Jeffrey M.
Gordon
Professor Emeritus
Born: June 1949. B.A. and M.A. Columbia Univ. Ph.D. Brown Univ. (1976)
Department of Solar Energy and Environmental Physics
Jacob Blaustein Institutes for Desert Research
Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel
e-mail: jeff@bgu.ac.il
(also Adjunct Professor at the University of Western Australia, Department of Chemical Engineering and Institute of Advanced Studies, Perth, Australia)
Last updated: 12
August 2024
Current Scientific
Activities
A) Solar power in space
B) Nanomaterials by highly concentrated solar and lamp light
C) Novel high-impact solar power systems
D) Advanced solar cells
E) Innovative optics for solar concentrators and illumination
F) Algae ultra-efficient bioproductivity
A video of a March 2019 seminar
on three of our recent research initiatives - the solar-driven synthesis of
singular nanomaterials, ultra-efficient algal bioproductivity,
and novel concentrator photovoltaics for space missions - can be viewed at:
https://www.youtube.com/watch?v=m5dP_BPA
A video of a May 2024 public
lecture for a general audience on our advances in nanotechnology and their
commercialization can be viewed at:
https://echo360.net.au/media/afbb7349-1f8b-4a53-ac0a-422b9cf39a00/public
Space does not permit a full description of these projects, and I earnestly
invite correspondence.
The following publications - restricted
to those since 2011 - are representative (PDF-format reprints are available upon
request):
Solar power in
space
C.J. Ruud, J.M. Gordon & N.C. Giebink
(2023) "Microcell concentrating photovoltaics for space". Joule 7,
1093-1098. The design and experimental results for new
generations of photovoltaic concentrators for space missions, with uncommonly
low size and specific mass (kg/kW).
J.M. Gordon (2022) "Uninterrupted photovoltaic power
for lunar colonization without the need for storage". Renewable Energy
187, 987-994. - A paradigm shift in solar power
for the anticipated energy needs in colonies on the Moon, where photovoltaic
electricity is supplied 100% of the time without the need for storage.
C.J. Ruud, J.M. Gordon, R.F. McCarthy & N.C. Giebink (2022) "Sine-limiting microcell solar
concentrators for space". Optics Express 30, 40328-40336. - The latest advance in photovoltaic concentrators for space,
which achieve record-high specific power (kW/kg) at high efficiency and
ultra-compactness, by a fundamentally new class of optical design.
C.J. Ruud, A.J. Grede, J-K Chang,
M.P. Lumb, K.J. Schmieder,
B. Fisher, J.A. Rogers, J.M. Gordon & N.C. Giebink
(2019) “Design and demonstration of ultra-compact microcell concentrating
photovoltaics for space”. Optics Express 27, A1467-A1480. - Solar concentrator optics and photovoltaics tailored to the
new challenging demands of private commercial space missions - launched by NASA
to the International Space Station in March 2020 for testing.
Nanomaterials by
highly concentrated solar and lamp light
(Our experimental results recently spawned
the nanotechnology spin-off company Ablano Pty Ltd of
Perth, Australia, which is currently commercializing the scalable synthesis of
boron nitride nano-onions and few-layer graphene.)
J. He, H. Zhang, S. Eshon, W. Zhang, M. Saunders, J.M. Gordon & H.T. Chua (2024) "Singular tungsten disulfide core-shell and pure tungsten nanostructures". Applied Materials Today 39, 102336.
H. Zhang, J. He, W. Zhang, I.E. Castelli, M. Saunders, J.M.
Gordon & H.T. Chua (2023) "Rapid, one-pot, non-toxic and scalable
synthesis of boron nitride nano-onions via lamp ablation". Materials
Today 67, 13-22. The first scalable,
safe method for generating these unique BN nano-particles
of exceptional value for high-temperature lubrication and anti-corrosion
applications - upon which the Ablano corporation of
Perth, Australia has been founded to commercialize production.
