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Abstract. We study the uncertain dichotomous choice model. In this model a group of decision
makers is required to select one of two alternatives. The applications of this model are relevant to
a wide variety of areas, such as medicine, management and banking. The decision rule may be the
simple majority rule; however, it is also possible to assign more weight to the opinion of members
known to be more qualified. The extreme example of such a rule is the expert decision rule. We
are concerned with the probability of the expert rule to be optimal. Our purpose is to investigate
the behaviour of this probability as a function of the group size for several rather general types of
distributions. One such family of distributions is that where the density function of the correctness
probability is a polynomial (on the interval [1/2, 1]). Our main result is an explicit formula for the
probability in question. This contains formerly known results as very special cases.
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1. Introduction

1.1. BACKGROUND

In various areas, such as politics, company management, medicine, and business,
decisions are taken by voting. A group composed of several experts in the specific
fields wishes to make correct decisions. We assume that there is an objectively cor-
rect decision, and all decision makers share the goal of identifying it. The algorithm
for passing from all individual opinions to a group decision may be very distinct
in various systems; for example, it may consist of a multi-stage process (Boland,
1989; Berg, 1997; Berg and Paroush, 1998).

We regard the dichotomous choice model, which goes back as far as Con-
dorcet (1785). He considered the case of a group of decision makers reaching a
decision on some issue using the simple majority rule. He made the statement
that the group would be likely to make the correct choice as the size of the group
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becomes large. Moreover, the probability of a correct decision increases to 1 as
the number of individuals in the group tends to infinity. ‘Condorcet Jury Theorem’
usually refers to a formulation of conditions under which Condorcet’s statement is
in fact valid. One of the most popular among such conditions is the condition that
the members of the group vote independently and the probabilities of the members
to make the right choice are equal and exceed 1/2. Researchers have extended
and completed Condorcet’s work in two directions: by relaxing the assumption
of independence (Shapley and Grofman, 1984; Boland, 1989; Berg, 1993; Ladha,
1992, 1995) on the one hand, and by relaxing the assumption that individuals
are homogeneous with respect to their decisional abilities (Grofman et al., 1983;
Miller, 1986; Young, 1989; Paroush, 1998; Berend and Paroush, 1998) on the other
hand.

In another direction, one may ask about identifying the optimal decision rule.
Here a decision rule is a rule for translating the opinions of the various experts into
a group decision. Such a rule is optimal if and only if it maximizes the probabil-
ity that the group will reach the correct decision for all possible combinations of
opinions. Many works exploring the dichotomous choice model assume a known
‘expertise level’, i.e. a known probability for each group member to make the right
choice. This assumption makes it easy to find the optimal decision rule. In the case
of symmetric alternatives (i.e. equi-probable apriori with equal penalties for each
type of error), the optimal rule is a weighted majority rule, the weights being given
by the logarithms of the members’ odds of making the right choices (Nitzan and
Paroush, 1982, 1984a, 1985; Grofman et al., 1983).

However, the assumption of full information regarding the decision makers
competences is very restrictive and often far from being fulfilled. Thus, the case
of incomplete information on decisional skills seems to better approximate prac-
tical situations. While no direct information on the ‘expertise level’ is available,
there exists some information regarding the distribution of decisional competence
in the population from which the individual members were drawn. The case of
log-normal distribution of individual odds of choosing correctly was tackled by
Nitzan and Paroush (1985), who obtained for this case an explicit expression for
the probability Pe(n) of the expert rule to be optimal. Nitzan and Paroush (1984b,
1985), considered the case of uniform distribution on [1/2, 1]. One of the primary
goals was to compare the probability of the expert rule to be optimal with that
of the majority rule. Nitzan and Paroush (1984b, 1985), using a Monte Carlo
method, estimated the probability Pe(n), as well as the probability Pm(n) of the
majority rule to be optimal, for small n’s. As one would expect, this probability
decreases as a function of n. This line of the research was continued by Berend and
Harmse (1993), Sapir (1998), Berend and Sapir (2001). Berend and Harmse (1993)
obtained an asymptotic formula for Pe(n) and an upper bound for Pm(n) in case
where the probabilities of being right for each expert are uniformly distributed on
[1/2, 1]. These two results combined imply that the latter probability decays to 0
much more quickly than the former. They also obtain some generalizations of those
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results, which showed that ‘slight deviations’ from the two extreme rules are also
unlikely to produce an optimal rule. Berend and Sapir (2001) generalized some
of the results of Berend and Harmse (1993) under the assumption of generalized
uniform distribution, which contains the uniform distribution as a particular case.
In (Sapir, 1998) the assumption of the correctness probabilities being uniformly
distributed in [1/2, 1] was changed in such a way that the logarithmic expertise
levels became distributed exponentially. In this case both Pe(n) and Pm(n) were
calculated explicitly. The comparison of Pe(n) and Pm(n) in each of the situations,
regarded by Berend and Harmse (1993), Sapir (1998), Berend and Sapir (2001).

