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The discovery of C60, a third variety of carbon, in addition to the more familiar diamond and graphite 
forms, has generated enormous interest in many areas of physics, chemistry and material science. 
Furthermore, it turns out that C60 is only the first of an entire class of closed-cage polyhedral 
molecules consisting of only carbon atoms - the fullerenes (C20, C24, C26, … C60, …C70, … C1000000-
carbon nanotubes). This paper presents concepts and terms of fullerene science in a historical context, 
with main emphasis of its interdisciplinary character and interrelationships of various branches of 
cognition and, in particular, exploration of polyhedra in mathematics and fine art. It is discussed how 
Nature uses fullerene-like structures to minimize energy and matter resources in molecules and 
nanoclusters, viruses and living organisms. Examples of achievement of such goals in architecture are 
also presented.     
 
1. History of Discoveries of Fullerenes. Long before experimental discovery of fullerenes, few 
scientists from different countries predicted an existence of molecules, which would consist only of 

carbon atoms, located in the vertices of a polyhedron, in 
particular, a truncated icosahedron (fig. 1). Exploration 
history of such polyhedron lasts more than two 
millenniums and will be discussed below.  
 
Figure 1: Molecule of buckminsterfullerene, С60.  
 
 

                   In 1966, D. Jones had conjectured that if pentagonal disclinations could be introduced into 
a graphene sheet, consisting of regular hexagons, the sheet would close into a giant hollow molecule 
of carbon [1]. In 1970, Japanese chemist E. Osawa - published a short article in Japanese [2] on a 
possible existence of a molecule of 60 carbon atoms, С60, in a shape of truncated icosahedron. Osawa 
named the molecule ‘soccer-ball’. In 1973 D. Bochvar (1903-1990), E. Galpern and I. Stankevich, 
performed сomputer simulation of electronic structure of the С60 molecule, which quantitatively 
proved its stability [3].  

…This way or another, by 1985, none of the theoretical predictions mentioned above was 
truly appreciated by scientific community. It did happen so many times in a history of a human 
thought in general and in a history of science in particular. The destiny of ideas that are ahead of their 
time is usually quite tragic. From one point, the society, or in this case scientific community, should 
be mature for these ideas. On the other hand, the demand for an idea, hypothesis or theory has to 
evolve as well. In our case, a “trigger” that caused a tremendous, practically explosive 
“crystallization” of a common interest in the fullerene-like molecules was an experimental discovery 
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of self-generated molecule of С60 in a hot carbon plasma by a joint group of Harold Kroto, Richard 
Smalley (1943-2005) and Robert Curl in 1985 [4].  

Kroto’s idea was to compare radio-astronomy data with the spectroscopic characterization of 
carbon clusters produced in the laboratory. This was a motivation for the joint experiment performed 
by Kroto, Kearl and Smolly in September 1985, that led to an absolutely unexpected result – the 
discovery of the novel С60 molecule. Studying  the evaporation of graphite disk under the impulse 
laser radiation in helium atmosphere, and analyzing the mass-distribution of the generated carbon 
clusters by a mass spectrometer, scientists detected a dominating peak with the mass of 720 atom 
units (a. u.). It meant nothing else but self-creation of a stable molecule consisting of 60 atoms of 
carbon, С60 (remember that mass of 1 carbon atom = 12 a. u.). The peak of С60 always neighbored by a 
less intense peak of С70. 

Researchers took a risk and answered much more complex question – how to construct a 
molecule of С60 in a way so that all carbon atoms would have satisfied normal bonding (four bonds 
per carbon atom). Such a requirement would follow a fact of the chemical stability of the molecule. 
The team (remember they didn’t know about the early theoretical predictions!), suggested a structure 

of truncated icosahedron This polyhedron 
has 32 faces (20 regular hexagon and 12 
regular pentagons), 60 vertices (carbon 
atoms) and 90 edges. In such a structure, 
each carbon atom is in equivalent position, 
but carbon-carbon chemical bonds are of 2 
types (fig. 1b): (i) single bonds (С-С), 
represented by edges between hexagon and 
pentagon; (ii) double bond (С=С), 
represented by edges between 2 hexagons. 
In 13 days after the beginning of 
experiments, the article about the discovery 
of С60  was sent to “Nature” magazine [4]. 
The article suggested a name for a new 
molecule - buckminsterfullerene - after an 
American architect Buckminster Fuller, the 
author of a concept of geodesic domes – 
polyhedra buildings (Fig.2). In 1996 Kroto, 
Smalley and Curl got a Nobel Prize in 
chemistry for the discovery. 