T. Barbe, R. Rosentsveig, O. Brontvein, M.B. Sreedhara, K.
Zheng, F. Bataille, A. Vossier,
G. Flamant, I.E. Castelli, J.M. Gordon & R. Tenne (2023) "Nanocones(horns) of MoS2 via focused solar
ablation". Advanced Materials Interfaces 10, 2201930. - The synthesis of fundamentally small MoS2
nanotubes and nanocones(horns) that had proven
elusive in all prior studies.
T. Barbe, G. Flamant, E. Nadal, A. Vossier, G. Olalde, J.M. Gordon & F. Bataille (2022) "Elucidating the gas flow dynamics in a nanomaterial synthesis solar reactor". Chemical Engineering Journal 442, 135846.
S. Eshon,
W. Zhang, M. Saunders, Y. Zhang, H.T. Chua & J.M. Gordon (2019) “Panorama
of boron nitride nanostructures via lamp ablation”. Nano Research 12,
557-562. - Seminal advance in the rapid, safe and
scalable synthesis of boron nitride nano-onions, of prodigious lubricating
value.
E.A. Katz, I. Visoly-Fisher, D. Feuermann, R. Tenne & J.M. Gordon (2018) “Concentrated sunlight for materials synthesis and diagnostics”. Advanced Materials 1800444.
O. Brontvein, L. Houben, R. Popovitz-Biro, M. Levy, D. Feuermann, R. Tenne & J.M. Gordon (2017) “Synthesis and characterization of Pb@GaS core-shell fullerene-like nanoparticles and nanotubes”. Nano 12, 1750030.
O. Brontvein, A.
Albu-Yaron, M. Levy, D. Feuermann, R. Popovitz-Biro, R. Tenne, A. Enyashin
& J.M. Gordon (2015) “Solar synthesis of PbS-SnS2 superstructure
nanoparticles”. ACS Nano 9, 7831-7839. –
First synthesis of fullerene-like closed-cage misfit-layer nanostructures.
H. Lu, W.S. Woi,
X. Tan, C.T. Gibson, X. Chen, C.L. Raston, J.M.
Gordon & H.T. Chua (2015) “Synthesis of few-layer graphene by lamp
ablation”. Carbon 94, 349-351. – A
new uncomplicated one-step procedure for achieving the rapid, high-yield,
non-toxic synthesis of few-layer graphene.
O. Brontvein,
V. Jayaram, K.P.J. Reddy, J.M. Gordon & R. Tenne (2014) “Two-step synthesis
of MoS2 nanotubes using shock waves with Lead as growth promoter”. Journal of Inorganic and General Chemistry 640, 1152-1158. – A novel shock tube procedure for nanomaterial synthesis.
H. Lu, B.C.Y. Chan, X. Wang, H.T. Chua, C.L. Raston, A. Albu-Yaron, M. Levy, R. Popovitz-Biro, R. Tenne, D. Feuermann & J.M. Gordon (2013) “High-yield synthesis of silicon carbide nanowires by solar and lamp ablation”. Nanotechnology 24, 335603.
O. Brontvein,
D.G. Stroppa, R. Popovitz-Biro,
A. Albu-Yaron, M. Levy, D. Feuermann, L. Houben, R. Tenne & J.M. Gordon (2012) “New
high-temperature Pb-catalyzed synthesis of inorganic nanotubes”. Journal of the American Chemical Society
134, 16379-16386. – A new procedure - and deciphering of the intricate reaction
pathway - for the high-yield synthesis of MoS2, MoSe2, WS2
and WSe2 nanotubes by highly concentrated solar radiation.
B.C.Y. Chan, X. Wang, L.K.W. Lam, J.M. Gordon,
D. Feuermann, C.L. Raston & H.T. Chua (2012), “Light-driven
high-temperature continuous-flow synthesis of TiO2 nano-anatase”. Chemical Engineering Journal 211-212, 195-199. – A fundamentally new reactor strategy for nanomaterial
synthesis, conflating unorthodox lamp optics with spinning disk reactors.