The motivation for this paper starts with Sapir (1998). It was found there that

Pe(n) = n ·
(

1

2

)n−1

under the assumption of exponential distribution of logarithmic expertise. It is nat-
ural to ask in which other cases can Pe(n) be expressed in such a simple form,
as a single term or a finite sum. In this paper we are concerned with a general
family of distributions, for which the probability of the expert rule to be optimal
can be expanded explicitly into a finite or an infinite sum. Note that this family
contains a wide variety of distribution families, and in particular some distributions
related to well known ones, such as the Beta distribution. One such example is a
distribution family where the density function of the correctness probability is a
polynomial (on the interval [1/2, 1]), which contains the uniform distribution as
a special case. Another example is the family, where the distribution function of
the correctness probability is a polynomial in (1 − x)/x (again, on the interval
[1/2, 1]). It contains the cases of exponentially distributed logarithmic expertise
level and Beta-distributed inverse expertise as very particular instances. For this
family (of polynomials in (1 − x)/x) a simple expression is obtained for Pe(n). In
addition to the above, several other distributions are included as examples of the
general family. We also investigate the asymptotic behaviour of Pe(n) as a function
of the group size and explore the influence of the distribution parameters on this
probability.

It is worthwhile emphasizing that the main question addressed in this paper is
not what the probability of the expert rule is to provide the right decision. This
probability is certainly quite high in most cases, and in fact converges to 1 as the
number of experts increases. It is what could be called ‘the average case’. Pe(n),
our object of interest through this paper, is rather ‘the worst case’. Namely, each
decision rule has some cases in which it is natural to doubt its performance. For
the expert rule, the most questionable situation is where the top expert is opposed
by all the others. To claim that, in a specific case, the expert rule is optimal, is
tantamount to asserting that we should indeed favor the opinion of the top expert.
Consequently, knowing that Pe(n) is, say, small does not mean that the expert rule
performs badly in general. Rather, it assists us in modifying the rule in borderline
cases.
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Subsection 1.2 is devoted to a more accurate description of our model. In Sec-
tion 2 we present the main results and show a wide variety of examples, and in
Section 3 – their proofs. Section 4 provides some concluding remarks and ques-
tions.

1.2. SETUP AND NOTATIONS

The group consists of nmembers, each of whom advocates one of two alternatives.
The probability that the ith member will make the right choice is denoted by pi . We
always assume that pi > 1/2 for all i. (Note that, at least in the case where the pi’s
are known, this implies no loss of generality.) We also assume that the members’
choices are independent. A decision rule is a rule for translating the individual
opinions into a group decision. Such a rule is optimal if it maximizes the proba-
bility that the group will make the correct decision for all possible combinations
of opinions. If the members indexed by some subset A ⊆ {1, 2, . . . , n} of the
group recommend the first alternative, while those indexed by B = {1, . . . , n} \A
recommend the second, then the first alternative should be chosen if and only if∏

i∈A

pi

1 − pi >
∏
i∈B

pi

1 − pi (1.1)

(Nitzan and Paroush, 1985). It is therefore natural to define the expertise of an in-
dividual, whose probability of being correct is p, as p/(1−p), and his logarithmic
expertise as lnp/(1 − p).

Now we assume pi , i = 1, 2, . . . , n, to be (independent) random variables
distributed on [1/2, 1] according to the same distribution function Gp(x). The
corresponding density function is denoted by gp(x). Then we can consider the
probability of a decision rule to be optimal. Moreover, we assume the ranking of
the members of the team is (at least partly) known. Thus, one can follow rules
based on this ranking. The extremes are the expert rule (i.e., always following the
most competent member of the group) and the simple majority rule. In this paper
we deal almost exclusively with the expert rule.

Sometimes it will be more convenient to describe the situation in terms not
of the pi’s but of other random variables, such as the inverse expertises Yi =
(1 − pi)/pi , or the logarithmic expertises. Denote by GY(y) and Gln p

1−p (x) the
respective distribution functions, and by gY (y) and gln p

1−p (x) the density functions.
Later we use the following connections between the distribution functions

GY (y) = 1 −Gp
(

1

1 + y
)
, y ∈ [0, 1) (1.2)

and

GY (y) = 1 −Gln p
1−p (− ln y), y ∈ [0, 1), (1.3)

where both functions vanish on the negative axis and are identically 1 for x � 1.
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2. Main Results

We are concerned with the probability Pe(n) of the expert rule to be optimal. One
verifies easily that Pe(n) is the probability that, in the case where the top expert
disagrees with all the others, the top expert is more likely to be correct than the rest.
In this paper we regard a general family of distributions, for which the probability
of the expert rule to be optimal can be expanded explicitly into a finite or infinite
sum. The results obtained here contain some previous results as very particular
instances.

2.1. EXPANDABLE Pe(n)

Suppose the inverse expertise levels of the committee members are i.i.d. random
variables, distributed on [0, 1] according to the same distribution function, given in
the form

GY (y) =




0, y < 0,
∞∑
j=1

cjy
j , 0 � y < 1,

1, y � 1,

(2.1)

for suitable c1, c2, . . . . (Note that we do not require the series
∑∞

j=1 cjy
j to con-

verge at 1, but we do require GY (y) to be continuous at 1; see Example 6 infra.)
Obviously, for GY(y) to be a distribution function on [0, 1] it is necessary that

c1 � 0. (It follows from the equality G∗′
Y (0) = c1.) An exact determination of

the conditions on the coefficients cj , under which GY(y) is indeed a distribution
function, is not trivial. Suffice it to say that, if all these coefficients are nonnegative,
then GY(y) is a (continuous) distribution function if and only if

∑∞
j=1 cj = 1. In

the following, we usually assume only that GY is a distribution function, the cj ’s
being of arbitrary signs.