 
 

2. Polyhedra in science and art.  
                        Mathematics is the key and door to the sciences.  
                                                                          Galileo Galilei 

2.1. Platonic and Archimedean solids 
 
                                                          Let no one unskilled in geometry enter  [here]. 

Inscription over the entrance to Plato’s Academy.    
                                                                          

Archimedes (287 b.c. - 212 b.c.) is often acknowledged as a 1st researcher of truncated 
icosahedron though one may reasonably suspect that icosahedra had been truncated long before 
Archimedes.  

Truncated icosahedron is one of 13 semiregular polyhedra. These polyhedra are called 
Archimedean because they were described by Archimedes, even if we have only “second hand” 
references to his writings on this topic from Heron of Alexandria and Pappus of Alexandria.  

The knowledge of Platonic and Archimedean polyhedra was disseminated through the Arabic 
culture by means of translations made during the VIIIth and IXth centuries, among which the most 
outstanding one is the account of Abu'l–Wafa (Baghdad, 940–988). Most of Archimedean polyhedra 
were rediscovered, described and incorporated into the world of Art during the Renaissance, except 

Figure 2: Buckminster Fuller. The US pavilion at 
the EXPO-1967, Montreal. 
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for the snub dodecahedron, that was described later by Johannes Kepler who in 1619 in his book 
“Harmonice Mundi” (“Harmony of the Worlds”) described the entire class1 of Archimedean 
polyhedra or Archimedean solids (fig. 3) - highly symmetric, semi-regular convex polyheda 
composed of two or more types of regular polygons meeting in identical vertices (please recall 
equivalent positions of carbon atoms in С60 molecule).  

 
 
Figure 3: Images of Archimedean polyhedra from 
Johannes Kepler “Harmonice Mundi” (“Harmony 
of the Worlds”) (1619): polyhedron # 4 is 
truncated icosahedron. 

 
 
 
 
 
 
 
 
 
 

                  The fact that Archimedean solids consist of at least 2 
different types of polygons that makes them distinct from the 
regular polyhedra or Platonic solids which are polyhedra 
bounded by a number of congruent polygonal faces, so that the 
same number of faces meet at each vertex, and in each face all 
the sides and angles are equal (i.e. faces are regular polygons). 
Only five platonic solids could be constructed. They are 
tetrahedron, cube, octahedron, icosahedron and dodecahedron. 
(fig. 4). 

 
 
 

Figure 4: Icons of Platonic solids and the corresponding classical 
elements from Johannes Kepler “Harmonice Mundi” (“Harmony 
of the Worlds”) (1619).  

 
Plato, and, like him, many other philosophers, including Kepler, associated platonic solids 

with the classical elements. The tetrahedron,  icosahedron, cube and octahedron correspond to FIRE, 
WATER, EARTH and AIR, respectively. The dodecahedron corresponds to the Quinta Essentia – the 
UNIVERSE. 

 
                                                                                                                            
Table 1: Relationship 
between Platonic 
polyhedra, classical 
elements and states of 
matter (in modern 
view). 

