EXPERT RULE VERSUS MAJORITY RULE
UNDER PARTIAL INFORMATION, III

Luba Sapir

Department of Mathematics and Computer Science,

Ben-Gurion University, Beer-Sheva 84105, Israel

Abstract

In this paper we deal with certain aspects of the dichotomous choice model. Our
main purpose is clarifying the connections between some characteristics of the decision mak-
ing body and the probability of its making correct decisions. A group of experts is required
to select one of two alternatives, of which exactly one is regarded as correct. The alterna-
tives may be related to a wide variety of areas. A decision rule translates the individual
opinions of the members into a group decision. A decision rule is optimal if it maximizes the
probability of the group to make a correct choice for all possible combinations of opinions.

We study the situation where only partial information on the probabilities of each
expert in the group to choose the right decision is available. Specifically, we assume the ex-
pertise levels to be independent generalized Pareto distributed random variables. Moreover,
the ranking of the members of the team is (at least partly) known. Thus, one can follow
rules based on this ranking. The extremes are the expert rule and the simple majority rule.
We show that, similarly to other previously studied cases, the expert rule is more likely to
be optimal than the majority rule. The results are partly obtained theoretically and partly

by simulation.



Section 1. Introduction and Model

We focus on the dichotomous choice model, where a group of n experts is required
to select one of two alternatives, of which exactly one is regarded as correct. The experts
may be humans or not (say, computers). Each of them has some probability to make the
right choice. We assume the experts are independent in their choices. A decision rule is a
rule for translating the individual opinions into a group decision. Such a rule is optimal if
it maximizes the probability that the group will reach the correct decision for all possible
combinations of opinions. If the members indexed by some subset A C {1,2,...,n} of the
group recommend the first alternative, while those indexed by B = {1, ...,n}\ A recommend
the second, then the first alternative should be chosen if and only if

H i > H Di (1.1)
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where p; is the correctness probability of the i-th expert (see Nitzan and Paroush (1982,
1984a ,1985) and Grofman et al (1983)). Thus, if the values p; are known, then the optimal

or, equivalently, if

rule is a weighted majority rule, with weights In . In view of (1.1) and (1.2) it is

i
natural to define the ezpertise of an individual, whose probability of being correct is p, as

———, and his logarithmic expertise as In (11.%]0 .
However, the assumption of full information regarding the decision makers com-
petences is very restricting and often far from being fulfilled. Our goal here is identifying
the optimal decision rule under partial information on the decision skills. Specifically, we
assume the correctness probabilities of the group members to be independent random vari-
ables distributed according to some given distribution rule. Moreover, while the values
these variables take are unknown, we assume that the ranking of the members in terms of
their individual correctness probabilities is known. Thus, one can follow rules based on this
ranking (cf. Gradstein and Nitzan(1986)). The extremes are the expert rule — following
the advice of the most qualified individual while ignoring all the rest, and the majority rule
— always taking the majority advice, even when advocated by mostly less qualified group

members. Clearly, there are numerous other decision rules in-between these two extremes.

The probabilities of the two extreme rules to be optimal were compared in a series

of papers. This line was started by Nitzan and Paroush(1985), who dealt with the case of

2



normally distributed logarithmic expertise levels. Berend and Harmse (1993) regarded the
case of uniformly distributed correctness probabilities, Berend and Sapir(1999) continued
some of the results of Berend and Harmse (1993) for the case of generalized uniform distri-

bution, and Sapir(1998) — the situation of Pareto distributed expertise levels.

In this paper we continue the above, assuming the expertise levels to be distributed

according to some generalization of Pareto distribution.

Section 2. Main Results.