For the next theorem it will be convenient to use the moments of the distribution:

Ij = E[Y j ] =
∫ 1

0
gY (y)y

j dy, j = 1, 2, . . . .

Obviously 1 > I1 > I2 > · · ·.

THEOREM 1. Suppose the inverse expertise levels are distributed according to
GY . If one of the conditions

(i)
∞∑
j=1

cj = 1,
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or

(ii)
∞∑
j=1

|cj |I n−1
j < ∞,

holds, then the probability of the expert rule to be optimal is

Pe(n) = n

∞∑
j=1

cj I
n−1
j . (2.2)

It may be worthwhile mentioning already at this point the reason for the mo-
ments’ occurrence in the theorem (for more details see the proof). One finds easily
(conditioning on the identity of the top expert) that Pe(n) = nEGn−1

Y
(G(

∏n−1
i=1 yj )),

the expectation being taken with respect to n − 1 independent variables, each
with distribution GY . Theorem 1 implies the following corollary, which gives the
asymptotic behavior of Pe(n).

COROLLARY 1. Under the assumptions of Theorem 1

Pe(n) = ncj0I
n−1
j0

· (1 + o(1)),

as n → ∞, where cj0 is the first nonzero term in the sequence (cj )∞j=1.

Note that, while some of cj ’s may be negative, cj0 must be positive for GY(y)
to be a distribution function. Also, if condition (ii) in the theorem holds for some
n, it clearly holds for all n > n0.

Remark 1. Under condition (i) of Theorem 1, the moments may be expressed
explicitly in terms of the coefficients of GY :

Ij =
∞∑
s=1

scs

j + s .

2.2. FINITELY EXPANDED Pe(n)

The results of Section 2.1 assume a particularly simple form if GY(y) (restricted
to [0, 1]) is a polynomial:

GY (y) =
l∑

j=1

cjy
j , y ∈ [0, 1]. (2.3)

Note thatGY(y), given by (2.3), is a distribution function if and only if
∑l

j=1 cj

= 1 and the corresponding density g∗
Y (y) = G∗′

Y (y) is nonnegative on [0, 1]. The
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last condition can be checked by Sturm’s algorithm (cf. Isaacson and Keller, 1966).
Also note that the condition

∑l
j=1 cj = 1 coincides with condition (i) of Theo-

rem 1. Hence, by Remark 1:

Ij =
l∑
s=1

scs

j + s .

Theorem 1 reduces then to the following:

THEOREM 1′. Suppose GY(y), given by (2.3), is a distribution function. Then
the probability of the expert rule to be optimal is:

Pe(n) = n

l∑
j=1

cj

(
l∑
s=1

scs

j + s

)n−1

.

In particular, as n → ∞,

Pe(n) = ncj0

(
l∑
s=1

scs

j0 + s

)n−1

· (1 + o(1)),

where cj0 is the first nonzero coefficient.

In fact, Pe(n) can be expressed in a simple form under the assumption of a more
general distribution family than given by (2.3):

GY (y) =




0, y < 0,
l∑

j=1

cjy
αj , 0 � y < 1, 0 < α1 < α2 < · · · < αl,

1, y � 1.

(2.4)

Again, for GY (y) to be a distribution function it is necessary that c1 � 0 and∑l
j=1 cj = 1.

THEOREM 1′′. Suppose the function GY(y), defined by (2.4), is a distribution
function. Then the probability of the expert rule to be optimal is:

Pe(n) = n

l∑
j=1

cj

(
l∑
s=1

αscs

αj + αs

)n−1

.

EXAMPLE 1. The case of Exp(α) distributed logarithmic expertise is a particular
instance of (2.4), obtained by taking l = 1, c1 = 1, α1 = α (see (1.3)). Theorem 1′′
yields Pe(n) = n · ( 1

2 )
n−1, which agrees with Theorem 1 of Sapir (1998).
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Table I. Lower bound for Pe(n).

l 1 3 10 100 1000

Pe(n) � n · 0.5n−1 n

3
· 0.64n−1 n

10
· 0.8n−1 n

100
· 0.96n−1 n

1000
· 0.99n−1

EXAMPLE 2. If GY(y) is as in 2.3 for l = 2, it turns out that GY(y) forms a
distribution function if and only if 0 � c1 � 2. Then c2 = 1 − c1, and Theorem 1′
gives:

Pe(n) = n

(
c1

(
4 − c1

6

)n−1

+ (1 − c1)

(
3 − c1

6

)n−1)
, c1 ∈ [0, 2].

EXAMPLE 3. Let c1 = c2 = · · · = cl = 1/ l. Then:

Pe(n) = n

ln

l∑
j=1

(
l∑
s=1

s

j + s

)n−1

. (2.6)

Table I provides the lower bound for Pe(n) obtained by taking just the first term
(corresponding to j = 1) on the right-hand side of (2.6).

According to (2.6) (and as follows in particular from the last part of Theo-
rem 1′), Pe(n) (considered as a function of n) behaves asymptotically as n

l
θn−1 for

some constant θ = θl . The table indicates that θ = θl −→
l→∞

1. Indeed, this is the

interesting point about this example, formalized by

PROPOSITION 1. Under the assumptions of Example 3,

Pe(n) � n

l
θn−1
l

for appropriate constants θl satisfying θl −→
l→∞ 1.