 
 

                                                 
1 The 14th Archimedean polyhedron discovered just in the second part of XX century. 

Platonic 
Polyhedra 

Four classical elements Four states of matter (modern 
view) 

Tetrahedron Fire Plasma 
Cube Earth Solid 

Icosahedron Water Liquid 
Octahedron Air Gas 

Dodecahedron UNIVERSE  
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The most important property of Platonic polyheda is their high symmetry. These polyhedra 
belong to the most symmetric point groups: tetrahedral, octahedral or icosahedral.2 They are the very 
Platonic solids and classical elements from which H. Kroto started  the “symmetry” part of his Nobel 
Lecture: 

“Symmetry appears to be fundamental to our perception of the physical world and it also 
plays a major role in our attempts to explain everything about it. As far as structural symmetry is 
concerned it goes back to ancient times, as indicated by the (pre-) Platonic structures exhibited in the 
Ashmolean Museum in Oxford. The most famous examples are of course to be found in "The 
Timaeus", where in the section relating to 'The Elements" Plato says: "In the first place it is clear to 
everyone (!) that fire, earth, water and air are bodies and all bodies are solids" (!!).Plato goes on to 
discuss chemistry in terms of these elements and associates them with the four Platonic... Although 
this may at first sight seem like a somewhat naive philosophy it indicates a very deep understanding 
of the way Nature actually functions”. 

Is it a true “deep understanding”? Table 1 alludes to a positive answer. 
Nature widely uses Platonic solids for elementary forms of crystals (tetrahedron, cube and 

octahedron) and quasicrystals (icosahedron and dodecahedron) as well as some viruses and simplest 
micro-organisms (icosahedron). Below we demonstrate that the smallest fullerene, C20, has a shape of 
dodecahedron and C20, C60, and other important fullerene molecules exhibit icosahedral symmetry.  

Many man-made polyhedral objects in the form of Platonic solids may come easily to the 
mind of the reader. We can meet them in the arts and architecture across the centuries and in different 
cultures. In the Neolithic period some carved stones (around 2000 B. C.), discovered in Scotland, 
were shaped like polyhedra (including icosahedron and dodecahedron). Below we will demonstrate a 
number of examples of artistic depictions of polyhedra. Here we will show just two fascinating 
sculptural images of icosahedron: a splendid sundial in the courtyard of the Palace of Holyroodhouse 
in Edinburgh (fig. 5) and the monument to Baruch Spinoza in Amsterdam (Fig. 6).  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
  
 

 
 
Let's now come back to truncated icosahedron (C60). That is the very name “truncated 

icosahedron” that tells that this polyhedron can be obtained from the Platonic icosahedron by 
truncation which is a geometrical operation that consists in cutting off the vertices of a polyhedron, 
                                                 
2 The Archimedean polyhedra belong to the same point groups as the Platonic solids, with which they bear close 
relationships.  

Figure 6: Nicolas Dings. Monument to Baruch de 
Spinoza (2008). Amsterdam. Photo by E.A. Katz. 
 
 

Figure 5: Sundial by John Mylne (1633).  
Courtyard of the Palace of Holyroodhouse,  
Edinburgh. Photo by E.A. Katz. 
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thus generating a new polyhedron with more faces. Fig. 7 shows a particular truncation of the 
icosahedron, in which all the resulting edges have the same length, giving the Archimedean truncated 
icosahedron. We may think of truncation as the replacement of each vertex by a polygon, 
perpendicular to the radial direction, with the restriction that such polygons must have as many sides 
as the number of edges meeting at the vertex. The data from Table 2 may help us to understand this 
transformation. Indeed, 5 edges meet at every of 12 vertices of the icosahedron. Cutting off the 
vertices will generate 12 new pentagonal faces. At the same time, original 20 faces will transform to 
hexagons and together with 12 new pentagonal faces will constitute 32 faces of Archimedean 
truncated icosahedron which will also have 90 edges and 60 vertices.   

 
Table 2: Characteristics of Platonic solids. 

