Jeffrey M. Gordon
Professor Emeritus
Born: June 1949. B.A. and
M.A. Columbia Univ. Ph.D. Brown
Univ. (1976)
Department of Solar Energy and Environmental Physics
Jacob Blaustein Institutes for Desert Research
Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel
Tel. (office): +972-8-6596923 e-mail: jeff@bgu.ac.il
Last updated: 1 May 2023
Current Scientific Activities
A) Solar
power in space
B)
Nanomaterials by highly concentrated solar and lamp light
C) Novel
high-impact solar power systems
D) Advanced
solar cells
E) Innovative
optics for solar concentrators and illumination
F) Algae ultra-efficient
bioproductivity
A video of a
March 2019 seminar on three of our recent research initiatives - the solar-driven
synthesis of singular nanomaterials, ultra-efficient algal bioproductivity, and
novel concentrator photovoltaics for space missions - can be viewed at:
https://www.youtube.com/watch?v=m5dP_BPA
Space does not permit a full description of these projects,
and I earnestly invite correspondence.
The following publications - restricted to
those since 2011 -
are representative (PDF-format reprints
are available upon request):
Solar power in space
C.J. Ruud, J.M. Gordon & N.C. Giebink (2023) "Microcell concentrating photovoltaics for space". Joule - in press.
J.M. Gordon (2022) "Uninterrupted photovoltaic power for lunar
colonization without the need for storage". Renewable Energy 187,
987-994. - A paradigm shift in solar power for the
anticipated energy needs in colonies on the Moon, where photovoltaic
electricity is supplied 100% of the time without the need for storage.
C.J. Ruud, J.M. Gordon, R.F. McCarthy & N.C. Giebink (2022) "Sine-limiting
microcell solar concentrators for space". Optics Express 30,
40328-40336. - The latest advance in photovoltaic
concentrators for space, which achieve record-high specific power (kW/kg) at
high efficiency and ultra-compactness, by a fundamentally new class of optical
design.
C.J. Ruud, A.J. Grede, J-K Chang, M.P. Lumb, K.J. Schmieder, B. Fisher, J.A.
Rogers, J.M. Gordon & N.C. Giebink (2019) “Design and demonstration of
ultra-compact microcell concentrating photovoltaics for space”. Optics
Express 27, A1467-A1480. - Solar
concentrator optics and photovoltaics tailored to the new challenging demands
of private commercial space missions - launched by NASA to the International
Space Station in March 2020 for testing.
Nanomaterials by highly concentrated
solar and lamp light
T. Barbe, R. Rosentsveig, O. Brontvein, M.B. Sreedhara, K. Zheng, F.
Bataille, A. Vossier, G. Flamant, I.E. Castelli, J.M. Gordon & R. Tenne
(2023) "Nanocones(horns) of MoS2 via focused solar
ablation". Advanced Materials Interfaces 10, 2201930. - The synthesis of fundamentally small MoS2
nanotubes and nanocones(horns) that had proven elusive in all prior studies.
T. Barbe, G. Flamant, E. Nadal, A. Vossier, G. Olalde, J.M. Gordon & F. Bataille (2022) "Elucidating the gas flow dynamics in a nanomaterial synthesis solar reactor". Chemical Engineering Journal 442, 135846.
S. Eshon, W. Zhang, M. Saunders, Y. Zhang, H.T. Chua
& J.M. Gordon (2019) “Panorama of boron nitride nanostructures via lamp
ablation”. Nano Research 12, 557-562. -
Seminal advance in the rapid, safe and scalable synthesis of boron nitride
nano-onions, of prodigious lubricating value.
E.A. Katz, I. Visoly-Fisher, D. Feuermann, R. Tenne & J.M. Gordon (2018) “Concentrated sunlight for materials synthesis and diagnostics”. Advanced Materials 1800444.
O. Brontvein, L. Houben, R. Popovitz-Biro, M. Levy, D. Feuermann, R. Tenne & J.M. Gordon (2017) “Synthesis and characterization of Pb@GaS core-shell fullerene-like nanoparticles and nanotubes”. Nano 12, 1750030.
O. Brontvein, A. Albu-Yaron, M. Levy, D. Feuermann, R.
Popovitz-Biro, R. Tenne, A. Enyashin & J.M. Gordon (2015) “Solar synthesis
of PbS-SnS2 superstructure nanoparticles”. ACS Nano 9, 7831-7839. – First synthesis of fullerene-like closed-cage misfit-layer nanostructures.