A. Albu-Yaron, M. Levy, R. Tenne, R. Popovitz-Biro,
M. Weidenbach, M. Bar-Sadan,
L. Houben, A.N. Enyashin,
G. Seifert, D. Feuermann, E.A. Katz & J.M. Gordon (2011), “MoS2
hybrid nanostructures: from octahedral to quasi-spherical shells within
individual nanoparticles”. Angewandte Chemie International Edition 50, 1810-1814. – The experimental discovery
and theory of fundamentally new and unanticipated nanoclusters, generated by
immensely concentrated sunlight.
Novel high-impact
solar power systems
J.M. Gordon, T. Fasquelle, E.
Nadal & A. Vossier (2021) "Providing
large-scale electricity demand with photovoltaics and molten-salt
storage". Renewable and Sustainable Energy Reviews 135,
110261. - A novel amalgamation of existing technologies
for storing photovoltaic-generated energy that can achieve up to 90% grid
penetration (24 hours/day, 365 days/year).
J.M. Gordon, G. Moses & E.A. Katz (2021) "Boosting
silicon photovoltaic efficiency from regasification of liquefied natural
gas". Energy 214, 118907. - A new
unorthodox method to boost the efficiency of conventional silicon photovoltaic
arrays by more than 70% relative by exploiting a worldwide supply of nominally
free ultra-cold energy at liquefied natural gas regasification terminals.
A. Vossier, J. Zeitouny, E.A. Katz, A. Dollet,
G. Flamant & J.M. Gordon (2018) “Performance bounds and perspective for
hybrid solar photovoltaic/thermal electricity generation”. Sustainable
Energy & Fuels 2, 2060-2067. - An
energetic perspective for the potential and sobering limitations of hybrid
solar electricity production systems.
J. Zeitouny, N. Lalau, J.M. Gordon, E.A. Katz, G. Flamant, A. Dollet & A. Vossier (2018) “Assessing high-temperature photovoltaic performance for solar hybrid power plants”. Solar Energy Materials and Solar Cells 182, 61-67.
G.A. Salazar, N. Fraidenraich, C.A.A. de Oliveira, O.C. Vilela, M. Hongn & J.M. Gordon (2017), “Analytic modeling of parabolic trough solar thermal power plants”. Energy 138, 1148-1156.
M. Piness-Sommer, A. Braun, E.A.
Katz & J.M. Gordon (2016) “Ultra-compact combustion-driven high-efficiency
thermophotovoltaic generators”. Solar Energy Materials and Solar Cells 157,
953-959. - Novel concept and evaluation for using
conventional Si and Ge photovoltaics in advanced gas-combustion chambers for
modular super-compact power generation.
N. Fraidenraich, C. Oliveira, A.F.V. da Cunha, J.M. Gordon & O.C. Vilela (2013) “Analytical modeling of direct steam generation solar power plants”. Solar Energy 98, 511-522.
J.M. Gordon, D. Babai & D. Feuermann (2011) “A high-irradiance solar furnace for photovoltaic characterization and nanomaterial synthesis”. Solar Energy Materials and Solar Cells 95, 951-956.
Advanced solar
cells
G.E. Arnaoutakis, D. Busko, B.S. Richards, A. Ivaturi, J.M. Gordon & E.A. Katz (2024) "Ultra-broadband near-infrared upconversion for solar energy harvesting". Solar Energy Materials and Solar Cells 269, 112783.
M.A. der Maur, G. Moses, J.M. Gordon, X. Huang, Y. Zhao & E.A. Katz (2021) "Temperature and intensity dependence of the open-circuit voltage of InGaN/GaN multi-quantum well solar cells". Solar Energy Materials and Solar Cells 230, 111253.
G. Moses, X. Huang, Y. Zhao, M. Auf der Maur,
E.A. Katz & J.M. Gordon (2020) "InGaN/GaN multi-quantum-well solar cells under high solar
concentration and elevated temperatures for hybrid solar thermal-photovoltaic
power plants". Progress in Photovoltaics 28, 1167-1174. - Experimental demonstration of advanced solar cells that
retain high efficiency at very high temperatures and high flux concentration, forming
the first link toward future solar hybrid power generation.
