 1), k = k0,

Pbe(n, k) < Pbe(n, k + 1), k0 < k ≤ n − 2,

where k0 = k0(n) belongs to the interval
(

n
1+ln n , n

ln n

)

.

PROPOSITION 4.






Pbe(n, n − 1) = Pbe(n, n), n = 4,

Pbe(n, n − 1) > Pbe(n, n), n ≥ 5.

PROPOSITION 5. For sufficiently large n

Pbe(n, n − 1) = max
3≤k≤n

Pbe(n, k).

3.3. Comparing the two families

For both of the above families of rules, the order is the number of
members having an influence on the group decision. Hence it is inter-
esting to compare, for any given order, the behavior of the restricted
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majority rule and the balanced expert rule of that order. (Of course,
this comparison is relevant only for the odd orders.) As mentioned in
Remark 3, for k = 3 the two rules coincide, and for other values of k
the following proposition answers the question.

PROPOSITION 6. For odd k ≥ 5 and sufficiently large n



































Prm

(

n, k−1
2

)

> Pbe(n, k), k < k1,

Prm

(

n, k−1
2

)

≤ Pbe(n, k), k = k1,

Prm

(

n, k−1
2

)

< Pbe(n, k), k1 < k ≤ n,

where k1 = k1(n) belongs to the interval
(

n ln 2
lnn , n ln 2

lnn + n ln 2
ln3/2 n

)

.

Another question raised in the introduction regards a comparison of
the rules of the two families with the two extreme rules – expert and
simple majority. As the extreme rules are special cases of restricted
simple majority rules, Proposition 1 provides an answer to the ques-
tion for this family. Namely, the probability of the expert rule being
optimal is higher that that of all other members of the family, while
that of the majority rule is smaller than that of all others. The following
proposition provides this comparison for the other family.

PROPOSITION 7.

(i) For n ≥ 3
Pbe(n, k) < Pe(n), k = 3, . . . , n.

(ii) For sufficiently large n:

Pbe(n, k) > Pm(n), k = 3, . . . , n.

Figure 1 provides a schematic drawing of the graphs of the functions

Pbe(n, k) and Prm

(

n, k−1
2

)

as functions of k for large n. It combines

the information contained in Proposition 1 through 7 − the behaviour
of each function separately (Proposition 1 for Prm and Proposition 2- 5
for Pbe) a comparison of the functions (Proposition 6) and a compar-
ison of the two extreme rules with all other rules of the two families
(Proposition 1 and Proposition 7). We emphasize that the graphs are
designed to give only qualitative information but not to depict accu-
rate quantitative information regarding the values of the functions. In
particular, the functions are drawn as if defined for any real k, whereas
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k is actually an integer (odd for Prm). The points a, b, c and d are the
endpoints of the intervals containing the points k1 of Proposition 6 and
k0 of Proposition 3.

_._ − restricted majority rules

.....  −  balanced expert rules

3

P (n)e

c db
k

(n,k)P
be

(n)P

* −majority rule (for odd n)

n−1 n

m*

#

P
rm
(n,(k−1)/2)

1 a

# −expert rule 

Figure 1. Comparing the two families

4. Proofs

4.1. Restricted majority rule

Proof of Theorem 1. Let Yi, i = 1, 2, ..., n, be the order statistics of
f(pi) ∼ Exp(1):

Y1 ≤ Y2 ≤ ... ≤ Yn. (3)

According to (1):

Prm(n, s) = P





n−s
∑

i=n−2s

Yi ≥
n−2s−1
∑

i=1

Yi +
n
∑

i=n−s+1

Yi



 .
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Denote:

Z1 = Y1,

Zi = Yi − Yi−1, i = 2, 3, ..., n.
(4)

Since f(pi), i = 1, 2, ..., n, are independent exponentially distributed
random variables, the differences Zi, i = 1, 2, ..., n, are also indepen-
dent exponentially distributed random variables and Zi ∼ Exp(n−i+1)
(cf. Feller (1971) Sec. 1.6).

Now we can represent the order statistics in terms of the Zi’s:

Yi =
i
∑

j=1

Zj, i = 1, 2, ..., n.

Using this representation

Prm(n, s) = P



(s + 1)
n−2s
∑

i=1

Zi +
n−s
∑

i=n−2s+1

(n − i + 1 − s)Zi

≥
n−2s−1
∑

i=1

(n − 2s − i)Zi + s
n−s+1
∑

i=1

Zi +
n
∑

i=n−s+2

(n + 1 − i)Zi





= P



Zn−2s ≥
n−2s−2
∑

j=1

jZn−2s−1−j +
s−1
∑

j=1

jZn−2s+1+j +
s
∑

j=1

jZn−j+1



 .

