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Abstract. Diffraction enhanced imaging (DEI) is a new, synchrotron-based, x-ray radiography
method that uses monochromatic, fan-shaped beams, with an analyser crystal positioned between
the subject and the detector. The analyser allows the detection of only those x-rays transmitted
by the subject that fall into the acceptance angle (central part of the rocking curve) of the
monochromator/analyser system. As shown by Chapmanet al, in addition to the x-ray attenuation,
the method provides information on the out-of-plane angular deviation of x-rays. New images
result in which the image contrast depends on the x-ray index of refraction and on the yield of
small-angle scattering, respectively. We implemented DEI in the tomography mode at the National
Synchrotron Light Source using 22 keV x-rays, and imaged a cylindrical acrylic phantom that
included oil-filled, slanted channels. The resulting ‘refraction CT image’ shows the pure image
of the out-of-plane gradient of the x-ray index of refraction. No image artefacts were present,
indicating that the CT projection data were a consistent set. The ‘refraction CT image’ signal is
linear with the gradient of the refractive index, and its value is equal to that expected. The method,
at the energy used or higher, has the potential for use in clinical radiography and in industry.

1. Introduction

Diffraction-enhanced imaging (DEI) is a new method of x-ray radiography that was developed
in 1995 by Chapman and co-workers (Chapmanet al1995, 1997) at the National Synchrotron
Light Source (NSLS) for mammography with improved image contrast. DEI uses a fan-shaped,
synchrotron-generated x-ray beam, monochromatized by a perfect-crystal monochromator, to
measure a subject’s x-ray transmission in a line-scan method. The heart of the method is an
analyser crystal, typically the same kind as the monochromator’s crystal, which is positioned
behind the subject in the path of the transmitted beam to the detector. Only the part of the
beam transmitted by the subject that satisfies the diffraction condition of the analyser crystal
arrives at the detector, which is positioned at the appropriate angle to receive the diffracted
photons. The angular yield function of this monochromator/analyser system, which is called
the rocking curve, is very narrow (typically several microradians, depending on the crystal
and its reflection plane, and on the x-ray energy). Therefore, the efficiency of collecting the
transmitted x-rays depends on the out-of-plane angular deviation of the x-ray photons in the fan
beam as they traverse the slice of the subject being imaged. In other words, the image contrast
is modulated by the shape of the rocking curve and by the angular deviation of the transmitted
x-rays out of the fan plane. The net result is an extremely high sensitivity of image contrast
to the two physical factors in the tissue that determine this angular deviation (Somenkovet al
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1991, Ingal and Beliaevsky 1995, Daviset al 1995): (a) the refraction effect, caused by the
out-of-plane gradient of the x-ray index of refraction of the tissue (Yagiet al 1999, Arfelli
et al 1998, Spanneet al 1999, Momoseet al 1999); and (b) the extinction effect, caused by
the total cross-section and the angular width of the so-called x-ray small-angle scattering in
the tissue (Guinier 1963). Neither of these factors is resolved in conventional radiography
(Elleaumeet al 1999). Radiographs in the planar mode obtained by DEI indicate that the
angular sensitivity of the DEI method can be as fine as 0.01 microradians (Chapmanet al
1997).

The immediate goal of the present work was to answer the following basic questions:
(a) Do each of the DEI CT projections constitute a complete set? (b) How complete is the
separation of the refraction and apparent absorption images? (c) Will the refractive index
signal be linear with the subject’s change of refractive index? Our long-term goal is to use
DEI CT for characterizing tissues, a necessary step in evaluating the potential of the DEI
method in clinical radiography both in the planar mode for mammography and in the CT mode
for whole-body imaging. Tissue characterization in the planar mode of a complex sample is
virtually impossible because of the interference of overlying tissues.

2. Theory

In a DEI experiment, a fan beam of monochromatic x-rays is generated by a double-bounce,
perfect-crystal monochromator. This beam then traverses the sample and is diffracted by an
analyser crystal to the extent that it satisfies the angle-energy condition. The angular deviation
of x-ray photons from their original direction can be caused either by their crossing boundaries
between tissues with different refractive indices, or by small-angle scattering. For a horizontal
incident beam, these vertical deviations,1θz, are typically on the order of 10−6 radians. When
the analyser is tuned to the shoulder of the rocking curve (figure 1), this angular deviation
changes the intensity1I of the x-rays diffracted by the analyser crystal (and thus reaching the
detector), producing an image contrast. The resulting modulation of image contrast depends
on the angular width of the analyser’s rocking curve, and on the position on the rocking curve
to which the analyser is tuned, besides the amount of angular deviation itself.