A. Pusch, J.M. Gordon, A. Mellor,
J.J. Krich & N.J. Ekins-Daukes
(2019) "Fundamental efficiency bounds for the conversion of a radiative
heat engine's own emission into work". Physical Review Applied 12,
064018. - The basic and applied science of a novel heat
engine akin to, but intriguingly distinct from, photovoltaics.
W.L. Leong, Z.E. Ooi, D. Sabba,
C. Yi, S.M. Zakeeruddin, M. Graetzel,
J.M. Gordon, E.A. Katz & N. Mathews (2016) “Identifying fundamental
limitations in halide perovskite solar cells”. Advanced Materials 28,
2439-2445. – New findings and insights for perovskite
solar cells.
J.M. Gordon, D. Feuermann & H. Mashaal (2015) “Micro-optical designs for angular confinement in solar cells”. Journal of Photonics for Energy 5, 05599.
A. Braun, E.A. Katz, D. Feuermann, B.M. Kayes
& J.M. Gordon (2013) “Photovoltaic performance enhancement by external
recycling of photon emission”. Energy
& Environmental Science, 6,
1499-1503. – The first experimental demonstration that
external photon recycling can generate a voltage enhancement - and thereby an
efficiency boost - in solar cells.
A. Braun, E.A. Katz & J.M. Gordon (2013) “Basic aspects of the temperature coefficients of concentrator solar cell performance parameters”. Progress in Photovoltaics, 21, 1087-1094.
A. Braun, B. Hirsch, A Vossier, E.A. Katz & J.M. Gordon (2013) “Temperature dynamics of multijunction concentrator solar cells up to ultra-high irradiance”. Progress in Photovoltaics 21, 202-208.
A. Braun, A. Vossier, E.A. Katz,
N.J. Ekins-Daukes & J.M. Gordon (2012)
“Multiple-bandgap vertical-junction architectures for ultra-efficient
concentrator solar cells”. Energy &
Environmental Science 5,
8523-8527. – A new unconventional concentrator solar
cell architecture for ultra-efficient photovoltaics with indirect bandgap semiconductors.
A. Braun, N. Szabó, K. Schwarzburg,
T. Hannappel, E.A. Katz & J.M. Gordon (2011)
“Current-limiting behavior in multijunction solar cells”. Applied Physics Letters 98,
223506.
A. Vossier, B.
Hirsch, E.A. Katz & J.M. Gordon (2011) “On the ultra-miniaturization of
concentrator solar cells”. Solar Energy
Materials and Solar Cells 95,
1188-1192. – What should be the smallness limit for
concentrator photovoltaics?
Innovative optics for solar concentrators and illumination
L.F.L. Souza, N. Fraidenraich & J.M. Gordon (2024) "Aplanatic solar concentrators for tubular absorbers". Optics Letters 49, 1441-1444.
L.F.L. Souza, N. Fraidenraich, C. Tiba & J.M. Gordon (2023) "Analytic optical evaluation of aplanatic solar Fresnel reflectors". Solar Energy 249, 107-121.
L.F.L. Souza, N. Fraidenraich, C. Tiba & J.M. Gordon (2021) "Linear aplanatic Fresnel reflector for practical high-performance solar concentration". Solar Energy 222, 259-268.
E.T.A. Gomes, N. Fraidenraich,
O.C. Vilela, C.A.A. Oliveira & J.M. Gordon (2019) "Aplanats and
analytic modeling of their optical properties for linear solar concentrators
with tubular receivers". Solar Energy 191, 697-706. - A novel, viable, pragmatic alternative for concentrator
optics in line-focus solar thermal power plants.
H. Mashaal, D. Feuermann & J.M. Gordon (2019) “The
expansive scope of aplanatic concentrators and collimators”. Applied Optics
58, F14-F20. - A compendium of our latest findings
for basic new classes of aplanatic optics for solar concentration and light-emitting-diode
collimation, within the perspective of all related discoveries to date.
J.M. Gordon & D. Feuermann (2019) “Aplanatic beam-down solar towers”. Proc. SPIE 11120, 111200E.