Let F(p) = 1’%}3 be the expertise of an individual and f(p) = In F(p) be his loga-

rithmic expertise. In terms of the logarithmic expertise levels f(p;), the assumption of the
expertise levels F'(p;) being Pareto distributed is equivalent to f(p;) being exponentially
distributed. In this paper we consider, more generally, the situation of gamma distributed
logarithmic expertise, f(p;) ~ I'(\, @). Namely, we assume that f(p;) are independent and

distributed according to the same density function

)\axa—le—)\w
—— =20,
_ ['(a)
pf(pi)(x) = (\,a > 0).
0, otherwise,

Equivalently, as one readily verifies:

A In*! (z) -

_ T
9r@)(t) = T(a)zt 7

0, otherwise.

The special case o = 1 yields Pareto distribution of F(p;) . Denote by P.(n) the probability
of the expert rule to be optimal and by P, (n) the probability of the majority rule to be

optimal. In Sapir(1998) this case was studied extensively and it was found that

= (3)”

and




—1
where s = nT (Recall that the majority rule is defined only for odd n.) The following

table presents a few initial values of both of these probabilities .

n 3 5 7 9 11
Pe(n) 0.75 | 0.31 0.11 0.04 0.01
Pu(n) | 0.25 | 0.01 | 1.810 % | 1.7-10 © | 1.0-10°°

Table 1. Py(n) and P,(n) for Pareto distributed expertise levels.

The table shows very distinctly that the expert rule is far more likely to be optimal

than the majority rule already for quite small values of n.

In expressing our results, it will be convenient to introduce “binomial coefficients”

with real entries, in analogy to the definition of regular binomial coefficients:

x [z +1)
= b bl ER; v Y - Z_.
(y) Ty + )z —y+1) Y 5y, T -y ¢

Theorem 2.1: The probability for the expert rule to be optimal is given by either of the

following formulas:
n X1 [fan+k-1
1
2) P.(n) = nGjy (§> ., where G(x) is the distribution function of f(an — o, @).

The following corollary yields the asymptotic behaviour of P.(n) as the number of
experts becomes large.

Corollary 2.1: For any a >0, asn — oo,

i = s () (-0

For special values of «, the infinite sum in Theorem 2.1 reduces to a finite one, as follows.

Theorem 2.2: If a = ™5, where m is a posilive integer, then:

n o 1 2m 14
Pe(n):§(1—21 n222_3<n_2ﬂ 1 .

n—2




Theorem 2.3: If a = -2, where m is a posilive integer, then:

&Uﬁzn(l—ff%{§§<%%_ )).

Notice that the binomial coefficients in the sum can be calculated without using the I'

function, since for non-negative integer j we have:

(x) zw(z—1)..(z—j+1)

j = T , reR, 7=0,1,2,...
J!

For some special distributions, which are particular instances of Gamma distribu-
tion, such as x?(r) and Erlang(), d), we obtain simple expressions for P.(n). Recall that the
x%(r) distribution is I'(3, %) for a positive integer r and Erlang(),d) coincides with I'(), d)

for a positive integer d.

Corollary 2.2: For f(p;) ~ x%(r), the probability of the expert rule to be optimal is:

1) If n = 2k, where k > 2 is a positive integer, then:

r(k—1)—1 .
n 1 j+r—1\1
Pn)=~-[1- - j —1.

2) If n =2k — 1, where k > 2 is a positive integer, then:

1 r(k—1)—1 ]+ r_1 1
— ) 2 —
Pe(n)_n( 23 Z ( r—1 >2j '

J=0

The first part follows immediately from Theorem 2.2, and the second — from the proof of
Theorem 2.3. Note that the x?(r) distribution coincides with the Erlang(z,d) distribution
for an even number r = 2d of degrees of freedom. In general, if f(p;) ~ Erlang(\, d), Theo-

rem 2.2 (or Theorem 2.3) assumes an even more convenient form for Pe(n).