Figure 1. Principles of DEI.

As discussed, angular deviations are caused by variations in the refractive index and by
small-angle scattering. The response of the method to these two effects differs. The index-
of-refraction effect is directional, i.e. toward above- or below-the fan plane angles (that is, to
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the right or to the left direction on the abscissa of figure 1), while small-angle scattering is
symmetric above and below the plane. This difference allows these effects to be separated from
each other, and from ‘gross attenuation’, by acquiring images of the subject at the symmetrical
points on the rocking curve (Chapmanet al1997). As described below, the refractive index can
be separated quite well from the effects of small-angle scattering (when the preponderance of
the latter is not significant) and from gross attenuation, by subtracting the high- and low-angle
images with appropriate normalization factor. Similarly, small-angle scattering present in the
‘gross attenuation’ image can be suppressed by adding the high- and low-angle images with an
appropriate normalization factor, producing an ‘apparent absorption’ image. The magnitude of
apparent absorption is larger than that for gross attenuation because the small-angle scattering
is removed; the effect is called the ‘extinction effect’ (Chapmanet al1998). Extinction can also
be observed by acquiring an image at the sharp peak of the rocking curve (figure 1); although
this ‘top’ image includes some refractive index effect, it has the important advantage over the
apparent absorption image in that it does not suffer from the additional image noise caused by
image addition and subtraction. This paper concentrates on the refractive-index effect.

Detecting the refraction contrast requires the analyser’s rocking curve to have an extremely
small angular width. This width is characterized by the Darwin widthWD of perfect-crystal
diffraction (Batterman and Cole 1964). For hard x-rays (i.e. 20–70 keV), which have a good
transmission through thick body sections, the rocking-curve width of a perfect silicon crystal
is around 1 to 10 microradians, depending on the energy and the order of crystal diffraction.

The refraction angle,1θz, is defined as the angle in the plane of diffraction by which
the x-rays deviate from the original direction while traversing the sample (Chapmanet al
1997). Assuming there is no significant effect of small-angle scattering,1θz can be derived by
measuring the intensity of the x-rays transmitted through the sample and then diffracted by the
analyser, with the analyser tuned to the shoulders of the rocking curve, once at the high-angle
side,θH , and once at the low-angle side,θL (figure 1).1θz is given by

1θz = IHRθL − ILRθH
IL(dR/dθ)θH − IH (dR/dθ)θL

(1)

whereIH andIL are the intensities measured with the analyser atθH andθL respectively,R(θ)
is the height of the rocking curve at the analyser positionθ , and(dR/dθ)θH and(dR/dθ)θL are
the slopes of the rocking curves atθH andθL respectively.

When an x-ray beam passes through a non-homogeneous medium, the propagation of the
beam follows (Synge 1962):

d

dl
(ni) = ∇(n) (2)

wherei is the unit vector tangent to the ray’s path,l is the position along the path in the sample
andn is the refractive index. For x-rays,n is slightly smaller than unity. Thus

n
di

dl
= ∇(n)− dn

dl
i. (3)

It can be further shown that for a horizontal ray path, as in our experiment, the angular
deviation of the beam in the vertical direction is proportional to∂n/∂z. Therefore, the line
integration of these deviation along the path of the beam is

1θz =
∫
∂n

∂z
(l) dl. (4)

For two CT projections taken at the same angular position of the subject but on both
sides of the rocking curve, the overall1θz value can be obtained on a pixel by pixel basis
using equation (1). These1θz values are then used to create a refraction-angle sinogram.
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Furthermore, since equation (4) is similar in form to the usual line integrals used in sinograms
in normal CT, filtered back-projection (FBP) algorithms can be used to reconstruct CT images.
Such images would be maps of the distribution of thez-gradient of the refractive index,
∂n/∂z(x, y), in the sample.

