
Compressing Vector OLE
Elette Boyle

IDC, Israel

eboyle@alum.mit.edu

Geoffroy Couteau

KIT, Germany

geoffroy.couteau@kit.edu

Niv Gilboa

Ben Gurion University, Israel

gilboan@bgu.ac.il

Yuval Ishai

Technion, Israel

yuvali@cs.technion.ac.il

ABSTRACT
Oblivious linear-function evaluation (OLE) is a secure two-party
protocol allowing a receiver to learn any linear combination of a pair

of field elements held by a sender.OLE serves as a common building

block for secure computation of arithmetic circuits, analogously to

the role of oblivious transfer (OT) for boolean circuits.

A useful extension of OLE is vector OLE (VOLE), allowing the

receiver to learn any linear combination of two vectors held by

the sender. In several applications of OLE, one can replace a large

number of instances of OLE by a smaller number of instances of

VOLE. This motivates the goal of amortizing the cost of generating

long instances of VOLE.
We suggest a new approach for fast generation of pseudo-random

instances of VOLE via a deterministic local expansion of a pair of

short correlated seeds and no interaction. This provides the first

example of compressing a non-trivial and cryptographically useful

correlation with good concrete efficiency. Our VOLE generators

can be used to enhance the efficiency of a host of cryptographic

applications. These include secure arithmetic computation and non-

interactive zero-knowledge proofs with reusable preprocessing.

Our VOLE generators are based on a novel combination of func-

tion secret sharing (FSS) for multi-point functions and linear codes

in which decoding is intractable. Their security can be based on

variants of the learning parity with noise (LPN) assumption over

large fields that resist known attacks. We provide several construc-

tions that offer tradeoffs between different efficiency measures and

the underlying intractability assumptions.

CCS CONCEPTS
• Security and privacy→ Cryptography;

KEYWORDS
Secure computation, correlation generators, FSS, OLE, LPN, NIZK

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00

https://doi.org/10.1145/3243734.3243868

1 INTRODUCTION
Secret correlated randomness is a valuable resource for crypto-

graphic protocols. For instance, a pair of identical secret random

strings can be used for fast and perfectly secure communication, and

more complex correlations such as “multiplication triples" [9, 12, 25]

provide an analogous speedup for secure computation. A major

difference between these two types of correlations is that while

the former can be easily expanded locally from a short common

seed by using any pseudorandom generator, it seems much harder

to apply a similar compression procedure to the latter without

compromising security.

More generally, consider the following loosely defined notion

of a pseudorandom correlation generator. For a “long” target two-
party correlation (Z0,Z1), we would like to locally expand a pair

of correlated “short” strings (seed0, seed1) into a pair of outputs

(z0, z1), where z0 = Expand(seed0) and z1 = Expand(seed1). This
should be done so that the joint output is indistinguishable from

(Z0,Z1) not only to the outside world, but also to an insider who
learns one seed seedb and is trying to infer information about the

other output z
1−b beyond what is implied by its output zb .

For non-trivial two-party correlations, correlation generators

as above were only constructed using indistinguishability obfusca-

tion [44], homomorphic secret sharing [16], and key-homomorphic

pseudorandom functions [65]. However, despite optimization ef-

forts, none of these constructions is sufficiently efficient to offer a

competitive alternative to traditional interactive protocols.

The focus of this work is on a special type of correlation related

to oblivious linear-function evaluation (OLE). TheOLE functionality

allows a receiver to learn any linear combination of two field ele-

ments held by a sender. OLE is a common building block for secure

computation of arithmetic circuits [28, 52, 62], analogously to the

role of oblivious transfer (OT) for boolean circuits [28, 42, 51, 54].

A useful extension of OLE is vector OLE (VOLE), allowing the

receiver to learn any linear combination of two vectors held by

the sender. In several applications of OLE, one can replace a large

number of instances of OLE by a small number of long instances

of VOLE [4]. This motivates the goal of amortizing the cost of

implementing long VOLE. Despite recent progress (see Section 1.3

below), the concrete communication and computation costs of the

best VOLE protocols still leave much to be desired.