EXAMPLE 4. Let cj = (−1)j−1
(
l

j

)
for 1 � j � l. Note that this sequence arises

from the following simple density function:

gY (y) =
{
l(1 − y)l−1, 0 � y � 1,
0, otherwise.

PROPOSITION 2. Under the assumptions of Example 4,

Pe(n) = n

l∑
j=1

(−1)j−1

(
l

j

)
1(

l+j
l

)n−1 . (2.7)

In particular, Pe(n) � nlθn−1
l for appropriate constants θl satisfying θl −→

l→∞
0.
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Propositions 1 and 2, taken together, show that the spectrum of possible types
of asymptotic behavior of Pe(n) is quite wide.

Note that inverse expertise levels in Example 4 arise from the special case
of Beta distribution with parameters 1 and l. Recall that, in general, X is Beta-
distributed, say X ∼ β(v,w) (with v, w > 0), if its density function is

gX(x) =


xv−1(1 − x)w−1

B(v,w)
, 0 � x � 1,

0, otherwise,

where B(v,w) = !(v)!(w)

!(v+w) is the beta function. The next example generalizes Ex-
ample 4 as follows:

EXAMPLE 5. Suppose the inverse expertise levels are distributed β(v,w) with in-
teger parameters v, w. The distribution function can be expanded in the form (2.3)
with

c1 = c2 = · · · = cv−1 = 0,

cj = (−1)v+j
(
v + w − 1

j

)(
j − 1
v − 1

)
, v � j � v + w − 1.

Similarly to Proposition 2, one can show that

PROPOSITION 3. Under the assumptions of Example 5,

Pe(n) = nw

(
v + w − 1

w

)n
·
w−1∑
j=0

(−1)j
(
w−1
j

)
(j + v)(2v+w+j−1

w

)n−1 ,

and in particular, as n → ∞ we have

Pe(n) = n

vB(v,w)

(
B(2v,w)

B(v,w)

)n−1

(1 + o(1)).

2.3. INFINITELY EXPANDED Pe(n)

The motivation for this section starts with Berend and Harmse (1993), who consid-
ered the case of uniform distribution of correctness probabilities. They obtained an
expression for Pe(n) in terms of an infinite series, which yields arbitrarily good esti-
mates for Pe(n). This section illustrates examples of families of distributions, given
by (2.1). The case of a uniform distribution is one of the special cases presented in
Example 6.

EXAMPLE 6. We start with the case where the probabilities pi, i = 1, 2, . . . , n,
are distributed with polynomial density (restricted to the interval [1/2, 1]) gp(x)
of degree l. By (1.2) it is readily verified that an equivalent condition to pi having
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the above distribution is for Yi = (1 − pi)/pi to have the following distribution
function on [0, 1]:

GY (y) =
l∑

j=0

g
(j)
p (0)

(j + 1)!
(
1 − (1 + y)−(j+1)

)
, 0 � y � 1. (2.8)

As (1 + y)−(j+1) can be expanded into a binomial series for |y| < 1, GY(y) can
be expanded into a power series on [0, 1). (Note that the expansion is invalid at the
point y = 1. This explains why the expansion in (2.1) was assumed only in the half-
open interval [0, 1).) Since GY (1) = 1, the function G∗

Y (y) is of the form (2.1),
with

cj = (−1)j−1 ·
l∑
i=0

g(i)p (0)

(i + 1)!
(
i + j
j

)
, j = 1, 2, . . . .

Note that as j → ∞ we have:

cj = O(j l). (2.9)

The moments may be bounded as follows:

Ij =
∫ 1

0
yjgY (y) dy =

∫ 1

1
2

(
1 − x
x

)j
gp(x) dx

� max
x∈[ 1

2 ,1]
gp(x) ·

∫ 1

1
2

(
1 − x
x

)j
dx.

Putting C = maxx∈[ 1
2 ,1] gp(x), and substituting t = 1/x, we obtain

Ij � C

∫ 2

1

(y − 1)j

y2
dy � C

∫ 2

1
(y − 1)j dy = C

j + 1
. (2.10)

By (2.9) and (2.10) we have

|cj |I n−1
j = O

(
1

jn−1−l

)
.

Thus, for n � l + 3 the series
∑∞

j=1 cj I
n−1
j converges absolutely, so that condition

(ii) of Theorem 1 holds. In this case, Theorem 1 reduces to:

THEOREM 2. Let the density gp(x) be a polynomial of degree l. Then for n �
l + 3 the probability Pe(n) of the expert rule to be optimal is:

Pe(n) = n

∞∑
j=1

cj I
n−1
j , (2.11)
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where

cj = (−1)j−1∑l
i=0

g
(i)
p (0)
(i+1)!

(
i + j
j

)
, j = 1, 2, . . . ,

Ij = ∫ 1
1/2

(
1−x
x

)j
gp(x) dx, j = 1, 2, . . . .

Similarly to Remark 1 we obtain:

Remark 2. Ij can be calculated explicitly by the following formula:

Ij =
l∑
i=0

g(i)p (0)

i!

(
j∑

s=0, s �=j−i−1

(−1)s

s − j + i + 1

(
j

s

)(
1 − 1

2i−j+s+1

))
+

+ ln 2
l∑
i=0

(−1)j−i−1g(i)p (0)

i!
(

j

i + 1

)
, j = 1, 2, . . . .