H. Lu, W.S. Woi, X. Tan, C.T. Gibson, X. Chen, C.L.
Raston, J.M. Gordon & H.T. Chua (2015) “Synthesis of few-layer graphene by
lamp ablation”. Carbon 94, 349-351. – A
new uncomplicated one-step procedure for achieving the rapid, high-yield,
non-toxic synthesis of few-layer graphene.
O. Brontvein, V. Jayaram, K.P.J. Reddy, J.M. Gordon &
R. Tenne (2014) “Two-step synthesis of MoS2 nanotubes using shock
waves with Lead as growth promoter”. Journal
of Inorganic and General Chemistry 640,
1152-1158. – A novel shock tube procedure for
nanomaterial synthesis.
H. Lu, B.C.Y. Chan, X. Wang, H.T. Chua, C.L. Raston, A. Albu-Yaron, M. Levy, R. Popovitz-Biro, R. Tenne, D. Feuermann & J.M. Gordon (2013) “High-yield synthesis of silicon carbide nanowires by solar and lamp ablation”. Nanotechnology 24, 335603.
O. Brontvein, D.G. Stroppa, R. Popovitz-Biro, A.
Albu-Yaron, M. Levy, D. Feuermann, L. Houben, R. Tenne & J.M. Gordon (2012)
“New high-temperature Pb-catalyzed synthesis of inorganic nanotubes”. Journal of the American Chemical Society
134, 16379-16386. – A new procedure - and deciphering of the intricate reaction
pathway - for the high-yield synthesis of MoS2, MoSe2, WS2
and WSe2 nanotubes by highly concentrated solar radiation.
B.C.Y. Chan, X. Wang, L.K.W. Lam, J.M. Gordon, D.
Feuermann, C.L. Raston & H.T. Chua (2012), “Light-driven high-temperature
continuous-flow synthesis of TiO2 nano-anatase”. Chemical Engineering Journal 211-212, 195-199. – A fundamentally new reactor strategy for nanomaterial
synthesis, conflating unorthodox lamp optics with spinning disk reactors.
A. Albu-Yaron, M. Levy, R.
Tenne, R. Popovitz-Biro, M. Weidenbach, M. Bar-Sadan, L. Houben, A.N. Enyashin,
G. Seifert, D. Feuermann, E.A. Katz & J.M. Gordon (2011), “MoS2
hybrid nanostructures: from octahedral to quasi-spherical shells within
individual nanoparticles”. Angewandte
Chemie International Edition 50,
1810-1814. – The experimental discovery and theory of
fundamentally new and unanticipated nanoclusters, generated by immensely
concentrated sunlight.
Novel high-impact solar
power systems
J.M. Gordon, T. Fasquelle, E. Nadal & A. Vossier (2021) "Providing
large-scale electricity demand with photovoltaics and molten-salt
storage". Renewable and Sustainable Energy Reviews 135,
110261. - A novel amalgamation of existing technologies
for storing photovoltaic-generated energy that can achieve up to 90% grid
penetration (24 hours/day, 365 days/year).
J.M. Gordon, G. Moses & E.A. Katz (2021) "Boosting silicon photovoltaic
efficiency from regasification of liquefied natural gas". Energy 214,
118907. - A new unorthodox method to boost the
efficiency of conventional silicon photovoltaic arrays by more than 70%
relative by exploiting a worldwide supply of nominally free ultra-cold energy
at liquefied natural gas regasification terminals.
A. Vossier, J. Zeitouny, E.A. Katz, A. Dollet, G. Flamant & J.M. Gordon
(2018) “Performance bounds and perspective for hybrid solar
photovoltaic/thermal electricity generation”. Sustainable Energy & Fuels
2, 2060-2067. - An energetic perspective for
the potential and sobering limitations of hybrid solar electricity production
systems.
J. Zeitouny, N. Lalau, J.M. Gordon, E.A. Katz, G. Flamant, A. Dollet & A. Vossier (2018) “Assessing high-temperature photovoltaic performance for solar hybrid power plants”. Solar Energy Materials and Solar Cells 182, 61-67.
G.A. Salazar, N. Fraidenraich, C.A.A. de Oliveira, O.C. Vilela, M. Hongn & J.M. Gordon (2017), “Analytic modeling of parabolic trough solar thermal power plants”. Energy 138, 1148-1156.
M. Piness-Sommer, A. Braun, E.A. Katz & J.M. Gordon (2016)
“Ultra-compact combustion-driven high-efficiency thermophotovoltaic
generators”. Solar Energy Materials and Solar Cells 157, 953-959.