The refractive index is related to the number density of electrons in the material in the
following way:

n = 1− 1

2π
reNλ

2 (5)

whereN is the number of electrons per unit volume of the sample material,re is the classical
radius of the electron andλ is the x-ray wavelength. Thus, the refractive index gradient is a
physical factor, different from the absorption of x-rays, that can produce pure image contrast
of its own in clinical DEI images.

3. Experimental method

Figure 2 shows the set-up of the DEI at beamline X15A. The monochromator and analyser
are both positioned on a granite block, 0.375 m wide, 0.3 m tall and 2.1 m long. The block is
isolated from vibrations of the floor by rubber pads and vibration-insulating composite plates
placed under the legs of the steel frame that supports the block (Mangraet al 1996). The
monochromator is positioned inside a steel tank, sitting on the granite block and mechanically
isolated from the beamline pipe by an air gap of 2 cm. To reduce the rate of ozone production,
the lower part of the x-ray spectrum (with energy less than 13 keV) is essentially eliminated
using a 1 mmthick aluminium filter positioned downstream of the beamline’s beryllium
window. The aluminium filter attenuates the 22 keV x-rays by only about 50%. The sample-
scanning stage and shutter are placed on a platform positioned on a second steel frame which
is directly supported by the floor. Thus, the stage and the shutter are isolated from the granite
block.

Figure 2. Set-up at the NSLS X15A beamline.
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3.1. The x-ray source

X15A is a standard NSLS bending-magnet beamline. The fan beam is 130 mm wide at the
entrance to the experimental hutch, which is 16.3 m from the source. The useful height of the
fan beam is about 2 mm (i.e. when the intensity falls 20% below the flat top).

The aperture of the fan beam used for the experiment was 1.7 mm high and 128 mm wide.
The x-ray storage ring operated at 2.800 GeV energy. The maximum ring current was 230 mA.

3.2. Monochromator and analyser system, and the monochromatic beam

The monochromator/analyser system was that developed by Thomlinson and colleagues
(Chapmanet al1998, Thomlinsonet al1998, Zhonget al1999) for DEI in the planar mode. It
employed a two-crystal, fixed exit, Bragg–Bragg monochromator using either a silicon [111]
or [333] reflection, and another Bragg silicon crystal of the same reflection as the analyser.
The [111] and [333] reflections were chosen for comparison because of a five-fold difference
in the widths of their rocking curves. The monochromator was placed inside the stainless steel
tank with helium at atmospheric pressure to prevent corrosion of its components by ozone.
The system was constantly purged with helium at a flow rate of 50 cm3 min−1. Each crystal
was 10 mm thick and 150 mm wide, with strain relief cuts (2 mm wide and 8 mm deep) at
10 mm from the ends of the crystal. Thus, the useful width of the crystal was 128 mm. The
first crystal was 60 mm long along the beam’s direction, and the second one was 90 mm. The
large length of the second crystal allowed a long range of energy change without requiring
adjustment of the distance between the two crystals. For example, in the [333] mode, the
energy of the monochromator could be changed from 15 keV to 65 keV simply by adjusting
the angle of the crystal.

The monochromator is a box-type design with a vertical offset of 1 cm between the two
crystals (Zhonget al 1999). The first and second crystals are mounted on the bottom and top
plates of the box respectively. Each crystal is mounted on kinematic mounts for adjusting the
Bragg and azimuthal angles, and is supported on the back side by three balls placed under the
strain-relief region, and secured on the front side by clamps. The box is mounted on a cradle, so
that the middle of the first crystal surface is at the centre of rotation. Because of its simplicity,
the box-type design is especially resistant to vibration. The instability of the beam’s horizontal
profile was 0.2% min−1, after the monochromator crystals reached thermal equilibrium. This
instability was assumed to be caused by mechanical or thermal drifts. The thermal equilibrium
was reached in about 5 min after the white beam was first put on the monochromator’s crystal.

The analyser crystal is of the same kind as the second crystal of the monochromator. The
crystal’s Bragg angle is controlled by a tangent arm of length 1 m, driven by a linear translator
of resolution 0.1 µm. This arrangement provides an angular resolution of 0.1 microradians,
which allows the analyser to be tuned at a precision angle equal to 1/30th of the full-width
at half-maximum (FWHM) of the rocking curve. The tangent arm is supported by the same
granite block that supports the monochromator.