Note that, by (2.9), the series
∑∞

j=1 cj diverges, which means that condition (i)
of Theorem 1 is not fulfilled in this case.

Recall that an infinite series is a Leibniz-type series if its terms (weakly) de-
crease to 0 in absolute value and have alternating signs from some place on (cf.
Fikhtengol’ts, 1965, Sec. 244).

PROPOSITION 4. The series on the right-hand side of (2.11) in Theorem 2 is a
Leibniz-type series.

The proposition is of practical value; it enables us to obtain arbitrarily good
estimates for Pe(n) by bounding it between consecutive partial sums of the infinite
series.

Next we consider a few specific examples of polynomial densities, which demon-
strate some fine points in Theorem 2 and Proposition 4.

(a) For uniform distribution, Theorem 2 reduces to the results of Berend and Harmse
(1993), where cj = 2 · (−1)j−1 for any j, and Pe(n) is expressed by means of an
infinite Leibniz-type series, thus yielding arbitrarily good asymptotics for Pe(n) as
n → ∞. In particular

2n(2 ln 2 − 1)n−1 − 2n(3 − 4 ln 2)n−1 � Pe(n) � 2n(2 ln 2 − 1)n−1.

(b) Berend and Sapir (2001) considered the case of pi being distributed according
to the distribution function

Gp(x) =



0, x < 1
2 ,

(2x − 1)α, 1
2 � x � 1,

1, otherwise,
(2.12)

where α is any positive parameter. For α = 1 it reduces to the uniform distribution
U [1/2, 1]. If α = m is a positive integer, (2.12) produces a polynomial density
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function of degree m − 1. In this case Theorem 2 and Proposition 4 provide the
expansion of Pe(n) into an infinite Leibniz-type series, with

cj = (−1)j−1
m∑
k=0

(
m

k

)(
j − 1 +m− k

m− 1

)
, j = 1, 2, . . . .

Note that in this case we have |cj |I n−1
j = O(1/jm(n−2)+1), and therefore condition

(ii) of Theorem 1 holds for any n (� 3). Corollary 1 produces the asymptotic
behaviour of Pe(n) as n increases:

Pe(n) = 2mnIn−1
1 (1 + o(1)).

(c) In general, the condition n � l + 3 in Theorem 2 cannot be discarded; take, for
example,

gp(x) =
{ 24

7
x2, x ∈ [ 1

2 , 1],
0, otherwise.

Then

ck = (−1)k−1 · 4
7 (k + 1)(k + 2)

and

Ik =
∫ 1

1/2

(
1 − x
x

)k
· 24

7
x2 dx � 24

7

∫ 2

1

(t − 1)k

t4
dt

� 3

14

∫ 2

1
(t − 1)k dt � 1

10k
.

Thus for n = 3 the general term ckI
2
k in the series on the right-hand side of (2.11)

does not even converge to 0, so the series certainly diverges. By the way, an explicit
calculation of Pe(3) in this case (using symbolic integration in Matlab) yields:

Pe(3) = 1152

343
ln 2 + 135

343
π2 − 9657

1715
≈ 0.5816.

(d) The series in (2.11) is not necessarily alternating from the beginning. Taking

gp(x) =
{ −4x + 5, x ∈ [ 1

2 , 1],
0, otherwise,

we have ck = (−1)k(2k−3). In particular, c1 = 1, c2 = 1, and the series in (2.11)
alternates only from the second place on. Note that, as Theorem 2 stands, (2.11)
is applicable in our case only for n � 4. However, one can check (again, using
symbolic integration in Matlab) that in this case

Pe(3) = −117

2
ln 2 − 17

16
π2 + 207

4
≈ 0.7144
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and numerical calculations hint that the series on the right-hand side of (2.11)
converges (conditionally) to the same value.

Note that the second condition of Theorem 1 does not imply the first condition,
as seen by Example 6. In the other direction, if (i) is replaced by the stronger
condition

∑∞
j=1 |cj | < ∞ or if we add the requirement that gY (1) < ∞, then con-

dition (ii) holds as well. In general, though, (i) does not yield (ii), as the following
example shows:
EXAMPLE 7. Let m � 1 be an integer, c1 = 1 and

c2i = −c2i+1 = −
i∏
k=1

(
1 − 1

km

)
, i = 1, 2, . . . .

This sequence arises from the distribution function:

GY (y) = 1 −
(

1 − y

(1 + y)m−1

)1/m

, 0 � y � 1 .

Using the estimate 1−x ≈ e−x for x ≈ 0 we see that |c2i| = c2i+1 behaves (up to a
multiplicative constant) as j−1/m, and in particular cj −→

j→∞ 0. Obviously, condition

(i) of Theorem 1 holds. The theorem then gives:

Pe(n) = n

(
I n−1

1 −
∞∑
i=1

∏i
k=1(km− 1)

mii! · (I n−1
2i − I n−1

2i+1

))
.

Now we claim that condition (ii) of Theorem 1 is not fulfilled for any n � m.
Indeed

1

2m
B

(
1

m
, i + 1

)
� I2i+1 � 1

2B

(
1

m
, i + 1

)
,

so that Ij behaves as

!(1/m)!(i + 1)

!(i + 1 + 1/m)
≈ Ci−1/m

for some constant C = C(m) (cf. Abramowitz and Stegun, 1968). Hence the series∑∞
j=1 cj I

n−1
j behaves as

∑∞
j=1 j

−n/m, which diverges for n � m. Thus, in general,
condition (ii) does not follow from condition (i).