Polyhedron Number of 
edges per 

each face, m 

Number of 
edges that 

connect in each 
vertex, n 

Numbe
r of 

faces, 
F 

Number 
of edges, 

E 

Number of 
vertices, V 

F-E+V 

Tetrahedron 3 3 4 6 4 2 
Cube 4 3 6 12 8 2 

Octahedron 3 4 8 12 6 2 
Icosahedron 3 5 20 30 12 2 
Dodecahedron 5 3 12 30 20 2 

 
  
 
 
 
2.2. Mathematical Discoveries Made by Artists and Polyhedra in Art: 
Leonardo, Luca Pacioli, Albrecht Dürer, Piero della Francesca and Others… 

                      
         Mathematics possesses not only truth but supreme beauty, 
         a beauty cold and austere, like that a sculpture,  
         sublimely pure and capable of a stern perfection,  
         such as  only the greatest art can show.                        

 Bertrand Russel  
 

For me it remains an open question whether [my 
work] 
pertains to the realm of mathematics or to that of art. 

M.C. Escher 
 

In fullerene literature it is often acknowledged an 
original way to display a truncated icosahedron, suggested by Leonardo 
Da Vinci. Figure 8 shows Leonardo’s drawing of truncated icosahedron 
from a book “De divina prportione” (“The Divine Proportion”) [5] written 
by Franciscan friar and mathematician Luka Pacioli (1445 - 1514) and 
illustrated by Leonardo. The book was published in 1509. We like to 
believe, that Leonardo’s “involvement” in the research of truncated 
icosahedrons (or in other words, in the prehistory of С60 discovery) was 
not accidental. This connection is deeply symbolic. The titan of 
Renaissance, artist, sculptor, scientist and inventor, Leonardo da Vinci 
(1452 – 1519) is a symbol of continuum of art and science, and, therefore, 
his interest in the objects like beautiful and highly symmetrical polyhedra, and particularly in 
truncated icosahedron is not accidental (here is the place to remind once again the title of Pacioli’s 
book – “The Devine Proportion”).  

Figure 7: How to built Archimedean truncated icosahedron from Platonic icosahedron.  
 

Figure 8: Leonardo’s drawing of 
truncated icosahedron from 
Pacioli’s book  “The Divine 
Proportion” (1509). 
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 Leonardo precedes his print of a truncated icosahedron with a scripture in Latin ‘Ycocehedron 
Abscisus Vacuus’. Term ‘Vacuus’ means, that all the faces of this polyhedron are shown as ‘hollow’. 
Actually, faces are not shown at all, they exist only in our imagination. On the other hand, the edges 
of the polyhedron are not shown using geometrical lines, which have neither width nor thickness, but 
with solid segments. These two features of this print constitute a base for the representation of 
polyhedra, which was invented by Leonardo for illustration of Pacioli’s book, and is called today 
‘method of solid segments’.  

Pacioli’s book strongly influenced on the geometry at that time. Furthermore, Luca Pacioli is 
considered as one of the biggest European algebraists of the 15th century, and - not less important - 
inventor of the double book-keeping method, which is used by today in all the accounting systems 
with no exceptions. He definitely deserved a title of “Father of Modern Accounting”. Even though, till 
now the mysterious and controversial Pacioli causes ferocious discussions among historians of 
science. 

It is known for certain, that Luca Pacioli was born in 1445, in Italian town Borgo San 
Sepolero (now Sansepolcro). During his childhood, he assisted to a local merchant and also studied in 
a workshop and studio of the great artist and mathematician Piero della Francesca. 
Some of the historians (the first was Giorgio Vasari who published a biography of Piero della 

Francesca in 1550) blame the author of “The 
Divine Proportion” in plagiarism of unpublished 
manuscripts, that belong to his teacher Piero della 
Francesca. This matter is not really clear. 
However, what we know exactly is that how 
Pacioli looked, thanks to his portraits by Jacopo de 
Barbari (1440 - 1515) and Piero della Francesca. 
 In the Barbari’s painting  (fig. 9) Pacioli, 
in a robe of Franciscan monk, is shown standing in 
front of the table with geometrical tools and books 
(in a right lower corner we see a model of 
dodecahedron). Pacioli and a handsome young 
man behind him are looking at the artist (and at us, 
spectators). At the same time we realize, that the 
attention of both is focused on the polyhedron 
glass model. The choice of polyhedron is not 
random – it’s a rhombicuboctahedron, 
rediscovered (after Archimedes) by Pacioli. 

