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Abstract. Broadcast encryption enables a sender to broadcast data
that only an authorized set of users can decrypt and is therefore an
essential component of secure content distribution. Public key broadcast
encryption separates the roles of a key manager who provides keys to
users and content providers who distribute content to users. This sepa-
ration is useful for flexible content distribution and for simplifying the
process of additional content providers joining the network. A content
provider or key manager can control the authorized set of users by user
revocation which has two types, temporary revocation and permanent
revocation. A content provider sending a message can determine the set
of users authorized for the message by using temporary revocation. A key
manager can use permanent revocation to remove a user from the set of
authorized users as a better alternative to temporarily revoking the user
in all subsequent messages. In this paper we present the first public-key,
broadcast encryption scheme that achieves both temporary and perma-
nent revocation and has essentially optimal performance. The scheme
combines and optimizes the broadcast encryption systems of Delerablée
et al. (Pairing 2007) and Lewko et al. (Security and Privacy 2010) and
is generically secure over groups that support bilinear maps.
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1 Introduction

In broadcast encryption a single broadcaster can send encrypted messages to a
group of users so that only authorized users can decrypt the messages. Since the
introduction of broadcast encryption by Fiat and Naor in [FN93] there has been
a great deal of work, e.g. [CGIT99,CMN99,GSW00,NNL01,DF02,GST04], and
[BGW05,DPP07,GW09,NP10,LSW10] on extending the framework of broadcast
encryption, improving its security and optimizing its performance.

One of the factors driving interest in broadcast encryption is its commercial
importance in content distribution, e.g. television networks. Historically, such
networks were developed and administered by a single broadcaster who dis-
tributed both content and keys to registered users. In this setting it is perfectly
reasonable to use symmetric-key encryption in which the broadcaster holds all
the keys of the receivers.

A more flexible system enables separation of the key distribution and con-
tent distribution functions. In this setting a single key manager generates and
distributes keys, but multiple content providers can directly send encrypted
content to users. The benefits of such an approach are lower barriers of en-
try for both key providers and content providers and potentially greater choice
and lower cost for users. However, the separation of functions typically rules
out symmetric-key encryption since the key manager would not want to share
all the system’s keys with a content provider. Public-key broadcast encryp-
tion [DF02,BGW05,DPP07,GW09,LSW10] solves this problem by separating
the keys into a public key allowing a content provider to encrypt content and
secret keys allowing each authorized user to decrypt content.

Broadcast encryption schemes differ in the way they determine authorized
users. Upon joining the system a user is authorized to receive a subset of the
distributed content. This authorization is enforced by the keys that the key man-
ager provides to the user. The key manager can decide to expand the subset of
the content for which the user is authorized by providing additional keys. How-
ever, reducing the user’s authorization or completely revoking that authorization
requires a revocation procedure that invalidates the user’s decryption keys.

Revocation in broadcast encryption schemes can be divided into two types,
temporary and permanent. In temporary revocation [NNL01,BGW05,GW09]
and [LSW10] authorization is attached to a specific encrypted message and
therefore revoking a user does not extend to subsequent messages. In permanent
revocation [CGIT99,CMN99,GSWO00] and the third construction of [DPP07] the
key manager revokes the authorization of a user preventing it from decrypting
future messages. Permanent revocation can be simulated by temporary revoca-
tion in which the revoked user is temporarily revoked in each message. However,
that approach suffers from two drawbacks. The first is an obvious performance
penalty since the complexity of sending a message keeps growing as a function
of historical revocations. The other is that when the roles of key management
and content distribution are separate it may not be possible for a broadcaster
to keep track of all the revoked users.



Most works on revocation for broadcast encryption limit their goals either
to temporary revocation only or to permanent revocation only, often without
explicitly stating the difference®. However, in practice both types of revocation
are important. Permanent revocation is the consequence of a user canceling his
subscription and is therefore a common feature of real-world broadcast encryp-
tion systems. A motivating example for temporary revocation is when a content
provider distributes an encryption key for some premium content, e.g. a televised
pay-per-view event, only to users who paid for the content. Subsequently the con-
tent is broadcast to all users in the system, but only the users who received the
content key can decrypt it.

The security of broadcast encryption can be loosely defined as the property of
non-authorized users being unable to decrypt ciphertexts and can be typically
reduced to the security of a cryptographic primitive. Such primitives include
any symmetric key encryption [CGIT99,CMN99,GSW00,GST04], Hierarchical
Identity Based Encryption [DF02], several ¢-type assumptions? on bilinear maps
[BGW05,DPP07,GW09] and a combination of the Bilinear Decisional Diffie-
Hellman assumption and the Decisional Linear assumption [LSW10].