It is interesting that Theorem 1 also improves some of the results of Berend
and Sapir (2001). In particular, we show in the next example that it provides an
expansion of Pe(n) into an infinite series for generalized uniform distribution for
α < 1.

EXAMPLE 8. Let Gp(x) be as in (refe2.12), with α < 1. By (1.2):

GY (y) = 1 − (1 − y)α · (1 + y)−α, 0 � y � 1. (2.13)



154 DANIEL BEREND AND LUBA SAPIR

Since α < 1, (2.13) can be expanded on [0, 1] in the form

GY (y) =
∞∑
j=1

cjy
j ,

where

cj = (−1)j−1
j∑
i=0

(
α

i

)(
α + j − i − 1

j − i
)
. (2.14)

The expansion ofGY(y) is valid also at y = 1, so that
∑∞

j=1 cj = 1. Thus condition
(i) of Theorem 1 takes place and we obtain the expansion

Pe(n) =
∞∑
j=1

cj I
n−1
j ,

where

Ij = 2α
∫ 1

0

tj

(1 − t)1−α(1 + t)α+1
dt, j = 1, 2, . . . ,

and cj is given by (2.14).
We mention in passing that in the case α = 1/2 the cj ’s assume the simple form

c1 = 1,

c2i+1 = −c2i = (2i − 1)!!
(2i)!! , i = 1, 2, . . . .

and the Ij ’s may be expressed using Wallis’s formula (cf. Fikhtengol’ts, 1965, Sec.
188) in closed form:

Ij =




(2i)!!
(2i − 1)!! − (2i − 1)!!

(2i − 2)!! · π
2
, j = 2i,

i = 1, 2, . . . ,

−(2i − 2)!!
(2i − 3)!! + (2i − 1)!!

(2i − 2)!! · π
2
, j = 2i − 1.

(Recall that (2i)!! = 2 · 4 · · · · · 2i and (2i − 1)!! = 1 · 3 · · · · · (2i − 1).)

3. Proofs

Proof of Theorem 1. Consider the random variables

Yi = 1 − pi
pi

, i = 1, 2, . . . , n.
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The density function of each Yi is given by:

gY (y) =




∞∑
j=1

jcj y
j−1, 0 � y < 1,

0, otherwise.

(3.1)

Since the power series on the right-hand sides of (2.1) and (3.1) have the same the
radius of convergence, which is at least 1, for any ε > 0 the two series converge
uniformly to G∗

Y (y) and g∗
Y (y) on [0, 1 − ε]. Therefore:

Pe(n) =
n∑
j=1

P

(
Yj <

n∏
i=1, i �=j

Yi

)
= n · P

(
Y1 <

n∏
i=2

Yi

)

= n

∫
. . .

∫
︸ ︷︷ ︸

[0,1]n−1

n−1∏
i=1

gY (yi)GY

(
n−1∏
i=1

yi

)
dy1 dy2 . . . dyn−1

= n

∫
. . .

∫
︸ ︷︷ ︸

[0,1]n−1

n−1∏
i=1

gY (yi)

∞∑
j=1

cj

n−1∏
i=1

y
j

i dy1 dy2 . . . dyn−1

= n lim
ε→0

∫
. . .

∫
︸ ︷︷ ︸
[0,1−ε]n−1

∞∑
j=1

cj

n−1∏
i=1

gY (yi)y
j

i dy1 dy2 . . . dyn−1.

Since the series
∑∞

j=1 cjy
j converges uniformly to G∗

Y (y) on [0, 1 − ε], the series∑∞
j=1 cj (

∏n−1
i=1 yi)

j converges uniformly to GY(
∏n−1
i=1 yi) on [0, 1 − ε]n−1. Also,∏n−1

i=1 gY (yi) is bounded on [0, 1 − ε]n−1, and therefore:

Pe(n) = n lim
ε→0

∞∑
j=1

cj

∫
. . .

∫
︸ ︷︷ ︸
[0,1−ε]n−1

n−1∏
i=1

gY (yi)y
j

i dy1 dy2 . . . dyn−1

= n lim
ε→0

∞∑
j=1

cj

(∫ 1−ε

0
gY (y)y

j dy

)n−1

. (3.2)

We would like to interchange the order of the summation and taking the limit on
the right-hand side of (3.2). To this end, we need one of the two conditions (i) and
(ii) in the statement of the theorem. Define functions vj and uj by:

vj (ε) =
(∫ 1−ε

0
gY (y)y

j dy

)n−1

,

j = 1, 2, . . . , 0 � ε � 1,

uj (ε) = cjvj (ε).
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Assume first that condition (i) takes place, namely
∑∞

j=1 cj = 1. Since for each
fixed ε we have vj (ε)−→

j→∞ 0, and the convergence is monotonic, we may invoke

Abel’s test to prove that the series
∑∞

j=1 uj(ε) converges uniformly on [0, 1]. If

condition (ii) of the theorem takes place, namely
∑∞

j=1 |cj |I n−1
j < ∞, then by

Weierstrass M-test we obtain the uniform convergence of
∑∞

j=1 uj(ε) on [0, 1].
Consequently, if at least one of the conditions holds, then:

Pe(n) = n

∞∑
j=1

cj

(
lim
ε→0

∫ 1−ε

0
gY (y)y

j dy

)n−1

= n

∞∑
j=1

cj

(∫ 1

0
gY (y)y

j dy

)n−1

= n

∞∑
j=1

cj I
n−1
j .