 
 
The figure of young man on the same portrait, standing by Pacioli, is still under discussion of 

art historians. Some of them suspect this is Barbari’s self-portrait, some of them argue that this is 
young Albrecht Dürer (1471 - 1528). Though it is an open question, it is well known that Dürer was 
fascinated by the artistic style of Barbari, who created his compositions based on a mathematically 
defined system of proportions. After his meeting with Jacopo de Barbari in around 1500 in Nurnberg, 
Dürer started to study the laws of perspective. He dreamed to meet other famous Italian masters, to 
learn from them, to compete with them. For this purpose, in 1505-1507 Dürer took his second trip to 
Italy (the first one was in 1494-1495). It is not known for sure who were his teachers in this school of 
perspective (among others, the names of Luca Pacioli and Piero della Franchesca are considered), but 
Dürer continued to study in such a school till the end of his life.  

Starting since 1525, i.e. in three years before he died, the Master hurried to share with next 
generations the secrets of perspective, that he had being acquiring all his life. He published two 
treatises, one of which, “Underweysung der Messung” (“Painter’s Manual”), is a serious input in a 
theory of perspective and geometry of polyhedra. For instance, Dürer was the first to describe few 
archimedean solids unknown at his time. The book contains a very interesting discussion of 
perspective and other techniques and it typifies the renaissance idea that polyhedra are models worthy 
of an artist's attention. More importantly, this book presents the earliest known examples of 
polyhedral nets, i.e., polyheda unfolded to lie flat for printing (fig. 10). The net for truncated 

Figure 9: Jacopo de Barbari, 1495. Luca 
Pacioli. 
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icosahedron is shown in Fig. 10а. One should notice the wedge-shaped gaps between hexagons and 
pentagons when these faces are made to lie in a plain (the pentagons are required in the structure of 
truncated icosahedron to generation the curvature of the fullerene shell).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: Net for truncated icosahedron (а) and dodecahedron (b) from Albrecht Dürer’s treatise 
“Underweysung der Messung” (“Painter’s Manual”) (1525). 
 

Nowadays such nets are widely used in studies of elementary forms of crystals, molecular 
structures (fullerenes, for instance), viruses, etc. We suggest a reader to make a model of С60 molecule 
using a net of truncated icosahedron shown in Fig. 11 [6].  

It should be noted that contrary to the Dürer’s net 
one shown in fig. 11 does not contain any pentagon. This 
resembles one possible mechanism by which real С60 
molecules may form in nature using solely graphite 
hexagonal building blocks.  

Dürer’s theoretical works, as well as the art of the 
Renaissance in general, are filled with a thirst for a 
knowledge. The greatest artists of that time often became 
outstanding natural scientists. The idea of unity of artistic 
inspiration and mathematical theory is reflected in one of the 
most famous Dürer’s masterpieces, woodcut “Melancholia 
1” (fig. 12). It contains the first magic square to be seen in 
Europe, cleverly including the date 1514 as two entries in the 
middle of the bottom row. Of course, of our interest is the 
polyhedron in the picture. This is truncated rhombohedron 
that is now known as Dürer's solid. In the mathematical field 
of graph theory a skeleton of this polyhedron is known as the 
Dürer graph. S.Alavarez suggested [add15] name 

“melancholyhedron”for this polyhedron and demonstrated inorganic cluster having this shape: a shell 
of twelve As atoms around Ni (at a distance of 4.3 Å) in the solid state structure of NiAs12 (fig. 12). 
We would suggest name “durerene” for such a cluster. 