Security definitions for broadcast security differ in modeling the adversary.
One feature of the adversary model is the number of users that the adversary
may corrupt. Most broadcast encryption schemes assume that the adversary can
control multiple users, possibly an unbounded number of them, and therefore
require collusion resistance, i.e. that even a coalition of unauthorized users work-
ing together cannot decrypt ciphertexts. A second feature determines whether
the adversary (and the associated security proof) is adaptive or is only selective.
An adaptive adversary decides dynamically which users to corrupt while in the
selective setting the adversary selects the set of corrupted users before the key
manager sets system parameters.

The performance of broadcast encryption is measured by the size of the
objects in the system and the time required to perform the algorithms in the
scheme as a function of the n users in the system and the number of revoked
users. The measured objects include encryption and decryption keys, ciphertext
length and messages for user revocation, which are part of the ciphertext in the
case of temporary revocation and are separate for permanent revocation.

The performance of different broadcast encryption schemes is sometimes dif-
ficult to compare because each optimizes different measures. For example, the
simplest broadcast encryption scheme involves encrypting a plaintext message
separately with each authorized user’s symmetric/public key. In this scheme the
encryption key, ciphertext length and time to perform encryption are O(n — r)
for n users in the system and r revoked users. However, all other measures
are O(1) and revocation is especially trivial for all users actually requiring less

3 The work of Delerablée et al. [DPP07] is an exception, considering both types of
revocation. However, it focuses almost exclusively on temporary revocation, stating
and analyzing the permanent revocation scheme very briefly.

4 A g-type assumption is a family hardness assumptions indexed by an integer ¢, which
corresponds to the number of queries the adversary makes in the security proof.



work for the key manager and broadcaster. In contrast, two efficient schemes
are the public-key, temporary revocation scheme of Lewko et al. [LSW10] and
the symmetric-key, permanent revocation scheme, which is the third scheme, of
[DPPO7]. In both schemes the size of all keys is O(1), while in [LSW10] the
ciphertext size and encryption and decryption time are O(r) for r temporarily
revoked users and in [DPP07] the length of a permanent revocation message,
the time to construct the permanent revocation message and the time to update
each secret user key are all O(r’) for ' permanently revoked users. An immediate
implication is that if it is critical to minimize the running time of user devices
then the simple broadcast encryption scheme is sufficient while if communica-
tion complexity and the key manager’s workload are more important then other
schemes such as [DPP07,LSW10] are preferable.

1.1 Contribution

The main contribution of this work is a public-key, broadcast encryption scheme
that enables both temporary and permanent revocation with performance that
in every measure is as good as the best broadcast encryption systems that achieve
either temporary revocation or permanent revocation separately. At a high level
we define a broadcast encryption scheme with temporary and permanent re-
vocation as a protocol between a key manager, n receivers (or users) and an
unbounded number of broadcasters. The protocol includes six algorithms: setup,
key generation, encryption, decryption, (permanent) revocation and key update.

The key manager runs setup to generate system parameters including a mas-
ter key, which it retains, and a public key which is published. The key manager
also performs key generation to create a secret key for each user in the system.
It is assumed that a user receives the secret key in a secure, out-of-band method,
e.g. by VPN between the key manager and the user. A broadcaster executes the
encryption algorithm which takes a set of temporarily revoked users as one of its
parameters and outputs a ciphertext. A user can decrypt this ciphertext if and
only if it is not one of the temporarily revoked users. The key manager performs
the revocation algorithm which enables each of the non-revoked users to run key
update and derive new secret keys. The revoked users will not be able to update
their keys and will be unable to decrypt any ciphertexts in the future. However,
it is always possible for a user to go through the key generation process again,
receiving fresh keys.

The scheme combines ideas from the public-key, temporary revocation system
of [LSW10] and the symmetric-key, permanent revocation suggested in [DPP07].
A seemingly attractive approach is to paste the two systems together in the sense
of having each user hold independent keys for each system. A broadcaster se-
cret shares each message and encrypts one share with the temporary revocation
system and the other share with the permanent revocation system. Then a legit-
imate user can decrypt both shares and a revoked user will be unable to decrypt.
However, this approach is insecure when considering collusion between users who
are only temporarily revoked and users who are only permanently revoked.



As an alternative to pasting, our construction merges the keys of the two
schemes and modifies the six algorithms appropriately to ensure correctness.
We prove that the construction is secure based on a two-step hybrid argument.
The first step relies on the hardness of a novel computational problem which is
formalized as the Mixed Exponent Assumption (MEA) and the second step is
secure in the generic bilinear group model [Sho97,BBGO5].