The results presented here were obtained at 22 keV. Figure 3 shows the [111] and [333]
rocking curves of the analyser crystal at this energy. The curve’s FWHM is approximately
3 microradians for the [333] reflection, and 15 microradians for the [111] reflection. The
intensities of the monochromatic beam at the subject for these two reflections were 5.8× 109

and 9.2× 1010 photons/s/cm2 respectively at a ring current of 200 mA. The total amount of
beam harmonics for Si[333] (i.e. 29.3 keV caused by [444] reflection, and 36.6 keV caused by
[555] reflection) was estimated to be around 20%, while that for Si[111] was negligible.
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Figure 3. Theoretical and measured analyser rocking curves at 22 keV of Si [111] and [333]
reflections.

3.3. Detector and data acquisition system

The detector and the data acquisition system (DAS) were those of the program Multiple
Energy Computed Tomography (MECT) (Dilmanianet al 1991, 1997), a monochromatic
beam computed-tomography system which was developed at the NSLS’s X17B beamline.
The detector, a linear-array device with a 0.92 mm pitch, employed a CdWO4 scintillator array
developed by Harshaw-Bicron (Solon, Ohio), and a photodiode array developed by Hamamatsu
(Hamamatsu City, Japan). It was designed and integrated by Analogic Corporation (Peabody,
MA). The DAS, which was also developed by Analogic Corporation, operated at 1440 Hz
viewing rate. To improve the image’s spatial resolution, the detector was masked by a tantalum
grid that limited the active width of each element to one-half of the detector’s pitch, i.e. 0.46 mm.

3.4. The subject

The subject was a 50.8 mm diameter acrylic cylindrical phantom that included four non-
paraxial, oil-filled cylindrical channels. Figure 4 shows the design of the phantom. It was
imaged transaxially as it rotated approximately about its axis. The diameters of the channels
and their tilt angles with respect to the phantom axis were the following: (a) 12.7 mm and
10 degrees; (b) 9.53 mm and 10 degrees; (c) 9.53 mm and 5 degrees; and (d) 9.53 mm and
15 degrees. The channels were filled with olive oil to avoid small bubbles forming on the walls
of the channels that were produced when the channels were filled with water.

3.5. Types of measurement

A DEI scan is done by fixing the analyser at a specific angle and rotating the sample through
360◦ while the projection data are acquired. Three sets of projections were acquired from the
same sample with the analyser’s angle tuned to−WD/2,WD/2 and 0, whereWD is the FWHM
of the rocking curve.

At each location on the analyser’s rocking curve, four sets of CT image projections, of
360◦ each, were acquired at consecutive lateral shifts of 0.23 mm (with respect to the beam)
of the subject’s axis of rotation. The stage rotated at the rate of 15 s per complete turn. The
four data sets were interlaced during image reconstruction to improve the spatial resolution.



CT of x-ray index of refraction using DEI method 939

Figure 4. Design of the phantom.

Since the width of the rocking curves was about 3.0 and 15 microradians for the two crystal
planes, the data were taken once at an analyser angle of 0.0 and then at±1.5 microradians for
[333] and±7.5 microradians for [111]. For comparison with the DEI images, a normal CT
was performed by removing the analyser crystal and positioning the detector in the path of the
beam through the sample.

All scans were controlled by a DEC Alpha computer with a program specifically written
for the CT experiment. The program obtains from the user data such as the type of scan and
the analyser positions. It then performs the scan by controlling the stepper motors that rotate
and shift (lateral to the beam) the sample. The program also acquires readings from the ion
chamber current throughout the scan to measure the dose.