Denote:

Wi = (n − i + 1)Zi, i = 1, 2, ..., n. (5)

Note that Wi ∼ Exp(1), i = 1, 2, ..., n, are independent random
variables. Using these variables Prm(n, s) can be represented as follows:

Prm(n, s) = P



Wn−2s ≥
n−2s−2
∑

j=1

j(2s + 1)

2s + 2 + j
Wn−2s−1−j

+
s−1
∑

j=1

j(2s + 1)

2s − j
Wn−2s+1−j + (2s + 1)

s
∑

j=1

Wn−j+1



 .

(6)

Employing the lack-of-memory property of the exponential distribu-
tion, it is easy to see that for any positive numbers a1, a2, . . . , am we
have

P (a1W1 ≥ a2W2 + a3W3 + . . . + amWm) =
m
∏

i=2

1

1 + ai
a1

. (7)
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Hence (6) yields:

Prm(n, s) =
1

(2s + 2)s

n−2s−2
∏

j=1

1

1 + j(2s+1)
2s+2+j

·
s−1
∏

j=1

1

1 + j(2s+1)
2s−j

=
1

2s(s + 1)s

n−2s−2
∏

j=1

2s + 2 + j

2(j + 1)(s + 1)
·

s−1
∏

j=1

2s − j

2(j + 1)s
.

Routine calculations give

Prm(n, s) =
n!

s!s!(n − 2s − 1)!2n−1
· 1

(s + 1)s
· 1

(2s + 1)ss(s + 1)n−2s−1

=
n

2n−1
·

(

n − 1
s, s, n − 2s − 1

)

(2s + 1)(s + 1)n−s−1ss
,

which completes the proof.

Proof of Proposition 1. For fixed n and 0 ≤ s ≤ n − 3

2
we have:

Prm(n, s + 1)

Prm(n, s)
=

2s + 1

2s + 3

(n − 2s − 1)(n − 2s − 2)

(s + 2)2

(

s + 1

s + 2

)n−4 (s(s + 2)

(s + 1)2

)s

≤
(

n − 2s

s + 2

)2 (s + 1

s + 2

)n−4

.

For s = 0, 1 we can easily give a direct proof. Therefore, for s ≥ 2 we
have

ln
Prm(n, s + 1)

Prm(n, s)
≤ 2 ln

n − 2s

s + 2
+ (n − 4) ln

(

1 − 1

s + 2

)

≤ 2 ln
n − 4

s + 2
− n − 4

s + 2

≤ 2(ln 2 − 1) < 0.

4.2. Balanced expert rule

Proof of Theorem 2. Since for k = 3 the result is contained in Theo-
rem 1, we shall carry out the proof only for k ≥ 4.
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Let Yi, Zi and Wi i = 1, 2, ..., n, be as (3), (4) and (5), respectively.
According to (2):

Pbe(n, k) = P





n−k
∑

i=1

Yi +
n−1
∑

i=n−k+2

Yi − Yn−k+1 ≤ Yn ≤
n−1
∑

i=n−k+1

Yi −
n−k
∑

i=1

Yi



 .

In terms of the Z ′
is the inequalities (2) may be written as

n−k+1
∑

i=1

(n−3−i)Zi ≤ Zn−
n−2
∑

i=n−k+2

(n−1−i)Zi ≤
n−k+1
∑

i=1

(2k−n−3+i)Zi.

Using the lack-of-memory property, we obtain:

Pbe(n, k) = P



Zn ≥
n−2
∑

i=n−k+2

(n − 1 − i)Zi





·P
(

n−k+1
∑

i=1

(n − 3 − i)Zi ≤ Zn ≤
n−k+1
∑

i=1

(2k − n − 3 + i)Zi

)

.

(8)

By (7), the first factor on the right hand side of (8) is

P



Zn ≥
n−2
∑

i=n−k+2

(n − 1 − i)Zi



 = P



Wn ≥
n−2
∑

i=n−k+2

n − 1 − i

n + 1 − i
Wi





=
n−2
∏

i=n−k+2

1

1 + n−1−i
n+1−i

=
k − 1

2k−2
.

(9)

For the second factor we have:

P

(

n−k+1
∑

i=1

(n − 3 − i)Zi ≤ Zn ≤
n−k+1
∑

i=1

(2k − n − 3 + i)Zi

)

= P

(

n−k+1
∑

i=1

n − 3 − i

n + 1 − i
Wi ≤ Wn ≤

n−k+1
∑

i=1

2k − n − 3 + i

n + 1 − i
Wi

)

.