MEA is similar to discrete-log based hardness assumptions in that its input
includes powers of a generator g of a group G with prime order p. The group
elements in MEA (as in other hardness assumptions) are not independently
chosen. There are correlations between the exponents of different group elements.
Unlike other assumptions, the input of MEA also includes functions of these
exponents directly in Z,. Intuitively, any combination of the elements in Gand
the elements in Z,, is indistinguishable from a random element. In slightly more
detail, MEA states that the following problem is computationally hard. Let
Y € Z;' be a vector of secrets, let V,U € Zjy, let A be a n x m matrix, let F
be a sequence of k multivariate polynomials over Y and let H € G*. Then, it is
hard to distinguish between the pairs (V, H) and (U, H) if:

— V =AY, U is randomly sampled from Zy, H = g™ ) e if H = (hy,...,h),
F=(fi,...fo) and Y = (41, ..., ym) then hy = g,

— There does not exist a low-degree, multivariate polynomial p over Z, such
that p(a1 f1(z1, ..., Zm)s -, apfr(21, ..., 2m)) is the zero polynomial, where
ai,...,a are arbitrary functions of V= (vy,...,v,). If G comes equipped
with a bilinear mapping then p must be of degree two, while otherwise it
must be linear.

The MEA assumption is in fact a family of assumptions indexed by a matrix
and a sequence of functions. We refer to a specific member of this family with
matrix A and sequence of functions F as (A, F')-MEA.

Our construction has similar performance to a combination of the perfor-
mance of [DPP07] and [LSW10]. The public key and each secret key are of size
O(1) group elements. A ciphertext which determines the temporary revocation
of r users is of length O(r) group elements and the time complexity of both
encryption and decryption is O(r). Similarly, the output of the revocation al-
gorithm, which is used for permanent revocation of 7’ users is of length O(r")
and the time complexity of both the revocation and key update algorithms are
o(r").

2 Preliminaries

2.1 Revocation Systems

A revocation scheme that supports both temporary and permanent revocations
consists of six algorithms: Setup, KeyGen, Revoke, UpdateKey, Encrypt and De-

crypt.



Setup(\). The setup algorithm takes as input the security parameter A and out-
puts public parameters PP and a master secret key MSK.

KeyGen(MSK,ID). The key generation algorithm takes as input the master
secret key M SK and an identity 1D and outputs a secret key SK;p. Each key
has a boolean property SK;p.revoked which is set by default to false.

Revoke(S, PP, M SK). The revocation algorithm takes as input the master secret
key MSK, the public parameters PP and a set S of identities to revoke. The
algorithm outputs a new master secret M SK’, new public parameters PP’ and
a key update message SUM. PP’ and SUM are broadcast to all users.

UpdateKey(SKp, SUM,ID). The key update algorithm takes as input the
user’s secret key SKjp, the key update message SUM and the user’s iden-
tity ID. The algorithm outputs a new secret key SK}p. If ID is in the set of
revoked users that corresponds to SUM, the algorithm sets SK/,.revoked =
true.

Encrypt(S, PP, M). The encryption algorithm takes as input a set S of identities
to revoke, the public parameters PP and a message M. The algorithm outputs
a ciphertext CT.

Decrypt(SKp,CT, PP). The decryption algorithm takes as input a secret key,
SKip, a ciphertext C'I" and the public parameters PP. If SK;p.revoked = true
or ID is in the set of revoked users that corresponds to CT, the algorithm
outputs L. Otherwise it outputs the message M associated with C'T.

The system must satisfy the following correctness and security properties.

Correctness. For all messages M, sets of identities 5,57 ...,S5, and all ID ¢
U S:US, if (PPy, MSK,) < Setup(X), SKip,o < KeyGen(MSK, ID) and for

i=1
1=1,....,n:

(MSKZ,PP“ SUMl) — Revoke(Si, PPi_l, J\4Sf(i_1)7
SKip, < UpdateKey(SK;p ;—1,SUM;,ID)

then if CT < Encrypt(S, PP, M) then Decrypt(SK;p,,,CT, PP,) = M.

Security. The security of a permanent revocation scheme is defined as a game
between a challenger and an attack algorithm A with the following phases:

Setup. The challenger runs the Setup algorithm with security parameter A to
obtain the public parameters PP and the master secret key M SK. It maintains
a set of identities () initialized to the empty set and then sends PP to A.