Corollary 2.3: If f(p;) ~ Erlang(\,d), where s is a positive integer, the probability of

the expert rule to be optimal is:

dn—l
Pen 9dn— 12( )



The following table provides the likelihood of optimality of the expert rule, calcu-
lated by Corollary 2.3 for d = 1,2, 3, 4:

d 1 2 3 4
n n\:| n n?
Pe(n) on—1 (277.—1) 2m(gﬂz —3n+ 2) Wﬂn? —3n + 2)

Table 2. P,(n) for Erlang(\, d) distributed logarithmic expertise, s = 1,2, 3, 4.

Estimating the probability Py (n) of the majority rule to be optimal seems a much
more formidable task. We have not found a way to estimate it in general. However, we did
manage to replace formula (2.1), dealing with the special case of Pareto distributed expertise

levels, by the following very simple formula, which readily provides the asymptotics as well.

Theorem 2.4: Suppose the expertise levels F(p;), 1 =1,2,...,n, are independent Pareto

distributed random variables. For odd n = 2s+ 1, the probability that the majority rule is

n—1
Pal) = H <7 (o(3)):

In the general case, we only estimated Pp(n) using Monte Carlo method (with 10* itera-

optimal 18

tions). Table 3 provides the values of P.(n) and Py (n) for several values of o and n.

n 3 5 7 9 11

[0

0.1 | P.(n) | 0.9879 ] 0.9393 | 0.8737 | 0.8083 | 0.7353
Pu(n)[0.0121 ] 0 0 0 0

0.5 | P.(n) | 0.8787 | 0.5806 | 0.3488 | 0.1998 | 0.1113
P.(n)] 0.1213 | 0.0022 | 0.0001 | 0 0

1.0 | P.(n) | 0.7500 | 0.3125 | 0.1094 | 0.0352 | 0.0107
Pn(n)] 0.2500 | 0.0104 | 0.0002 | 0 0

15 | Po(n) | 0.6467 | 0.1730 | 0.0357 | 0.0065 | 0.0011
Pn(n)] 0.3533 | 0.0228 | 0.0003 | 0 0

2.0 | P.(n) | 0.5625 | 0.0977 | 0.0120 | 0.0012 | 0.0001
Pn(n)] 0.4375 | 0.0425 | 0.0017 | 0 0

10 | P.(n) | 0.0921 | 0 0 0 0
Pa(n)] 0.9079 | 0.4874 | 0.1223 | 0.0153 | 0.0011

Table 3. Optimality probability — expert versus majority rule.

The table hints that P,(n) decreases and Py, (n) increases as functions of «. This is easily



explained by the fact that, as « increases, the distribution becomes relatively more and
more concentrated. As functions of n, both converge to 0 as n — oo, with P,,(n) seemingly

doing so much faster than P,(n) (but less and less so as « increases).

Section 3. Proofs

We assume, without loss of generality, that A = 1.

Proof of Theorem 2.1:

1)Put T =37, f(pi). According to the properties of Gamma distribution,
T ~T(1,a(n—1)). Hence:

P.(n) = n-Prob (f(pl) > if(po) — - Prob (f(pr) > T)
= (3.1)

00 pa—le—T (g ta(n—l)—le—td g
= tdx.
”/o T(@) Jo T(am—1)**

Using integration by parts in the internal integral we obtain:

z ta(n—l)e—t 1 x
ta(n—l)—l —tdt — T / ta(n—l) _tdt
/0 ‘ a(n—1) ‘0+a(n—1) 0 ‘
xa(nfl)efx 1

= * o1 gt gy
a(n —1) +a(n—l)/o ‘

Continuing this process we are led to the expression:

() xa(n—l)—i—ke—m

/0 e dt = ,§ a(n—1)(an—1)+1)...(aln-1)+ k)’




Therefore:

n 00 Ooo pontk—1p=2z ..
Pe(n) = T(a)l(an—a) ,;0 a(n—1)(a(n—1)+1)..(a(n— 1)+ k)
n o0 ['(an + k)

T(o)C(an—a) kz::O 20n+kay(n — 1) (a(n — 1) +1)...(ca(n — 1) + k)