(10)

For arbitrary fixed values wi of Wi satisfying

n−k+1
∑

i=1

n − 3 − i

n + 1 − i
wi ≤

n−k+1
∑

i=1

2k − n − 3 + i

n + 1 − i
wi,

denote

A =

{

n−k+1
∑

i=1

n − 3 − i

n + 1 − i
Wi ≤ Wn ≤

n−k+1
∑

i=1

2k − n − 3 + i

n + 1 − i
Wi

}
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and

Pj = P (A | Wi = wi, 1 ≤ i ≤ j ) , j = 0, . . . , n − k + 1.

(Note that P0 is exactly the left hand side of (10).) Clearly,

Pn−k+1 = e−
∑n−k+1

i=1
n−3−i
n+1−i

wi − e−
∑n−k+1

i=1
2k−n−3+i

n+1−i
wi . (11)

Continuing this process, we find that

Pn−k =

∫

D
Pn−k+1 · e−xdx,

where D =
{

Wn+1−k ≥∑n−k
i=1

k(n−k−i)
n+1−i wi

}

. Hence (11) yields

Pn−k =
k

2(k − 1)(k − 2)
e−
∑n−k

i=1

wi
n+1−i

(2(k−2)(n−k)+n−3−i(2k−3)) . (12)

Continuing this process, we finally obtain:

P0 =
∫∞

0 . . .
∫∞

0 Pn−k(w1, . . . , wn−k)e
−
∑n−k

i=1
widw1 . . . wn−k. (13)

Substituting (12) into (13) we obtain

P0 =
k

2(k − 1)(k − 2)

n−k
∏

i=1

∫ ∞

0
e−
(

2(k−2)(n−k)+n−3−i(2k−3)
n+1−i

+1
)

xdx

=
k

2(k − 1)(k − 2)

n−k
∏

i=1

n + 1 − i

2(k − 2)(n − k) + 2n − 2 − i(2k − 2)

=
k

2(k − 1)(k − 2)

n−k
∏

i=1

n + 1 − i

2(k − 1)(n − k + 1 − i)

=
n!

2n−k+1(k − 1)n−k+1(k − 2)(n − k)!(k − 1)!

=
k

(k − 2)2n−k+1(k − 1)n−k+1

(

n
k

)

.

(14)

Combining (9) and (14), (8) takes on form

Pbe(n, k) =

k

(

n
k

)

2n−1(k − 2)(k − 1)n−k
, k ≥ 4,

which proves the theorem.

Note that one can prove the theorem for k = 3 in a similar way
(instead of relying on Theorem 1), but some of the details are different.
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Instead of (8) we have

Pbe(n, 3) = P

(

0 ≤ Zn ≤
n−2
∑

i=1

(3 − n + i)Zi

)

,

and (11) becomes

Pn−k+1 = 1 − e−
∑n−2

i=1
3−n+i
n+1−i

wi .

The rest of the computations remain basically the same.

Proof of Proposition 2. A routine calculation yields:

Pbe(n, 4)

Pbe(n, 3)
= (n − 3)

(

2

3

)n−4

.

For n ≥ 5 the right hand side decreases with n. Checking the values
for n = 4, 5, 6, 7, 8, we obtain the required inequalities.

Proof of Proposition 3. For arbitrary fixed n denote:

h(k) =
Pbe(n, k + 1)

Pbe(n, k)
=

(k − 2)(n − k)

(k − 1)
(

1 + 1
k−1

)n−k
, k ≥ 4. (15)

Then

lnh(k) = ln
(

1 − 1
k−1

)

+ lnn + ln
(

1 − k
n

)

− (n − k) ln
(

1 + 1
k−1

)

= lnn −
(

1
k−1 + O

(

1
k2

))

−
(

k
n + O

(

k2

n2

))

−(n − k)
(

1
k−1 − 1

2(k−1)2 + O
(

1
k3

))

= A(k) + B(k) + C(k),

(16)

where for x ∈ [4, n/2]:

A(x) = lnn + 1 − n
x−1 ,

B(x) = n−x
2(x−1)2 − x

n ,

C(x) = O
(

1
x2

)

+ O
(

x2

n2

)

+ O
(

n
x3

)

< 0.
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Taking c =
[

n
1+lnn

]

and d =
[ n
ln n

]