Key Query and Revocation. In this phase A adaptively issues secret key and
revocation queries. For every private key query for identity ID, the challenger
adds ID to @, runs KeyGen(MSK,ID) — SK;p and sends A the corresponding
secret key SK;p. For every revocation query for a set S of Identities, the chal-
lenger updates Q < @\ S, runs Revoke(S, PP, MSK) — (MSK',PP',SUM),



replaces (M SK, PP) with (M SK’, PP") and sends A the new PP and the cor-
responding key update messages SUM.

Challenge. A sends the challenger a set S of identities and two messages M1, Mo.
In case @ ¢ S the challenger sends L to A and aborts. Otherwise, the challenger
flips a random coin b € {0,1}, runs the Encrypt(S, PP, M}) algorithm to obtain
an encryption of M, and sends it to A.

Guess. A outputs a guess b’ € {0,1} and wins if b =¥'.

The advantage A has in the security game for a permanent revocation scheme
with security parameter A is defined as

1
Advay = ‘P’I‘[A wins] — 2’

A permanent revocation scheme is adaptively secure if for all poly-time algo-
rithms A we have that Adva x = negl(\).

We note that selective security is defined similarly, except that the revoked
sets of identities are declared by the adversary before it sees the public param-
eters in an Init phase.

2.2 Bilinear maps

For groups G,G7 of the same prime order p, a bilinear map e : G*> — Gr
satisfies:

1. Bilinearity. For every g1, g2 € G and a € Z, it holds that

e(97,92) = e(91,95) = e(g1, 92)".

2. Non-degeneracy. If g1, g2 € G are generators of G then e(g1, g2) is a generator
of GT.

We call G a (symmetric) bilinear group and Gr the target group.

2.3 Pseudo-Random Functions

Intuitively, a family of Pseudo-Random Functions (PRF) [GGM84,NR04] is a
family of functions such that a randomly chosen member of the family cannot
be efficiently distinguished from a truly random function by an algorithm that
observes the function’s output. The following definition states the requirements
of a PRF more precisely for the systems we construct.

Definition 1. Let (A, Ba)xen be a sequence of pairs of domains and let F' =
{F>}xen be a function ensemble such that the random variable F assumes values
in the set of Ay — By functions. Then F is a PRF ensemble if:



— Pseudo-randomness. For every PPT oracle machine M
|Pr(M*>(1*) = 1 — Pr(MY>(1") = 1| < negl(\),

for a negligible function negl(-) where Uy is distributed uniformly over Ay —
B, functions.

— Efficient computation There are efficient PPT algorithms to sample Fy and
compute the sampled function on any input.

The constructions of [GGM84,NR04] show that PRF function families can
be efficiently constructed for many useful domains Ay, By including the groups
Z,, = Z/nZ for any integer n. Note that in practice a PRF family can be in-
stantiated by a block cipher such as AES where each function in the family
corresponds to a cipher key.

2.4 The Decisional MEA-assumption

Let G be a group of prime order p with generator g, let A € Z;*™ be ma-
trix and for a vector of formal variables X = (Xi,...,X,,) define a vector
Y = (Y1,...,Y,) by AX =Y. Let F = (f1,..., fx) € Zp[X1,..., Xm]¥ be a
k-tuple of m-variate polynomials such that for any degree two, k-variate poly-
nomial p and for any k polynomials ¢1,...,¢r € Z,[Y1, ..., Y,.|¥ the polynomial
p(d1(Y) f1(X), ..., 06 (Y) fr(X)) is not identically zero.

The Decisional (A, F)-Mixed Exponent problem in G is to distinguish be-
tween the distributions on the tuples (g,y,h) and (g,u,h) which are defined
as follows. Choose a random x = (21,...,2;) € Zy', compute y = A - x and
h = (hy,...,hy) such that h; = g/i(*1-®m) for all i and sample u € Zy ran-
domly.

An algorithm D that outputs z € {0,1} has advantage € in solving the
Decisional (A, F)-MEA-problem in G if

Pr[D(g,A,F,y,h) =1] — Pr[D(g, A, F,u,h) =1]| > ¢

We say that the Decisional (A, F')-Mixed Exponent Assumption ((A, F')-MEA)
holds if any poly-time algorithm has a negligible advantage in solving the De-
cisional (A, F')-MEA-problem. The MEA family of assumptions is the set of all
(A, F)-MEA-assumptions.