_ nI'(an) . X1 & (an+j-1)
~ 20n(p — 1)al'(a)(an — «) (1 + 2 2k H (a(n—1)+ J))

That expansion of P.(n) gives the first part of the theorem.
2) We employ the following relationship between Beta and Gamma distributions: if 7 ~ I'(1, v)

, then B ~ (v, w). This

Z
and Y ~ I'(1, w) are independent random variables and B = A%
gives:

Pn) =n-P(f(p) > T) =n-P(f(p) + T > 2T) = n- P (# < 1) = nGy(3)

Proof of Corollary 2.1:

1 & -1
Start with the expression for Py(n) given in (3.2). Denote ug(n) = o ]1;[1 g;, Where ¢; = onEZ —_i_ ]1) ny
Then: I 0
an + a
P.(n) = . 3.3
e(n) 2anF(OZ7’L + 1— Oz)F(oz + 1) kz::ouk(n) ( )
Since
l-«a
gj+1 — q; =

(a(n=1)+j)(an=1)+j+1)
the sequence g; increases for oo < 1, decreases for a > 1 and constant for o = 1. Thus, for

a>1
i<i<L’f—1>k<u(n)<i<L)k
2% = 2%k \a(n-1)+k) = 2%k \an-1)+1) °
whereas for a < 1

1 an k< (n) <
— | — ug(n )
2% \a(n—1)+1) — * = 2k
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k
Now Z ok = = 2 and Z (m) =2+ mn—) 2, So that in any case

Jim > ug(n) =2.
k=0
By Stirling’s formula, for large real values of z (cf. Artin (1964)),
( ) vV orx® 2 —Tt1g 12:c

we have the following asymptotic behaviour of I'(an + b) for large n
['(an + b) = vV2re " (an)*™ 02 (1 + O(n)>

which gives:
['(an+1)

I'(an —a+1
By (3.3), (3.4) and (3.5):

;= (an)” (1+ 0(%)) |

Proof of Theorem 2.2:
We start from the expression for P.(n) given in (3.1). Since o =

T z
/ ta(n—l)—le—tdt — / tm_1+a€_tdt.
0 0

Denote the right side by Z,,. Integrating by parts yields:

n—2

Tp=—2"""e "+ (m+a—1)T,_.

Continuing the process m times we obtain :

wl I'(m+a) . [(m+a)
T, =— —T _ N v omta—1—i N T
L Tmra—i)® T T T

By (3.1):

a(n—1)) — D(m+a—1)

n . mz_:l Dl -—1)I'(+2q0) Tim+a)
['(a)l(a(n —1)) Ia+j+1)2it+2 IN()

Jj=0

% 1 e % m—1 r ) r
_ n/ F (_e—a: Z (m + Oj) xm—l—a—l—z + (m + O!)

(3.4)

(3.5)

/x t"‘_le_tdt) dzx
0

(o] X
/ / t et e 2dtdx | .
o Jo



By symmetry:

oo T 1 oo 2
/ t* ety e Tdtdr = = - (/ xalewdx> )
o Jo 2 0

Thus
. n ml T(a(n—1)T(G+2a) T(m+a) © e \?
Feln) = T()T(a(n—1)) (J;O " Do+ j+1)2t2 + 2T (a) (/0 z" e dx) )
_n 1— = F(] + 2@)
"2\ S T@r(a+j+ 122

Proof of Theorem 2.3:

We use again (3.1). Since oo = Ll’ the internal integral in (3.1) gives:
n

x ta(nfl)fleft m—1 e Tl

1 * mfleft —1 _
0 r(a(n—mdt:r(m)'/ot d=1-23 =

=0

Hence:

1 m—1 1 ) ]
P.(n) =n|l—-—— .—/ xa+’_16_2‘”dx>
. L JO

(
(1 e & )
(

Now we claim that for any ¢ € R — Z_ and non-negative integer 7:

gz_k<azk>:%§<a+i+r>- 66

In fact, this is trivial for r = 0. Assuming the validity of (3.6) for r = s — 1, namely
s—1 s—1
_ +k 1 a-+s
N L
k=0 k 2715 k
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we obtain for r = s :

N +k 1 o a+s 1 {a+s
2k a - - _
St () =m0

This proves (3.6) by induction. By (3.6)

1 " a+m-1
Pe(n) =n (1 - Qa+m—1 Z < ] )) ’
7=0

which implies the required formula.