Not only Dürer, Leonardo and Barbari, but many other artists of different epochs and 
countries were interested in studying and drawing polyhedra. Peak of this interest was, of course, 
during the Renaissance. Studying Nature, the Renaissance artists tried to find scientific ways of 
drawing it. Built on geometry, optics and anatomy theories of perspective, proportions and treatment 
of light and shade became a base for a new art. They allowed an artist to create a three-dimensional 
space on a flat surface, saving an impression of relief of the objects. For some masters of Renaissance 
polyhedrons were just a convenient model for practicing the laws of perspective. Some of them were 

Figure 11: Net for making 
truncated icosahedron [6]. 
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fascinated by their symmetry and laconic beauty. The others, following Plato, were attracted by 
philosophical and mystical symbols of polyhedra. List of the greatest Renaissance artists, that often 
draw and seriously studied a geometry of polyhedra (beside Leonardo and Dürer mentioned above), 
should be started with Uccello (1397-1475) and, first of all, Piero della Francesca (~1420 - 1492). 

 
Figure 12: (a)Albrecht Dürer. “Melancholia I ” (1514); (b) structure of NiAs12 cluster. 

 
We have very little knowledge on life of Piero della Francesca, a genius artist, serious theorist 

of art and outstanding mathematician. We know that he was born in 1420 in a family of crafters in a 
small town of Sansepolcro in Tuscany (as well as his controversial pupil Pacioli). He studied in 
Florence where he showed a great interest in the art works of Masaccio, Uccello, Brunelleschi and 
Alberti. Afterwards, he worked in cities of Rimini, Arezzo, Urbino, Ferrara and Rome. Work of Piero 
della Francesca went beyond the limits of local art schools and influenced the art of the whole Italian 
Renaissance. 

Piero della Francesca was a great mathematician, who contributed a lot to algebra, geometry, 
science of perspective and, in particular, theory of polyhedra. However, after his death, the name of 
Piero della Francesca-scientist was forgotten for a long time. It happened, probably, due to the fact, 
that none of Piero's mathematical work was published under his own name in the Renaissance, but it 
seems to have circulated quite widely in manuscript and became influential through its incorporation 
into the works of others. Much of Piero's algebra appears in Pacioli's “Summa”, much of his work on 
the archimedean solids appears in Pacioli's “The Divine Proportion” and the simpler parts of Piero's 
perspective treatise were incorporated into almost all subsequent treatises on perspective addressed to 
painters. 

Luckily, in the beginning of the 20th century, the originals of three mathematical  manuscripts 
by Piero della Francesca were found. Nowadays they are in the Vatican Library. After five centuries 
of oblivion, the fame of famous mathematician got back to the Master. Today we know for certain, 
that Piero della Francesca was the first who rediscovered  and described in details 5 truncated 
Archimedean solids (without knowing, of course, that Archimedes already discovered them): 
truncated tetrahedron, truncated cube, truncated octahedron, truncated dodecahedron, and mostly 
important for our story, truncated icosahedron. His manuscript “Libbelus de quinque corporibus 
regularibus” (“Short book on the five regular solids”) written in 1480 has the oldest known image of 
truncated icosahedron (fig. 13).  
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During following years, many artists and sculptors from different countries used polyhedra as 
fine art objects. Fig. 14 displays two beautiful samples of intarsia, a special kind of mosaics made of 
thousands little pieces of inlaid wood. Intarsia art reached a peak in northern Italy in the late XV and 
early XVI centuries.  Many outstanding examples of this period feature polyhedra. Both examples 
shown in  Fig. 14 are intarsia panels by Fra Giovanni da Verona (1457 - 1525), constructed around 
1520 for the church of Santa Maria in Organo, Verona. The appearance of open cupboard doors 

creates a strong three-dimensional 
effect of the masterful perspective in 
this flat panel which is amplified by 
polyhedra imaging (including 
icosahedron and truncated 
icosahedron) by Leonardo's method 
of solid segments. 

 
Figure 13: The oldest known picture 
of truncated icosahedron: drawing 
by Piero della Francesca from his 
manuscript “Libbelus de quinque 
corporibus regularibus” (“Short 
book on the five regular solids”) 
(1480). 

 
 
 

 
 

Figure 14: Intarsia panels by Fra Giovanni da 
Verona, ~ 1520, the church of Santa Maria in 

Organo, Verona. 
 
2.3. Harmony of Johannes Kepler. 

 At ubi materia, ibi Geometria. 
Where there is matter, there is geometry.  