3 Public Key Revocation Scheme

Setup(\). The setup algorithm, given a security parameter A, chooses a bilinear
group G of prime order p such that |p| > A. It then chooses random generators
g,w € G, random exponents a,7,b € Z, and sets ST = 1. Finally, the setup



algorithm randomly chooses a function ¢° from F, a pseudo-random family of
permutations over Z,.
The master secret key is

MSK = (a,b,v,w, ST, ¢)
And the public parameters are

2
PP = (g7ngT7gb ST,wb,e<g,g)aST)

KeyGen(M SK,ID). Given a user identity ID € Z, and the master secret key
MSK, the algorithm computes t = ¢(ID) € Z,, and sets:

Dy = g7t, Dy = (¢""Pw)t,

1 2
—~. Dy = (a+b7t)-ST
atozt AT

Dy = false

Dy =

The output of the algorithm is SK;p = {D,...,Ds}.

Revoke(S, PP, MSK). The algorithm is given a set S = {IDy,...,ID,} of iden-
tities to revoke, the public parameters and the master secret key. The algorithm
sets ST = ST and for ¢ = 1 to r it computes:

1. ST = ST' - (o + bt;)

— 1 _ ST’
2. Si,l = arbt; ’Y,SLQ =49

where t; = ¢(ID;). The algorithm then:

1. Updates the master secret key by replacing ST with ST’.

2. Updates the public parameters by replacing ¢*57, gb2ST and e(g, g)*°7 with
gbST’ g ST" and e(g,9)*5T" respectively.

3. Broadcasts the key update message SUM = {S;1,S;2}7_;.

UpdateKey(SK;p, SUM,ID). Given a key update message SUM for r revoked
identities, the algorithm updates the secret key SKjp. It first checks if D3 €
T
U Si1 and if so it sets Dy = true. Otherwise, it sets hg = Dy4. Then, for i =1 to
i=1
r it sets h; = (%)DB*S"’I. Finally, the algorithm updates SK;p by replacing
Dy with h,.
We note that h, = ¢@+¥°0-ST where ST is the new state in the master
secret key after the corresponding revocation. For example, if ¢ = ¢(ID) and

5 We slightly abuse notation and use ¢ to denote both the function and a concrete
description of this function.



t= (Z)(ID), then the update process of SK;p after the revocation of ID is

1

D3-S 27
o (ST (et (G ) ()
Y\ he — | goter

1
4628\ (etbZD)—(atbZi)
o (ga ) (atb26)(atb2D)

ga+b2t

— g(a—i-bzt)(a-i—bzf)

Encrypt(S, PP, M). The encryption algorithm takes as input the public param-

eters PP, a message M € Gr and a set S of revoked identities. The algorithm
T

first lets r = | S|, chooses r random exponents s1,...,8, € Z, and sets s = Y _ s;.

i=1
Next, the algorithm sets

Co=M -e(g,9)**",Cr = g°
and for ¢+ =1 to r it sets
C¢,1 _ IDi»Ci,2 _ (ngT)si’CLS _ (gbZSTID,-wb)si
The output of the algorithm is CT = {Cy, C1,{Ci1,Ci2,Cis}i_1}.

Decrypt(SKrp,CT, PP). The algorithm is given a secret key SK;p, a ciphertext
T
CT and the public parameters PP. First, if D5 = true or ID € |J C;; the

i=1
algorithm outputs L. Otherwise the algorithm calculates:

A= G(Cla D4)
2
= e(gsvg(a"l‘b t)-ST)
=e(g, g)**5T . e(g,g)bzstST
- 1
B= (e(ci727 D2) : e(Ci73, Dl)) TD-C; 1

.
Il
i

(e((g"57), (9" Pw)") - el(g” T Prut)™e, g71)) TP

|
VE*

Il
A

7

-
S b%s;tST

2
=e(g,9)=" =e(g,g)" 57

Finally the algorithm retrieves the message

M = Co/(A/B)

4 Security Analysis

In this section we prove the following theorem:



Theorem 1. Suppose the decisional MEA assumption holds. Then no poly-time
adversary can break our revocation scheme in the generic group model.

We prove that our revocation scheme is generically secure over bilinear groups
by simulating a sequence of the security games against an adversary, each one
indistinguishable from the next. The first game is the original security game. In
the next game we replace the elements correspond to D3 in the secret keys with
random elements. Indistinguishably follows directly from the MEA assumption.
In the next game we change the cipher text to a random element by using the
framework of [BBGO5].

Given an adversary A with non-negligible advantage ¢ = ADV 4 in the se-
curity game against our construction we define a simulator B that plays the
decisional MEA problem.