, we will show that for sufficiently

large n

h(c) < 1 (17)

and

h(d) > 1. (18)

Indeed, for sufficiently large n

A(c) ≤ A

(

n

1 + lnn

)

= lnn + 1 − n
n

1+ln n − 1
= − (1 + lnn)2

n − lnn − 1
< 0

and

B(c) ≤ B
(

n
1+ln n − 1

)

=
(1 + n lnn + lnn)(1 + lnn)

2(n − 2 − 2 ln n)2
− n − lnn − 1

n(1 + lnn)

= Θ
(

ln2 n
n

)

− Θ
(

1
lnn

)

< 0,

which implies (17). Similarly

A(d) ≥ A

(

n

lnn
− 1

)

= lnn + 1 − n
n

lnn − 2
= 1 − 2 ln2 n

n − 2 ln n
−→
n→∞

1,

B(d) ≥ B

(

n

lnn

)

=
n ln2 n − n lnn

2(n − lnn)2
− 1

lnn
= O

(

1

lnn

)

−→
n→∞

0,

and

C(d) = O

(

1

ln2 n

)

−→
n→∞

0,

which implies (18).

Now by (15) we have

h(k + 1)

h(k)
=

(k − 1)(n − k − 1)

(k − 2)(n − k)

(

k2

k2 − 1

)n−k−1

.

Since for k ≤ n+1
2

(k − 1)(n − k − 1)

(k − 2)(n − k)
=

(n − k)(k − 1) − k + 1

(n − k)(k − 1) − n + k
≥ 1

we obtain:

h(k + 1) > h(k), k ≤ n + 1

2
. (19)
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Clearly, for sufficiently large n we have b < n+1
2 . Combining (17), (18),

(19) and Proposition 2 we obtain for sufficiently large n



























Pbe(n, k) > Pbe(n, k + 1), 3 ≤ k < k0,

Pbe(n, k) ≤ Pbe(n, k + 1), k = k0,

Pbe(n, k) < Pbe(n, k + 1), k0 < k ≤ n+1
2 ,

for some k0 ∈ (a, b).
To complete the proof, it remains to show that

Pbe(n, k + 1) > Pbe(n, k),
n + 1

2
≤ k ≤ n − 2. (20)

Indeed, by (16) we have for large n and k ≤ n − 3

lnh(k) ≥ ln(n − k) − n − k

k − 1
+ ln

n − 1

n + 1

≥ ln(n − k) − 1.01 ≥ ln 3 − 1.01 > 0,

while for k = n − 2 we verify directly that lnh(n − 2) > 0. This
completes the proof.

Proof of Proposition 4. The inequality for n = 4 is immediate. For
n ≥ 5

Pbe(n, n)

Pbe(n, n − 1)
=

n − 3

n − 1
< 1.

Proof of Proposition 5. We have

Pbe(n, 3)

Pbe(n, n − 1)
=

(n − 2)2(n − 3)

3 · 2n−2
< 1

for sufficiently large n. By Proposition 3, this proves the proposition.

4.3. Comparisons between the two families and the two

extremes

Proof of Proposition 6. For arbitrary fixed n and k = 2s+1 ≥ 5 denote:

g(s) =
Prm(n, s)

Pbe(n, 2s + 1)
.
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18 Daniel Berend and Luba Sapir

By Theorems 1 and 2

g(s) =

(

2s

s

)

2n−2s−1 (2s − 1)sn−3s−1

(2s + 1)(s + 1)n−s−1
. (21)

Denote:

r(x) =
2n

x2x+ 1
2

· 1

en/x
,

√
n ≤ x ≤ n − 1

2
.

By Stirling’s formula it is easy to show that for s ≥ √
n we have

g(s) � r(s), (22)

where y(x) � z(x) if 0 < c ≤ y(x)
z(x) ≤ C < ∞ as x → ∞. It will usually

be convenient to use ln r(x):

ln r(x) = n(ln 2 − 1/x) − (2x + 1/2) ln x. (23)

First we will show that for sufficiently large n

g

([

n ln 2

2 ln n

])

> 1 (24)

and

g

([

n ln 2

2 lnn
+

n ln 2

2 ln3/2 n
− 1

2

])

< 1. (25)

Indeed, substituting s =
[

n ln 2
2 ln n

]

in (23) and using the inequality

ln r([x]) ≥ n(ln 2 − 1/(x − 1)) − (2x + 1/2) ln x,

we have

ln r

([

n ln 2

2 lnn

])

≥ n

(

ln 2 − 2 lnn

n ln 2 − 2 ln n

)