Johannes Kepler 
 
Johannes Kepler (1571 - 1630) has a special 
place among those scientists, who have been 
exploring polyhedrons.  Unlike the 
Renaissance artists that have discovered and 
even mathematically described some 
polyhedra, Kepler defined the entire classes 
of polyhedra, particularly that of 
Archimedean solids. In 1619, in his book 
“Harmony of the Worlds” Kepler derived 
that there are only 13 such polyhedra, fully 

described each of them and coined the names by which they are known today. In Kepler’s drawing 
illustrating the Archimedean solids (fig. 3), polyhedron # 13 (icosidodecahedron) was discovered by 
Kepler himself.  

The correspondence between the titles of Kepler’s and Pacioli’s books gets our attention: 
“Harmony of the Worlds” and “The Divine Proportion”. Nevertheless, unlike the exclusively 
geometrical work of Pacioli, Kepler was trying to formulate the major principles of structure of the 
Universe, all the aspects of our world: geometrical, astronomical, astrological, metaphysical, musical 
(!), social (!!). Kepler understood a marvelous harmony ruling the world not just in an abstract sense. 
It sounded in his poetic soul as a real music. One could hear this music only by entering into a world 
of Kepler’s ideas, feeling his powerful enthusiasm for an enchanted structure of the Universe and 
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Pythagorean admiration for correlation between numbers. In fact, isn’t it amazing, that “beautiful” for 
an ear depends on a strict numeric correlation, for instance, correlation between lengths of the strings, 
that produce sounds, - the correlation discovered by Pythagoras? Kepler’s soul, without a doubt, 
hosted a part of Pythagoras’s soul, and naturally, he saw Pythagorean correlations in the planetary 
cosmos. 

Another Kepler's input to polyhedra geometry is description of two of four regular stellated 
solids known today as Kepler- Poinsot. Kepler discovered the great stellated dodecahedron and the 
small stellated dodecahedron (fig. 14a). Both have regular pentagrams as their faces and the full 
symmetry of dodecahedron. The other two regular star polyhedra (the great dodecahedron and the 
great icosahedron) were described by Louis Poinsot in 1809. Stellated fullerene-like structures are 
shown below (Fig. 15).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 14: Small stellated dodecahedron. a: Kepler's 
drawing from “Harmony of the Worlds” (1619); (b) 
Detail of a marble inlay in the floor of the Basilica of 
St. Mark in Venice. Attributed to Paolo Uccello 
(about 1420's ?); (c) Regards from Kepler to 
Leonardo. Monument by Mimmo Paladino near to 
the entrance to Leonardo da Vinci Museum in the 
village of Vinci (Leonardo’s birthplace, Tuscany). 
Photo by E.A. Katz. 
  
Fig. 14b reproduces a marble inlay which features 
the small stellated dodecahedron, located in the floor 
of the Basilica of St. Mark in Venice. Many 
references attribute this to the great Renaissance 
painter and mosaicist Paolo Uccello (1397-1475).  If 
so, it is remarkable, for this would be two hundred 
years before Kepler's 1619 mathematical description 
of this polyhedron.   

 
 
3. Euler relation for convex polyhedra helps to understand molecular structure of 
fullerenes 

 
Read Euler, read Euler, he is our master in everything.  

Pierre-Simon Laplace 
                                                                           The universe is a grand book written  
                                                                            in the language of mathematics. 
                                                                                                                  Galileo 
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Leonard Euler (1707-1783), mathematician, physicist, mechanist and astronomer, author of more than 
800 scientific papers is one of the most outstanding scientists in history. There was no brunch of 
science that would not be of some interest to this great man. Mathematical analysis, geometry, 
numbers theory, theory of approximation, mechanics, astronomy, optics, ballistics, ship building, 
music theory, graph theory or mathematical topology. The birth dates of the latter two branches of 
mathematics were, correspondingly, 1736 when Euler solved the problem known as “the Seven 
Bridges of Königsberg” and 1758 when he formulated [7] and proved [8] a theorem on correlation 
between the number of vertices (V), edges (E) and faces (F) of a convex polyhedron: 

V – E + F  = 2                                                                                                        (1) 
This is the Euler relation which is widely and effectively used in nowadays fullerene studies. 