Let A € Zp* ") 16 the following matrix

Let (p},...,p5) €F [Yl, ..., Y,,]7 be the following polynomials
pi(Y1) =
Pa (1, Y2,Y3) = (V7 - ) R YY
p3(Y1) =
Pi(Y, ) Yfl * Yy !
P5(Y1, Y2, Y3,Y47Yr) = (Y, ' #Ya+ Y5 (Y -y ) R YY

p/6<Yl77Y;1) = ZY;'71
i=1

Pr(Y1,Ya, Y3, Ya) = (Y 2% Yo + V3 ) (V)
Let F = (f1,..., fx) € Fp[X1,..., Xm]* be the following polynomials

Vi<i<n fyi = P1(Xip1)

Vi<i<n fr1i = P5(Xit1, Xnt2, Xnts)
Jo= p/l (Xnt3)
f02 = p3(Xnts)
fwb = py(Xnt3, Xnta)

Vi<i<n fe2.i = D5 (Xit1, Xnt2, Xnts, Xntatir Xnta)
ps = f6(Xonts, - Xonyqra)

Vi<i<q fs1,i = Py (Xnt3, Xonyati)

Vi<i<q fs2,i = Pr(Xnt3, Xntavis Xnta, Xontati)

fas =ps(Xonts, .-, Xontqra)Py (Xnt2)



B receives an (A, F)-MEA challenge X = (g, A, F, T, h). It then play the original
security game against A. Let 7 be the number of permanent revocation requests
that the adversary performs. Let p; denote the number of revoked users in the i-
th request. We denote their identities by ID;, where i is in [1, 7] and j is in [1, p;].
Similarly, we use ST; ; to denote the state after the revocation of the j-th identity
in the i-th group. Let v¢; denote the number of secret key requests the adversary
performs after the i-th permanent revocation request (¢g is the number of secret
key requests prior to the first revocation). We denote the identities for which the
adversary requests keys by IDy =~ where k is in [0,7] and m is in [1,%;] and
ti.m to denote f(IDy, ). Let ¢ denote the number of users the adversary revoke
during the temporary revocation. We denote their identities by I D; where i in
[1,q].

We next write the elements that the adversary learns during the security
game from which we state a computational assumption. From the public param-
eters and revocation requests, the adversary learns

Viclo,7],5€l1,01] —,g%T0, g 5Tis gt STei e(g, g)SThs
where
i J
STi; = [ [](a+0*,)
ir=1j'=1
From the secret key requests, the adversary learns
1 2
v IDy, g tm  (gMPemap)tem  —— (@0 ) ST m
ke[0,7],melL ] ko 9 (9 ) — T

where

ko P
STk)m = H H (a + thk'm/)

k'=1m'=1
Finally, from the challenge, the adversary learns

9°, M - (g, g)>>Trina

bSTfinal )Si , ( bQSTfMlaLIDiwb)Si

Viel1,q] (9 g

where

T Pi
STfinal = H ]:[(Oé + bztij)

i=1j=1

For each identity Dy, the adversary obtains a key we have that either I Dy,
is revoked in one of the (7 — k) permanent revocations following the creation
of SKip,, , or that Dy, is revoked in the temporary revocation during the
challenge phase. Thus, the next assumption captures the security of our scheme.



(n-q)-Decisional Multi-Exponent Assumption Let G be a bilinear group

of prime order p. For any (7,p1,...,pr,Yo,...,%;) such that > ¥ = n and
k=0

-
> pi =n — q the (n-q)-Decisional Multi-Exponent problem in G is as follows:

i=1

A challenger chooses generators g, w € G and random exponents a, b, v, {tx,, }re[0,7],me[1,v4]-

Suppose an adversary is given X =
IDij ’
j
[T (a+bt;r )
1 r— J

5 g T ;
(a-‘rbgti/v/)
J

=

i/=1j/=1

q g j
b I 11 («4b%ty ) b2 (a+b%t; )
il=1j'=1 J i’=1j'=1 J
g 9 )
g 2
1T (a+b tzz'].,)

1j/=1

Vie[o,7],5€[L,pi]

et
e

-

e(g,9) '

IDy,,,, g_tkm ) (gbIka w)tkm

i

’

1
bl C¥+b2tkm ’Ya
P

=~

Vielo,r],me[l,vx]

k
(a+b’tr,,)- IT  II (a+b’ty )
g k/'=1m/=1 m
gS
T P T P
b TT TI (a+b%t:)) b2-T1 TI (a+b%t:;)-IDe b
=1 = S =1 = S
Veel,q (g == ‘(g = w”)*

such that

{IDy,, }reo.rmern) \ ({ID4; Yicio., €10, U {IDe}eepr,g) =0

Then it must be hard to distinguish

as- ﬁ 19_1'[ (a+b2t;)
T elgq) " AT

from a random element R € Gr. An algorithm A that outputs z € {0,1} has
advantage € in solving the (n-q)-Decisional Multi-Exponent problem in G if

as-

Ad’l}nqdmc(n,qu) = Pr[.A(X,T = e(g,g) i

=

Pi
I (048t
i=1

)] — PrlA(X, T = R)]| > ¢

We say that the decision (n-q)-Decisional Multi-Exponent Assumption holds
if no poly-time algorithm has a non-negligible advantage in solving the (n-q)-
Decisional Multi-Exponent problem.