- Novel concept and evaluation for using conventional
Si and Ge photovoltaics in advanced gas-combustion chambers for modular
super-compact power generation.
N. Fraidenraich, C. Oliveira, A.F.V. da Cunha, J.M. Gordon & O.C. Vilela (2013) “Analytical modeling of direct steam generation solar power plants”. Solar Energy 98, 511-522.
J.M. Gordon, D. Babai & D. Feuermann (2011) “A high-irradiance solar furnace for photovoltaic characterization and nanomaterial synthesis”. Solar Energy Materials and Solar Cells 95, 951-956.
Advanced solar cells
M.A. der Maur, G. Moses, J.M. Gordon, X. Huang, Y. Zhao & E.A. Katz (2021) "Temperature and intensity dependence of the open-circuit voltage of InGaN/GaN multi-quantum well solar cells". Solar Energy Materials and Solar Cells 230, 111253.
G. Moses, X. Huang, Y. Zhao, M. Auf der Maur, E.A. Katz & J.M. Gordon
(2020) "InGaN/GaN multi-quantum-well solar cells under high solar
concentration and elevated temperatures for hybrid solar thermal-photovoltaic
power plants". Progress in Photovoltaics 28, 1167-1174. - Experimental demonstration of advanced solar cells that
retain high efficiency at very high temperatures and high flux concentration, forming
the first link toward future solar hybrid power generation.
A. Pusch, J.M. Gordon, A. Mellor, J.J. Krich & N.J. Ekins-Daukes (2019)
"Fundamental efficiency bounds for the conversion of a radiative heat
engine's own emission into work". Physical Review Applied 12,
064018. - The basic and applied science of a novel heat
engine akin to, but intriguingly distinct from, photovoltaics.
W.L. Leong, Z.E. Ooi, D. Sabba, C. Yi, S.M. Zakeeruddin, M. Graetzel, J.M.
Gordon, E.A. Katz & N. Mathews (2016) “Identifying fundamental limitations
in halide perovskite solar cells”. Advanced Materials 28, 2439-2445.
– New findings and insights for perovskite solar cells.
J.M. Gordon, D. Feuermann & H. Mashaal (2015) “Micro-optical designs for angular confinement in solar cells”. Journal of Photonics for Energy 5, 05599.
A. Braun, E.A. Katz, D. Feuermann, B.M. Kayes & J.M. Gordon (2013)
“Photovoltaic performance enhancement by external recycling of photon
emission”. Energy & Environmental
Science, 6, 1499-1503. – The first experimental demonstration that external photon
recycling can generate a voltage enhancement - and thereby an efficiency boost
- in solar cells.
A. Braun, E.A. Katz & J.M. Gordon (2013) “Basic aspects of the temperature coefficients of concentrator solar cell performance parameters”. Progress in Photovoltaics, 21, 1087-1094.
A. Braun, B. Hirsch, A Vossier, E.A. Katz & J.M. Gordon (2013) “Temperature dynamics of multijunction concentrator solar cells up to ultra-high irradiance”. Progress in Photovoltaics 21, 202-208.
A. Braun, A. Vossier, E.A. Katz, N.J. Ekins-Daukes & J.M. Gordon (2012)
“Multiple-bandgap vertical-junction architectures for ultra-efficient
concentrator solar cells”. Energy &
Environmental Science 5,
8523-8527. – A new unconventional concentrator solar
cell architecture for ultra-efficient photovoltaics with indirect bandgap semiconductors.
A. Braun, N. Szabó, K. Schwarzburg, T. Hannappel, E.A. Katz & J.M.
Gordon (2011) “Current-limiting behavior in multijunction solar cells”. Applied Physics Letters 98, 223506.
A. Vossier, B. Hirsch, E.A. Katz
& J.M. Gordon (2011) “On the ultra-miniaturization of concentrator solar
cells”. Solar Energy Materials and Solar
Cells 95, 1188-1192. – What should be the smallness limit for concentrator
photovoltaics?
Innovative optics for solar concentrators and illumination
L.F.L. Souza, N. Fraidenraich, C. Tiba & J.M. Gordon (2023) "Analytic optical evaluation of aplanatic solar Fresnel reflectors". Solar Energy 249, 107-121.
L.F.L. Souza, N. Fraidenraich, C. Tiba & J.M. Gordon (2021) "Linear aplanatic Fresnel reflector for practical high-performance solar concentration". Solar Energy 222, 259-268.
E.T.A. Gomes, N. Fraidenraich, O.C. Vilela, C.A.A. Oliveira & J.M.