H. Mashaal, D. Feuermann & J.M. Gordon (2017)
“Aplanatic Fresnel optics”. Optics Express 25, A274-A282. - Fundamentally new types of Fresnel optics for radiative
transfer near the thermodynamic limit.
S.V. Boriskina, M.A. Green, K.
Catchpole, E. Yablonovitch, M.C. Beard, Y. Okada, S.
Lany, T. Gershon, A. Zakutayev, M.H. Tahersima, V.J. Sorger, M.J.
Naughton, K. Kempa, M. Dagenais,
Y. Yao, L. Xu, X. Sheng, N.D. Bronstein, J.A. Rogers, A.P. Alivisatos,
R.G. Nuzzo, J.M. Gordon, D.M. Wu, M.D. Wisser, A. Salleo, J. Dionne, P. Bermel,
J.J. Greffet, I. Celanovic,
M. Soljacic, A. Manor, C. Rotschild,
A. Raman, L. Zhu, S. Fan & G. Chen (2016) “Roadmap on optical energy conversion”.
Journal of Optics 18, 073004 (48 pp). - Panoramic
review of the current state-of-the-art of optical energy conversion.
H. Mashaal, D. Feuermann & J.M. Gordon (2016) “Aplanatic lenses revisited: the full landscape”. Applied Optics 55, 2537-2542.
H. Mashaal, D. Feuermann & J.M. Gordon (2015) “Basic categories of dual-contour reflective-refractive aplanats”. Optics Letters 40, 4097-4910.
H. Mashaal, D. Feuermann & J.M. Gordon (2015) “New types of refractive-reflective aplanats for maximal flux concentration and collimation”. Optics Express 23, 1541-1548.
N. Fraidenraich, M. Filho, O.C. Vilela & J.M. Gordon (2013) “Exact analytic flux distributions for two-dimensional solar concentrators”. Applied Optics 52, 4596-4600.
P. Kotsidas, V. Modi & J.M.
Gordon (2012) “Realizable planar gradient-index solar lenses”. Optics Letters 37, 1235-1237. – The discovery of planar
single-element solar lenses that approach the fundamental limits for flux
concentration and optical tolerance.
P. Kotsidas, V. Modi & J.M.
Gordon (2011) “Gradient-index lenses for near-ideal imaging and concentration
with realistic materials”. Optics Express
19, 15584-15595. – Opening new vistas in gradient-index optics for visible and
solar light.
A. Goldstein, D. Feuermann, G.D. Conley & J.M. Gordon
(2011) “Nested aplanats for practical maximum-performance solar concentration”.
Optics Letters 36, 2836-2838. – Surmounting the practical
limitations of reflector optics for concentrator photovoltaics.
P. Kotsidas, V. Modi & J.M. Gordon (2011) “Nominally stationary high-concentration solar optics by gradient-index lenses”. Optics Express 19, 2325-2334. – Flux concentration values of thousands of suns can be realistically attained without massive two-axis solar trackers.
Algae bioproductivity
Y. Zarmi, J.M. Gordon, A. Mahulkar, A.R. Khopkar, S.D.
Patil, A. Banerjee, B.G. Reddy, T.P. Griffin & A. Sapre
(2020) "Enhanced algal photosynthetic photon efficiency by pulsed
light". iScience 23, 101115.
- A breakthrough constituting both extensive
experimental evidence and a physical model rooted in photon-arrival statistics,
demonstrating more than a factor of 3 improvement in the efficiency with which
algae process photons for photosynthesis, at average-to-peak solar intensities.
E. Greenwald, J.M. Gordon & Y. Zarmi (2012) “Physics of ultra-high bioproductivity
in algal photobioreactors”. Applied
Physics Letters 100, 143703. – First biophysical model toward explaining the basis for
ultra-high yields of algae in properly crafted photobioreactors.
The inter-disciplinary research
efforts portrayed above engender exciting challenges both at a fundamental
level and in translating them into pragmatic realities. We extend an invitation
to interested graduate students, post-doctoral fellows and visiting scientists
to join us in these programs.