We next wish to use the proof template of Boneh et al. [BBG05] to show
that the (n-q)-Decisional Multi-Exponent assumption is generically secure. Un-
fortunately, our assumption is outside their framework since it involves elements



which are outside of the bilinear or the target groups. Int particular, the adver-

sary is given elements of the form % — Y € Zyp.
IT 1T (at+b?ty )
il=14/=1 J
In the second game, B uses the (A,F)-MEA challenge to simulate the security
game. We denote by x = (v,91,.-.,YUn, é, %, i,IDl, ..., ID,, i, R i) the

random exponents chosen by the (A,F)-MEA challenger. B can use h to simulate
all the needed the groups elements since

i (Xi b2t;
vlgign gpy’l(x]+1) = ga+ 3
V1§¢§n gPtl,i(Xi+1,xn+2,xn+3) _ giti
gpb(xn+3) — gb
gpb2(xn+3) _ gb2
gpwb(xn+3,xn+4) _ U}b
Vi<i<n gptzi(xi+17xn+27xn+35xn+4+i7xn+4) = g(bIDi+b)ti
gps(x2n+5,...,x2n+q+4) _ gs
Vlgigq gpSIi(xn+3)x2n+4+i) _ gbsi
Vi<igq gPe2i(nt8 Xntapi Xnra Xantati) — g(b21D3+b)sfz

e(g,g)pas(x2n+5;-~~7x2n+q+4xn+2)) — e(g,g)o‘s

B takes D3 elements from T. If T' = A x e these elements have the same dis-
tribution as in the real security game since T; = ﬁbzti — . It follows that
the simulation provided by B is perfect unless 7" is a random element in Zp.
Assuming the MEA holds, A cannot distinguish between the games. We finish
the proof in appendix A by showing that the altered assumption is generically
secure using the [BBGO05] framework.

References

[BBGO5] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based
encryption with constant size ciphertext. IACR Cryptology ePrint Archive,
2005:15, 2005.

[BGWO05] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast
encryption with short ciphertexts and private keys. In CRYPTO, volume
3621 of Lecture Notes in Computer Science, pages 258-275. Springer, 2005.

[CGIT99] Ran Canetti, Juan A. Garay, Gene Itkis, Daniele Micciancio, Moni Naor,
and Benny Pinkas. Multicast security: A taxonomy and some efficient con-
structions. In INFOCOM, pages 708-716. IEEE, 1999.

[CMN99] Ran Canetti, Tal Malkin, and Kobbi Nissim. Efficient communication-
storage tradeoffs for multicast encryption. In EUROCRYPT, volume 1592
of Lecture Notes in Computer Science, pages 459—474. Springer, 1999.

[DF02]  Yevgeniy Dodis and Nelly Fazio. Public key broadcast encryption for stateless
receivers. In Digital Rights Management Workshop, volume 2696 of Lecture
Notes in Computer Science, pages 61-80. Springer, 2002.



[DPP07] Cécile Delerablée, Pascal Paillier, and David Pointcheval. Fully collusion se-
cure dynamic broadcast encryption with constant-size ciphertexts or decryp-
tion keys. In Pairing, volume 4575 of Lecture Notes in Computer Science,
pages 39-59. Springer, 2007.

[FN93]  Amos Fiat and Moni Naor. Broadcast encryption. In CRYPTO, volume 773
of Lecture Notes in Computer Science, pages 480—491. Springer, 1993.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
randolli functions. In Foundations of Computer Science, 1984. 25th Annual
Symposium on, pages 464—479. IEEE, 1984.

[GST04] Michael T. Goodrich, Jonathan Z. Sun, and Roberto Tamassia. Efficient
tree-based revocation in groups of low-state devices. In CRYPTO, volume
3152 of Lecture Notes in Computer Science, pages 511-527. Springer, 2004.