Proof of Remark 1. Condition (i) of Theorem 1 ensures that the series on the
right-hand side of (2.1) converges uniformly on [0, 1]. Using integration by parts
we obtain

Ij =
∫ 1

0
gY (y)y

j dy = GY (y)y
j
∣∣1
0 − j

∫ 1

0
G∗
Y (y)y

j−1 dy

= 1 − j
∫ 1

0
GY (y)y

j−1 dy = 1 −
∫ 1

0
j

∞∑
s=1

csy
s+j−1 dy

= 1 −
∞∑
s=1

jcs

j + s
=

∞∑
s=1

scs

j + s ,

which is the required result.

Proof of Corollary 1. If condition (ii) of Theorem 1 holds, then the corollary is
trivial. Assume that condition (i) is fulfilled. Put

Bm =
m∑
j=j0

cj , Sm =
m∑
j=j0

cj I
n−1
j , S =

∞∑
j=j0

cj I
n−1
j .

As cj = Bj − Bj−1, using Abel’s transformation we have:

Sm = BmI
n−1
m +

m−1∑
j=j0

Bj
(
I n−1
j − I n−1

j+1

)
.

Since Bm −→
m→∞ 1, we can find M such that 1/2 � Bm � 3/2 for m � M. Then:

Sm = BmI
n−1
m +

M−1∑
j=j0

Bj
(
I n−1
j − I n−1

j+1

)+
m−1∑
j=M

Bj
(
I n−1
j − I n−1

j+1

)
.
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Clearly, BmIn−1
m > 0 and

∑m−1
j=M Bj(I

n−1
j − I n−1

j+1 ) > 0, so that

1
2 · I n−1

M +
M−1∑
j=j0

Bj
(
I n−1
j − I n−1

j+1

)
� Sm � 3

2 · I n−1
M +

M−1∑
j=j0

Bj
(
I n−1
j − I n−1

j+1

)
.

Passing to the limit with respect to m, we obtain:

1
2 · I n−1

M +
M−1∑
j=j0

Bj
(
I n−1
j − I n−1

j+1

)
� S � 3

2 · I n−1
M +

M−1∑
j=j0

Bj
(
I n−1
j − I n−1

j+1

)
.

Rewriting these inequalities in terms of the cj ’s, we obtain(
1

2
−
M−1∑
j=j0

cj

)
I n−1
M +

M−1∑
j=j0

cj I
n−1
j � S �

(
3

2
−
M−1∑
j=j0

cj

)
I n−1
M +

M−1∑
j=j0

cj I
n−1
j ,

which implies:

S = cj0I
n−1
j0

· (1 + o(1)) = cj0

( ∞∑
s=1

scs

j0 + s

)n−1

· (1 + o(1)).

This proves the corollary.

Proof of Proposition 1. Denote:

θl = I1(l) = 1

l

l∑
s=1

s

1 + s =
(

1

2
+ 2

3
+ · · · + l

l + 1

)
1

l
.

Thus, (θl)∞l=1 is the sequence of arithmetic means of the sequence (s/(s + 1))∞s=1.
Since the latter converges to 1, so does the former, so that θ = θl −→

l→∞
1. By (2.6)

Pe(n) � n

l

(
1

l

l∑
s=1

s

1 + s

)n−1

= n

l
θn−1
l ,

which proves the proposition.

Proof of Proposition 2. Recall that the j th moment of a β(v,w) distributed
random variable is

∏j−1
k=0(v+ k)/(v+w+ k) (cf. Hastings and Peacock, 1975). In

particular, since Yi ∼ β(1, l),

Ij =
j−1∏
k=0

1 + k
1 + l + k = j !l!

(j + l)! = 1(
l+j
l

) .
By Theorem 1, this yields (2.7).
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It is easy to verify that the series on the right-hand side of (2.7) is Leibniz
type. Moreover, its terms decrease in absolute value already from the beginning. In
particular, using the first two terms, we obtain

nl

(l + 1)n−1

(
1 − (l − 1)

2

(
2

l + 2

)n−1)
� Pe(n) � nl

(l + 1)n−1
.

Proof of Remark 2. A routine calculation gives:

Ij =
∫ 1

1
2

(
1 − x
x

)j l∑
i=0

g(i)p (0)

i! · xi dx

=
∫ 1

1
2

j∑
s=0

(−1)s
(
j

s

)
x−(j−s)

l∑
i=0

g(i)p (0)

i! · xi dx

=
l∑
i=0

g(i)p (0)

i!
j∑
s=0

(−1)s
(
j

s

)∫ 1

1
2

x−j+s+i dx

=
l∑
i=0

g(i)p (0)

i!

(
j∑

s=0, s �=j−i−1

(−1)s

s − j + i + 1

(
j

s

)(
1 − 1

2i−j+s+1

))
+

+ ln 2
l∑
i=0

(−1)j−i−1g(i)p (0)

i!
(

j

i + 1

)
, j = 1, 2, . . . .