−
(

n ln 2

lnn
+

1

2

)

ln
n ln 2

2 ln n

= ln 2 · n ln lnn

lnn
+ O

(

n

lnn

)

−→
n→∞

∞ ,

which by (22) implies (24). Similarly, substituting s =
[

n ln 2
2 ln n + n ln 2

2 ln3/2 n
− 1

2

]

in (23) and using the inequality

ln r([x]) ≤ n(ln 2 − 1/x) − (2(x − 1) + 1/2) ln (x − 1),

we obtain

ln r

([

n ln 2

2 lnn
+

n ln 2

2 ln3/2 n
− 1

2

])

≤ n ln 2 −
(

n ln 2

lnn
+

n ln 2

ln3/2 n
− 5

2

)

ln
n ln 2

2 lnn

= − n ln 2√
lnn

+ O

(

n ln lnn

ln3/2 n

)

−→
n→∞

−∞
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for sufficiently large n. Thus we have (25).

Now we will show that g decreases for 2 ≤ s ≤
√

n
ln n−1 and increases

for
√

n
lnn−ln lnn ≤ s ≤ n−1

2 . Indeed, by (21)

g(s + 1)

g(s)
= h(s)

(

1 +
1

s(s + 2)

)n−3s−4 (

1 +
1

s + 1

)−2(s+1)

,

where h(s) =
(2s + 1)3

2s3(2s − 1)(2s + 3)
. Denote q(s) = ln

g(s + 1)

g(s)
. A tech-

nical calculation shows that

n

(s + 1)2
− 2 ln s − 4 ≤ q(s) ≤ n

s2
− 2 ln s + ln 2 − 2, s ≥ 2. (26)

If 2 ≤ s ≤
√

n
lnn − 1, then by the left inequality in (26)

q(s) ≥ n

(s + 1)2
− 2 ln (s + 1) − 4 ≥ ln lnn − 4 > 0

for sufficiently large n, and therefore

g(s + 1) > g(s), 2 ≤ s ≤
√

n

lnn
− 1.

It is easy to check that g(2) > 1, so that the last inequality yields

g(s) > 1, 2 ≤ s ≤
√

n

lnn
− 1. (27)

If
√

n
ln n−ln ln n ≤ s ≤ n−1

2 , then by the right inequality in (26)

q(s) ≤ ln (ln n − ln lnn) − ln lnn + ln 2 − 2 < 0,

which implies

g(s + 1) < g(s),

√

n

lnn − ln lnn
≤ s ≤ n − 1

2
. (28)

Next we show that for sufficiently large n

g(s) > 1,

√

n

lnn
− 1 ≤ s ≤

√

n

lnn − ln lnn
. (29)

Indeed, for large n

[
√

n

lnn
− 1,

√

n

lnn − ln lnn

]

⊆
[

1

2

√

n

lnn
,
3

2

√

n

lnn

]

.
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Thus we may take 1
2

√

n
lnn ≤ s ≤ 3

2

√

n
lnn , and for such s we have by

(23)

ln r(s) ≥ (ln 2 − 1/2) n − O(
√

n lnn) −→
n→∞

∞ ,

which by (22) implies (29).
Since for sufficiently large n

√

n

lnn − ln lnn
<

[

n ln 2

2 lnn

]

, (30)

combining (24),(25), (27), (28), (29), and (30) we complete the proof.

Proof of Proposition 7.

(i) For k = 3 the proposition follows from Proposition 1 (for s = 0).
For k ≥ 4 we have

Pbe(n, k)

Pe(n)
=

1

(k − 1)n−k(k − 2)

(

n − 1
k − 1

)

=
k

(k − 2)(k − 1)

n−k−1
∏

i=1

k + i

(i + 1)(k − 1)
< 1 ,

which implies the proof of the first part.

(ii) It suffices to show that Pm(n) < Pbe(n, k0), where k0 is as in
Proposition 3, and that Pm(n) < Pbe(n, n). By Proposition 6 we have
Prm(n, (k0 −1)/2) < Pbe(n, k0) (since k1 ≈ k0 ln 2). From Proposition 1
if follows that Pm(n) < Prm(n, (k0 − 1)/2). Also:

Pm(n)

Pbe(n, n)
= O

(√
n

(

4

n

)n)

< 1

for sufficiently large n.

REMARK 4. Part (i) of the proposition follows readily from Proposi-
tion 5 for sufficiently large n, as we have to prove only

Pe(n) > Pbe(n, n − 1).

We needed a direct proof to show it for all n ≥ 3.
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