One of the consequences from the Euler theorem dictates that a hypothetical polyhedron 
formed only by hexagons is not feasible. The latter means in turn that it is impossible to design a 
close-cage molecule using only graphite hexagonal building blocks. Therefore hexagonal and 
pentagonal faces in С60 molecule. This is true for any polyhedral molecule, cluster, living organism, 
architectural or any other construction. A nice application of such a principle to the analysis of the 
shape of radiolaria was given by D'Arcy Thompson in his classical book “On Growth and Form” [9]: 
“No system of hexagons can enclose space; whether the hexagons be equal or unequal, regular or 
irregular, it is still under all circumstances mathematically impossible. Neither our reticulum 
plasmatique nor what seems to be the very perfection of hexagonal symmetry in Aulonia are as we are 
wont to conceive them; hexagons indeed predominate in both, but a certain number of facets are and 
must be other than hexagonal”.  
 Assuming an existence of the entire family of carbon molecules - fullerenes – in the shape of 
convex polyhedra consisting only of f6  hexagonal and f5 pentagonal faces, one gets.  
For such molecules: 
                                                     F = f5 + f6                                                                                (2) 
Since all vertices of the network have degree of 3 and each edge is shared by exactly two faces, the 
following expressions can be derived  
                                                   3V = 2E = 5 f5 + 6 f6                                                                 (3) 
or              6(F – E + V) = 6 f5 + 6 f6 -15 f5 -18 f6  + 10 f5 +12 f6 =  f5                                          (4) 
Together with Euler relation it yields  
                                                         f5 = 12                                                                                  (5) 
                                                        3V = 60 + 6 f6                                                                        (6) 
or 
                                            V = 20 + 2 f6 = 2(10 + f6)                                                                  (7) 
Thus, there must be 12 pentagons in any of such molecules!  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15: Fullerene-like structures with 
negative curvature: а – toroidal clusters, 
b - stellated carbon clusters, c - Y-
junctions of carbon nanotubes. Pentagons 
and heptagons providing positive and 
negative curvatures, respectively, are 
indicated. 
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Number of hexagonal faces f6 can be varied while evidently V (number of carbon atoms in the 

molecules) must be always even. Accordingly, the smallest fullerene has a shape of polyhedron with 
f6 = 0, formed only by pentagons, is nothing else than the dodecahedron. The next fullerene is С24, 
затем С26, С28, …, С60, С70, С2(10+h) ... 

Finally, fullerene-like structures with negative curvature can be realized by implanting, 
heptagon disclinations into hexagon/pentagon fullerene nets.3 
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3 More generally, introduction of any n-gonal face (where n ≥ 7) will result in negative curvature in fullerene-
like structures.  

71



 
 

 
 
 

International Society for the 
Interdisciplinary Study of 

Symmetry (ISIS) 

Association of Engineers, 
Architects and Graduates in 
Technological Sciences in 

Israel 

Domus Argenia Publisher, Milano, Italy 

2012 

 

NIRLAT Company              Bank Hapoalim                    The Ministry of Foreign Affairs          IKA Laboratories             Ami Gad Company 
 


	Cover and Preface
	Content
	papers2 p
	Groysman p
	Mel Alexenberg p
	Ben Baruch Blich p
	CHAKK p
	Prinzenstein p
	Faucheux p
	VernerMassarweBshouty p
	VernerNekrich p
	Ostern Anna-Lena p
	Katz Eugene p
	Shamir Noah p
	Rapoport p
	Soddu Celestino1
	Colabella Enrica p
	Michael Schorr p
	Gabor Renner p
	Bar On Michael p
	Lotan Meir p
	Gerry Leisman p
	Courchia p
	Lionel Wolberger p
	Mehrdad Garousi p

	All abstracts for proceeding 11-07-2012
	Back cover