Proof of Proposition 4. The fact that the sequence ckI
n−1
k converges to 0 is

contained in Theorem 2. The sequence ck, considered as a function of l, is (except
for sign) some polynomial of degree l, say ck = (−1)k−1(b0 + b1k + · · · + blkl).
Hence for sufficiently large k the terms in the sum on the right-hand side of (2.11)
are of alternating signs. It remains to show that |ck|I n−1

k decreases from some place
on. First, note that

|ck+1|
|ck| = b0 + b1(k + 1)+ · · · + bl(k + 1)l

b0 + b1k + · · · + blkl

= blk
l + (lbl + bl−1)k

l−1 + O(kl−2)

blk
l + bl−1k

l−1 + O(kl−2)

= bl + (lbl + bl−1)
1
k

+ O
(

1
k2

)
bl + bl−1

1
k

+ O
(

1
k2

)
= 1 + l

k
+ O

(
1

k2

)
. (3.3)
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Next, it will be convenient to introduce the constants:

Jk,s =
∫ 1

1
2

(
1 − x
x

)k
xs dx, k = 1, 2, . . . , s = 0, 1, . . . , l.

The substitution t = (1 − x)/x yields:

Jk,s =
∫ 1

0

tk

(1 + t)s+2
dt.

Integration by parts gives:

Jk,s = 1

2s+2(k + 1)
+ s + 2

k + 1
Jk+1,s+1

= 1

2s+2(k + 1)
+ s + 2

k + 1

(
1

2s+3(k + 2)
+ s + 3

k + 2
Jk+2,s+2

)
.

Since Jk,s �
∫ 1

0 t
k dt = 1

k+1 :

Jk,s = 1

2s+2(k + 1)

(
1 + s + 2

2(k + 2)

)
+ O

(
1

k3

)
.

Using the last equality for large k, we get

Jk,s

Jk+1,s
=

1
k+1

(
1 + s+2

2(k+2)

)+ O
(

1
k3

)
1
k+2

(
1 + s+2

2(k+3)

)+ O
(

1
k3

)
=

k+2
k+1

(
1 + s+2

2
1
k+3 + s+2

2

(
1
k+2 − 1

k+3

))+ O
(

1
k2

)(
1 + s+2

2
1
k+3

)+ O
(

1
k2

)
=

k+2
k+1

(
1 + s+2

2
1
k+3

)+ O
(

1
k2

)
1 + s+2

2
1
k+3 + O

(
1
k2

)
= k + 2

k + 1
+ O

(
1

k2

)
= 1 + 1

k
+ O

(
1

k2

)
.

Write the density function gp(x) as a polynomial:

gp(x) =
l∑
s=0

asx
s , 1

2 � x � 1.

Then

Ik =
∫ 1

1
2

1

Fk(x)
gp(x) dx =

l∑
s=0

asJk,s

=
l∑
s=0

as

(
1 + 1

k
+ O

(
1

k2

))
Jk+1,s =

(
1 + 1

k
+ O

(
1

k2

))
Ik+1,
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so that

I n−1
k

I n−1
k+1

= 1 + n− 1

k
+ O

(
1

k2

)
. (3.4)

By (3.3) and (3.4), for sufficiently large k we have

|ck+1|
|ck| <

In−1
k

I n−1
k+1

,

which completes the proof.

4. Concluding Remarks

The paper continues the analysis of the behavior of the probability of the expert rule
to be optimal. Whereas the distributions of expertise levels for which this has been
carried out in the past belong to several very restricted families, we have dealt here
with a wide (infinite-dimensional) family. This family consists of all distributions
defined by a power series, provided they satisfy one of two rather mild conditions
(Theorem 1). The cases discussed in other works, such as uniformly distributed
correctness probabilities and exponentially distributed logarithmic expertise levels,
are very particular instances of our family. Moreover, the family of distributions
GY contains in particular all polynomials. Since continuous functions on closed
intervals may be approximated arbitrarily well by polynomials, and for polynomi-
als Theorem 1′ provides an explicit formula for Pe(n), this means that in principle
we have a way of estimating Pe(n) for any continuous distribution GY . Of course,
this would be useful mostly for theoretical purposes, as finding polynomials which
approximate an arbitrary continuous function is not practical. To estimate Pe(n) in
practice, it would probably be most convenient to use Monte Carlo. We emphasize
also that the above procedure for estimating Pe(n) refers to any specific n. It cannot
assist us in finding the asymptotic behavior of Pe(n) as n grows for an arbitrary
continuous distribution GY .

Another natural family of distributions to consider is where the correctness
probability is distributed polynomially. (Notice the difference between Gp being
a polynomial and the case discussed in the preceding paragraph, where GY is a
polynomial.) We have seen in Example 6 that here again GY is an infinite power
series. However, the assumptions under which we obtained our formulas were not
satisfied unless the group size n is at least deg(GY )+2. Moreover, for n � deg(GY )
the formula does not even make sense, as the expression it yields is a divergent
series. This raises two interesting questions:

QUESTION 1. Is Theorem 2 valid for n = deg(GY )+ 1?

QUESTION 2. Find an expression for Pe(n) for n � deg(GY )+ 1.
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Finally, we note that the family of distributions to which our results pertain
may be further broadened. In fact, just as Theorem 1′′ generalizes Theorem 1′ by
replacing the polynomial in (2.3) by a combination of fractional powers in (2.4),
we can replace the power series of (2.1) by a series consisting of fractional powers.
One can easily prove the corresponding generalization of Theorem 1.
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