4. Results

4.1. Data analysis

Figures 5(a)–(c) show the CT reconstructions of the direct measurements with the analyser
tuned to the left shoulder, top of the peak and the right shoulder of the rocking curve for
Si[333] respectively. Figures 6(a)–(c) are similar to figures 5(a)–(c) except that the data are
for Si[111]. Figures 5(d) and 6(d) show the normal CT images taken at the same 22 keV
energy, with Si[333] and Si[111] reflections respectively. Two effects are clear from these
pictures: first, the refraction signals change sign as one switches from one shoulder of the
rocking curve to the other. Second, the refraction signal in the top images is very small,
and that is spread equally on both sides of the channels; any asymmetry between the two
oppositely positioned signals could have been caused by a one-sided drift of the analyser
during data acquisition. As was discussed in section 2, the top images have great similarity
to the apparent absorption images in that in both image types the refraction signal is almost
absent and, more importantly, small-angle scattering is suppressed. On the other hand, the
image noise is much smaller in the top images because they are direct images, not compound
ones, with the count statistics twice as big as the individual components that make the apparent
absorption images. In the experiments,θL andθH were symmetrical points on both sides of
the rocking curve, thus(dR/dθ)θH = −(dR/dθ)θL . SinceθH = WD/2 andθL = −WD/2,
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Figure 5. Images of the slanted-channel phantom obtained using the Si[333] monochromator and
analyser at 22 keV, with the analyser at (a) −1.5 microradians, (b) the peak of the rocking curve
and (c) +1.5 microradians; (d) is the normal CT image taken by removing the analyser crystal, with
the two-crystal monochromator tuned to the peak intensity.

Table 1. Peak values (in units of 10−7 cm−1) at the inner and outer edges of the oil channels in the
refraction images.

Channel Slant angle (deg) [111] [333]

c 5 −2.1, +2.1 −0.82, +1.4
a 10 −3.9, +3.5 −2.4, +2.9
b 10 +3.6,−3.6 +2.3,−2.7
d 15 +4.7,−5.0 +3.6,−3.8

thenR(θL) = R(θL) = Rp/2, whereRp is the peak reflectivity of the analyser. Under these
conditions, equation (1) is reduced to

1θz = Rp

2(dR/dθ)−WD/2

IH − IL
IH + IL

. (6)

During off-line image reconstruction, first, each 24 adjacent views in each data set were
combined to produce a sinogram of 900 projections over 360◦. Next, the four shift sets were
combined in one sinogram. Finally, equation (6) was used to generate a refraction-angle
sinogram. The FBP method then was applied to produce CT images of thez-gradient of the
refractive index,∂n/∂z(x, y). In reconstructing the CT images, we used a Hanning filter with
0.5 cut-off frequency.

Figures 7(a) and (b) show the processed images with Si[333]: (a) refraction image and
(b) apparent absorption image; figures 8(a) and (b) show the same for Si[111]. The in-plane
spatial resolution in these images is about 0.3 mm. The peak pixel values at the inner and
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Figure 6. Images of the slanted-channel phantom obtained using the Si[111] monochromator and
analyser at 22 keV with the analyser at (a) −7.5 microradians, (b) the peak of the rocking curve
and (c) +7.5 microradians; (d) is the normal CT image taken by removing the analyser crystal.

Figure 7. Images of the slanted-channel phantom obtained at 22 keV with Si[333] monochromator
and analyser: (a) refraction image and (b) apparent absorption image.

outer edges of the four oil channels (along the phantom’s radii) are shown in table 1 for both
reflections. The image background was(0.0±1.8)×10−8 cm−1 and(0.0±5.9)×10−9 cm−1

for Si[333] and Si[111] respectively. For a 5◦ tilt angle, the signal-to-noise ratios are 12 and
19 for Si[333] and Si[111] respectively.

4.2. Characterization of refraction

In the following mathematical analysis, the expected signal size in the refraction images is
calculated. We first assume that the spatial resolution of the image and the pixel size are
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Figure 8. Images of the slanted-channel phantom obtained at 22 keV with Si[111] monochromator
and analyser: (a) refraction image and (b) apparent absorption image.

infinitely small. To relate the image signals to the actual refractive index gradients, we use
equations (1) and (4) to produce1θz images, and compare the signal in the image with1θz
derived from the properties of the phantom as described below. We denote the refractive
indices of acrylic and oil asn1 andn2 respectively. Thus,∂n/∂z(l) is zero except at the
interface between the oil and acrylic at the edges of the slanted channels. For an infinitely thin
vertical beam-height, the signal will be

∂n

∂z
(l) = (n2 − n1) tanθδ(l − l0) (7)

whereθ is the tilt angle of the channel,δ(l− l0) is a delta function andl0 is the location of the
intercept between the beam and the channel wall. For a finite vertical beam height ofh, the
width1l of the profile of the refraction image is given by

1l = h tanθ. (8)