Proof of Corollary 2.2:

Let f(p;) ~ x2(r), i =1,2,...,n, with r degrees of freedom, where r is a positive integer. We

will distinguish between two situations, depending on the parity of the number of experts:

1) If the number of experts is even, n = 2k, where k£ > 2 is an integer, then Theorem 2.2 im-
m r

mediately provides the first part of the corollary. Indeed, by substituting oo = m =3

in Theorem 2.2 we obtain the first part.

2) If number of experts is odd, n = 2k — 1, where k£ > 2 is a positive integer, then

Theorem 2.3 immediately provides the second part of the corollary. Indeed, substituting

m T, .
a = —— = — in Theorem 2.3 we obtain the second part.
2(k—-1) 2
Proof of Corollary 2.3:

Follows routinely from Theorem 2.3 or Theorem 2.2.

11



Proof of Theorem 2.4:
Let Y;, i=1, 2, ..., n, be the order statistics of f(p;) ~ Exp(1), namely:

Vi<, <. <Y,

Obviously,
s+1
ZY>ZY
1=s+2
Denote:
Zl = Yl;
Zi:Yvi_}/;l—la 7’:23 35 e T
Since f(p;), i =1, 2, ...,n, are independent exponentially distributed random variables,
the differences 7;, i =1, 2, ..., n, are also independent exponentially distributed random

variables and Z; ~ Exp(n—i+1)(cf. Feller(1971)). Now we can represent the order statistics

in terms of the Zs :
i
=32, i=1,2, .., n
j=1

Using this representation

Pn(n) =P (sil(s +2—-49)Z; > s%Zi + 2§1 (2s+2— z)Zz)

i=1 i=1 1=5+2
s+1 2s5+1
1=3 1=5+2

Denote W; = (n—i+1)Z;, 1 =1, 2, ..., n. Note that W; ~ Exp(1), i =1, 2, ..., n, are

independent random variables, and using them P,,(n) can be represented as follows:

s+1 . 2 2s5+1 s 1
Pn(n) =P m>ZJ__W Zﬁ;ig.
= 3 —1+1 i= s+2 —1+1
Wy W +n W;
1= 7'1, 1=5+2
, — 2
Denote b; = (17,_3711, i=3,4, .., (s+1). According to the lack-of-memory property of
n—i1

12



the exponential distribution:

Pm(n) = P(W1 Z bgWg) . P(W1 Z b3W3 + b4W4 | W1 Z bgWg) .

s+1 1_2) 2s+1 s+1 (Z—Q)TL 2s
W1>Z ———W;+n ZW\W1>27_W,~+nZWi
n—i+1 i=5+2 n—i+1 =512

(n—2)!

- S—ﬁl 1 1 - (n—s—1) 1 . n—1 1
s l+b (T4+n)s sln—1)1 (1+n)s s (n?2 —1)s

To find the asymptotic behaviour of Py, (n) we use Stirling’s formula:

[

( n—1 > orn" e "t 1on
5 o2 (”+1) e —n=lt gk
= 1[1 (1 + l) o gn—1 1+ T~ 0k (3.7)
™ n
2 1
oy — - 2nt (1+0<—)).
™ n

A simple calculation shows that

(n2 i s~ nnl_l (1 +0 (%)) : (3.8)

Combining (3.7) and (3.8) we obtain the result:

= ()7 (+0(2)
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