[GSWO00] Juan A. Garay, Jessica Staddon, and Avishai Wool. Long-lived broadcast
encryption. In CRYPTO, volume 1880 of Lecture Notes in Computer Science,
pages 333-352. Springer, 2000.

[GW09] Craig Gentry and Brent Waters. Adaptive security in broadcast encryption
systems (with short ciphertexts). In EUROCRYPT, volume 5479 of Lecture
Notes in Computer Science, pages 171-188. Springer, 2009.

[LSW10] Allison B. Lewko, Amit Sahai, and Brent Waters. Revocation systems with
very small private keys. In IEEE Symposium on Security and Privacy, pages
273-285. IEEE Computer Society, 2010.

[NNLO1] Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing
schemes for stateless receivers. In CRYPTO, volume 2139 of Lecture Notes
in Computer Science, pages 41-62. Springer, 2001.

[NP10] Moni Naor and Benny Pinkas. Efficient trace and revoke schemes. Int. J.
Inf. Sec., 9(6):411-424, 2010.

[NRO4] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient
pseudo-random functions. Journal of the ACM (JACM), 51(2):231-262,
2004.

[Sho97]  Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Eurocrypt, volume 97, pages 256—266. Springer, 1997.

A Generic security of (n-q)-Decisional Exponent
Assumption

Using the terminology of [BBGO5] our assumption is the following (P, Q, f)
Diffie-Hellman assumption where we denote by v,, the discrete log of w in base

g
P={1,s}

i

J
U{viG[O,T],jG[l,pi] H H O[+b tz/ , b H H Oé+b tl' . H H a+b2 z i }

i'=1j5'=1 V= lj’*
U {Vkefo,r),meL,e:] ~th» (DI Dy, + vt (a0 + 6%t ) - || H (o + 0w, )}
k'=1m'=1

U{Veepq HH (o + b7 tlj Sg, HH a+bt [D€+Vg])85}

i=1j5=1 i=1j5=1



Q= {1}
i
U{Viepo,7).5€01,0:] a- I I (e+v%t,)}

ir=1j'=1

T i
and f =as- ] lp_[ (o + b%t;,)

i=1j=1

Boneh et al. ;how that assumptions of this form are generically secure under

few conditions. In particular, let p be the order of the groups, s be the maximum
between the number of polynomials in each of P and Q. Let d be twice the
maximum degree of any polynomial in (P, Q, f). The advantage of an attack
algorithm, that makes at most y queries to the oracles computing the group
operation in G, G and the bilinear pairing e : G2 — Gy, is bounded by

(y+2s+2)2-d

Adv(A) < 5

as long as f is symbolically independent of (P, @), i.e. there is no linear combi-
nation of polynomials from @ and multiplications of pairs of polynomials from
P that is symbolically equal to f 6.

The maximum degree of any polynomial in the assumption is 3n + 3 and
s =2q+ 3n + 3(n —q). To realize f from (P, Q) we need to have a term of the

form as - H H (o + b?t;, ). We note that no such terms can be realized from the
i=1j=1
product of any two polynomlals p,p’ € P. We let p = s, in this case, p’ must be

of the form (o + b%ty,, ) - H H (o + bty ). There are two cases:
k'=1m'=1
1. ty,, corresponds to a temporary revoked user. We show that sb?t, cannot
be realized. In_ order to realize that term we have two cases:
(a) Use (b*- H H(oz—i—b2 ) IDg+ ) s,
i=1j=1
However, this creates a w®s* term that can only be canceled by a product
T Pi
of (bIDy,, + vi)ty,, and (b- [T T (a4 b%t;,)se). In turn, this creates
i=1j=1
a b2tk term that can only be canceled by a product of (—t,, ) and

(b? H H( +b%t;,) - 1Dy + v5,)se. This leads us to b%sgty,, (IDy,,
i=1j=1
IDy). Since ty,, corresponds to a temporary revoked user, there exists
an ¢ in [1,q] such that ID;, = ID, and b?st, cannot be realized.
Since s = > _ sy, sb?ty, cannot be realized.
(b) Use (bIDy,, + viy)tg,,. This case is symmetric to the previous case.

2. ty,, corresponds to a permanent revoked user. We note that the product
Pl
[I (a+b%ty ,) cannot be altered to include the term (o + b*¢y,,) which is
m/=1

5 We refer to [BBCO5] for formal definitions



T Pi

include in ] [T (« + b%t;,) since ty,, corresponds to a permanent revoked
i=1j=1

user.

It follows from [BBGO5], assuming the adversary makes at most y queries, that

(y +2(6n —q) +2)%-(3n+3)
2p

When y > n we have that the advantage is O(y*n/p).