Gordon (2019) "Aplanats and analytic modeling of their optical properties
for linear solar concentrators with tubular receivers". Solar Energy 191,
697-706. - A novel, viable, pragmatic alternative for
concentrator optics in line-focus solar thermal power plants.
H. Mashaal, D. Feuermann & J.M. Gordon (2019) “The expansive scope of aplanatic
concentrators and collimators”. Applied Optics 58, F14-F20. - A compendium of our latest findings for basic new classes
of aplanatic optics for solar concentration and light-emitting-diode
collimation, within the perspective of all related discoveries to date.
J.M. Gordon & D. Feuermann (2019) “Aplanatic beam-down solar towers”. Proc. SPIE 11120, 111200E.
H. Mashaal, D. Feuermann & J.M. Gordon (2017) “Aplanatic Fresnel
optics”. Optics Express 25, A274-A282. -
Fundamentally new types of Fresnel optics for radiative transfer near the
thermodynamic limit.
S.V. Boriskina, M.A. Green, K. Catchpole, E. Yablonovitch, M.C. Beard, Y.
Okada, S. Lany, T. Gershon, A. Zakutayev, M.H. Tahersima, V.J. Sorger, M.J.
Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N.D. Bronstein, J.A.
Rogers, A.P. Alivisatos, R.G. Nuzzo, J.M. Gordon, D.M. Wu, M.D. Wisser, A.
Salleo, J. Dionne, P. Bermel, J.J. Greffet, I. Celanovic, M. Soljacic, A.
Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan & G. Chen (2016) “Roadmap on
optical energy conversion”. Journal of Optics 18, 073004 (48 pp).
- Panoramic review of the current state-of-the-art of
optical energy conversion.
H. Mashaal, D. Feuermann & J.M. Gordon (2016) “Aplanatic lenses revisited: the full landscape”. Applied Optics 55, 2537-2542.
H. Mashaal, D. Feuermann & J.M. Gordon (2015) “Basic categories of dual-contour reflective-refractive aplanats”. Optics Letters 40, 4097-4910.
H. Mashaal, D. Feuermann & J.M. Gordon (2015) “New types of refractive-reflective aplanats for maximal flux concentration and collimation”. Optics Express 23, 1541-1548.
N. Fraidenraich, M. Filho, O.C. Vilela & J.M. Gordon (2013) “Exact analytic flux distributions for two-dimensional solar concentrators”. Applied Optics 52, 4596-4600.
P. Kotsidas, V. Modi & J.M. Gordon (2012) “Realizable planar
gradient-index solar lenses”. Optics
Letters 37, 1235-1237. – The discovery of planar single-element solar lenses that
approach the fundamental limits for flux concentration and optical tolerance.
P. Kotsidas, V. Modi & J.M. Gordon (2011) “Gradient-index lenses for
near-ideal imaging and concentration with realistic materials”. Optics Express 19, 15584-15595. – Opening new vistas in
gradient-index optics for visible and solar light.
A. Goldstein, D. Feuermann, G.D. Conley & J.M. Gordon (2011) “Nested
aplanats for practical maximum-performance solar concentration”. Optics Letters 36, 2836-2838. – Surmounting the practical
limitations of reflector optics for concentrator photovoltaics.
P. Kotsidas, V. Modi & J.M. Gordon (2011) “Nominally stationary high-concentration solar optics by gradient-index lenses”. Optics Express 19, 2325-2334. – Flux concentration values of thousands of suns can be realistically attained without massive two-axis solar trackers.
Algae bioproductivity
Y. Zarmi, J.M. Gordon, A. Mahulkar, A.R. Khopkar, S.D. Patil, A. Banerjee,
B.G. Reddy, T.P. Griffin & A. Sapre (2020) "Enhanced algal
photosynthetic photon efficiency by pulsed light". iScience 23,
101115. - A breakthrough constituting both extensive
experimental evidence and a physical model rooted in photon-arrival statistics,
demonstrating more than a factor of 3 improvement in the efficiency with which
algae process photons for photosynthesis, at average-to-peak solar intensities.
E. Greenwald, J.M. Gordon & Y.
Zarmi (2012) “Physics of ultra-high bioproductivity in algal photobioreactors”.
Applied Physics Letters 100, 143703. –
First biophysical model toward explaining the basis for ultra-high yields of
algae in properly crafted photobioreactors.
The inter-disciplinary research
efforts portrayed above engender exciting challenges both at a fundamental
level and in translating them into pragmatic realities. We extend an invitation
to interested graduate students, post-doctoral fellows and visiting scientists
to join us in these programs.