The area under the peak is given by

A =
∫ l0−1l/2

l0+1l/2

∂n

∂z
(l) dl = (n2 − n1) tanθ. (9)

Since the electron number density is proportional to the density for most materials,
equation (5) can be approximated by (Guinier 1963)

1− n ∼= 1.3× 10−6ρλ2 (10)

whereρ is the density of the material in g cm−3 andλ is the x-ray wavelength in Å. Equation (9)
then becomes

A ∼= 1.3× 10−6λ2 tanθ(ρ1− ρ2). (11)

Equation (11) holds for digital images of finite pixel size and throughout the CT
reconstruction process because both the digitization of the image (i.e. binning of the content
of the space) and the FBP process are linear mathematical processes. In particular, the FBP
involves a set of linear image processing steps (Rosenfeld and Kak 1982) that do not change
the validity of equation (9). These steps include (a) division of the CT image plane into square
segments that define the pixels, (b) for each projection, convolution of the data with a fixed,
linear filter, and (c) for each projection, back-projection of each data point across the CT image
plane. The latter step involves allocating counts to each pixel according to the overlap of the
areas of the square pixel and the back-projecting ray.
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[333]
[111]

Figure 9. Line profiles through the centre of the Si [333] and [111] refraction images, crossing the
5◦ and the 15◦ channels.

[333] Exp
[333] Fit
[111] Exp
[111] Fit

Figure 10. Area under the peak versus the phantom’s channel slope for Si[333] and [111].

Line profiles through the centre of the refraction image (along line AB in figures 7(a) and
8(a), crossing the 5◦ and the 15◦ channels) are shown in figure 9. From this and similar other
profiles, quantitative information was deduced about the refraction signals at the edges of the
titled channels. These data included peak pixel value and the total area underneath each peak.

Figure 10 shows the areaA under the peaks in figure 9 at 22 keV versus the tangent
of the channel tilt angleθ for Si[333] and Si[111] analysers. The full curves are the linear
least-square fitting of the data. Within experimental error, the area is proportional to the slope
of the phantom channel. The slope of the fitted line in figure 10 is 8.6× 10−8 for Si[333] and
8.0× 10−8 for Si[111]. These values agree rather well with the theoretical value (n2− n1) of
9.1× 10−8 calculated (equations (9) and (11)) using the measured specific gravities of 1.16
and 0.9088 g cm−3 for acrylic and olive oil, respectively.
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Table 2. Attenuation coefficients for oil and acrylic in the apparent absorption and in normal CT,
in units of cm−1.

Reflection Material Apparent absorption Normal CT Apparent absorption/normal CT

[333] Oil 0.35 0.32 1.11
Acrylic 0.52 0.45 1.16

[111] Oil 0.36 0.36 1.00
Acrylic 0.55 0.55 1.00

4.3. Comparing images of apparent absorption and normal CT

As discussed, the apparent absorption (Ir ) image is obtained by adding the images from the
opposite sides of the rocking curve. In a process parallel to that which leads to equation (1),
we obtain

Ir = IL(dR/dθ)θH − IH (dR/dθ)θL
R(θL)(dR/dθ)θH − R(θH )(dR/dθ)θL

. (12)

The resulting image should be similar to the normal CT image, except for the ‘extinction’
effect, i.e. suppression of the small-angle scattering effect.

For the Si[333] experiment, comparing the apparent absorption image (figure 7(b)) with
the normal CT image (figure 5(d)), we find that not only are the image values for oil and acrylic
different in these two image types, but their ratios are also different. However, the Si[111]
results are almost identical for these two image types. The results are summarized in table 2.

The difference between the oil/acrylic contrast ratios, measured once in normal CT and
once in apparent absorption CT in the Si [333] geometry, is mainly due to a small content
(10–20%) of beam harmonics in the normal CT beam (Zhonget al 1999). Such an effect is
absent from the apparent absorption CT image because when a monochromator is ‘detuned’
(i.e. shifted from its peak yield, such as is the case in the geometries at which the ‘left’
and ‘right’ images are acquired) the beam harmonics are significantly suppressed (Hart and
Berman 1998). On the other hand, the Si [111] experiment does not have any beam harmonics,
neither in the conventional images nor in the apparent absorption CT images, because the first
beam harmonic of Si[111] is at three-fold the fundamental beam energy, i.e., 66 keV in our
experiment, at which the spectral yield of the beam line of XISA falls to negligible values. On
the other hand, the [444] and [555] harmonics in the Si [333] geometry are of energy 29.3 keV
and 36.7 keV, and their yields are estimated to be 10–20% at the tuned and less than 1% at the
detuned position (Zhonget al1999). The evidence for the existence of beam harmonics in the
Si[333] configuration is that the contrast of the acrylic (normalized to that of oil) is smaller
in the normal CT than in the apparent absorption CT image; this difference is due to the fact
that the high-energy component of the beam (i.e. beam harmonics) in the normal CT image
lowers the mean attenuation coefficient of the subjects with a higher mean atomic number
(i.e. acrylic versus oil). Existence of beam harmonics also explains another effect: among the
directly obtained images in the Si [333] experiment, i.e. the ‘left’, ‘top’, ‘right’ as well as the
normal CT images (figures 5(a)–(d)), those that are supposed to have beam harmonics (‘top’
and normal CT images) exhibit a distinct cupping effect (not shown), which is characteristic
of a polychromatic beam CT; such an effect is absent from the ‘left’ and ‘right’ images where
the analyser was detuned, therefore rejecting harmonics.

The arguments discussed above do not exclude the possibility that there is also a component
of the ‘extinction’ effect in the image-contrast ratios of the Si [333] results in table 2,
which is missing from the Si [111] results. However, theoretical considerations indicate
that such components must be small because both olive oil and acrylic plastics are essentially
homogeneous materials with no internal structures, and the ‘extinction’ effect stems from
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Table 3. The oil and acrylic attenuation coefficients from all images with the [111] and [333]
analysers. The ‘signal’ is defined as the difference of the acrylic and oil absorption coefficients.
The image noise is the value of standard deviation in the acrylic image. SNR is the signal-to-noise
ratio.

Oil Acrylic Signal Noise
Reflection Image (cm−1) (cm−1) (cm−1) (cm−1) SNR

[333] Left 0.352 0.517 0.165 0.0052 32
Right 0.352 0.518 0.166 0.0060 28
Top 0.322 0.460 0.138 0.0039 36
Normal CT 0.319 0.447 0.129 0.0032 40
Apparent absorption 0.353 0.518 0.164 0.0045 36

[111] Left 0.366 0.550 0.185 0.0034 54
Right 0.366 0.550 0.184 0.0033 55
Top 0.365 0.550 0.185 0.0030 62
Normal CT 0.365 0.550 0.185 0.0021 87
Apparent absorption 0.366 0.550 0.184 0.0033 56

materials which have a structural variation with a length scale of microns, such as muscles or
other fibrous materials.

4.4. Comparing of image noises in different images

Table 3 summarizes the attenuation coefficients of oil and acrylic in all images for both [111]
and [333] reflections. It also summarizes the noise in these images. We note that the apparent
absorption images, being compound images made from low-count components, have small
signal-to-noise ratios (SNR), while the top images and normal CT have the largest.

We note that the image noise in all these pictures is above 10 Hounsfield units (HUs),
compared with 1–3 HU in clinical CT. This effect, considering the doses to the phantom
(190 rad for [111] and 10 rad for [333]), is mostly attributed to the high spatial resolution in
our images, approximately 0.3 mm in-plane and 1.5 mm out-of-plane FWHM, compared with
typical values of 0.6 mm in-plane and 5 mm out-of-plane in conventional CT.

5. Discussion

From our study we draw the following conclusions:

(a) DEI CT projections are complete sets, and thus can be reconstructed conventionally.
(b) The separation of the refraction image from the other image components is complete for

material with little small-angle scattering, such as oil and acrylic.
(c) The image contrast is proportional to the gradient of the refractive index.
(d) There is a remarkable agreement between the linearity trends of the experimental findings

and the theoretical refractive index results. The absolute values agree within 20%.

The refraction signal declines only as the inverse function of the x-ray energy. Therefore,
we expect that x-ray beams of much higher energy (i.e. 60–90 keV) could still be used for
this type of CT imaging. In particular, clinical application of the refraction image in DEI CT
would be one of edge enhancement, and may find various uses in medicine. It is also possible
that the method will find industrial applications in non-destructive testing.
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