Motivated by the above goal, we study the question of compress-

ing a random VOLE correlation, or VOLE correlation for short. In

a VOLE correlation of length n over a finite field F, the sender P0
obtains a pair of random vectors Z0 = (®u, ®v), where ®u and ®v are

https://doi.org/10.1145/3243734.3243868

uniformly distributed over Fn , and the receiver P1 obtains a ran-
dom linear combination of the two vectors, namely Z1 = (x , ®ux + ®v)
for x ∈R F. A VOLE correlation can be used to realize the VOLE
functionality via a simple and efficient protocol, similarly to proto-

col implementing string OT from a random string OT [10]. In fact,

string OT is equivalent to VOLE over the field F = F2.
A natural approach for generating a VOLE correlation is via re-

duction to random stringOT. Indeed, random stringOT correlation

can be easily compressed using any pseudorandom generator (PRG),

and moreover a length-n VOLE over F can be realized with per-

fect security (against a semi-honest adversary) using ℓ = ⌈log
2
F⌉

instances of string OT of length nℓ each [38]. The factor-ℓ commu-

nication overhead of this reduction can be significant for computa-

tions over large fields, which often arise in applications. But more

importantly, the construction of VOLE from string OT requires the

sender to feed the OT oracle with correlated random strings, even

when the goal is to obtain a random instance of VOLE. This cor-
relation makes the natural reduction of random VOLE to random

string OT fail in the non-interactive setting we consider here.

1.1 Our Contribution
We give simple and efficient constructions of VOLE correlation

generators based on conservative variants of the Learning Parity

with Noise (LPN) assumption over large fields.
1
As far as we know,

our work gives the first non-trivial example for a useful correlation

generator with good concrete efficiency.

To give just one example, we estimate that for a field F with
⌈log

2
|F|⌉ = 128, we can generate a length-10

6
VOLE correlation

from a pair of correlated seeds whose length is less than 1000 field

elements using less than 25 milliseconds of local computation on a

standard laptop using a single core and a common GPU.

Our VOLE generators can be useful in a variety of cryptographic

applications. We discuss a few such applications below.

Rate 1/2 VOLE. As a direct application, we get a standard VOLE
protocol in the plain model with unique efficiency features. This

protocol is obtained by using general-purpose (OT-based) secure
two-party computation to distribute the seed generation, locally ex-

panding the seeds, and then using the simple reduction from VOLE
to random VOLE. The protocol has asymptotic rate 1/2 (namely, the

asymptotic communication complexity is dominated by communi-

cating 2n field elements) and almost the entire computational work

can be performed offline, following the seed generation, without

any interaction. Beyond its direct efficiency benefits, this “local

preprocessing” feature has several other advantages, including the

ability to make decisions about who to interact with in the future

(and how much) without revealing these decisions to the outside

world. See [16] for further discussion. Our protocol can be com-

pared to the recent VOLE protocol from [4], which under similar

assumptions achieves rate 1/3 and does not enjoy the local pre-

processing feature. An additional unique feature of our protocol

(unlike other VOLE protocols from the literature) is that achieving

security against malicious parties has vanishing amortized cost. As

1
Roughly speaking, the LPN assumption says that in a random linear code, a noisy

random codeword is pseudo-random. It can be equivalently formulated by requiring

that the syndrome of a random low-weight noise vector is pseudo-random. Our con-

structions require a slightly sub-constant noise rate, but otherwise can be quite flexible

about the choice of the code and its information rate. See Section 2.3 for more details.

long as the seed generation sub-protocol is secure against malicious

parties, the entire VOLE protocol is secure.

Secure arithmetic computation and beyond. Our efficient im-

plementation of VOLE can serve as a useful building block in secure

computation protocols. For instance, given an additively shared

scalar x ∈ F and an additively shared vector ®u ∈ Fn , one can

securely compute an additive sharing of ®ux via two invocations

of length-n VOLE. Such scalar-vector multiplications are common

in applications that involve linear algebra. See [4, 28, 52, 53, 61]

and references therein. More generally, VOLE is useful for secure

computation of arithmetic circuits in which multiplication gates

have a large fan-out, as well as round-efficient secure arithmetic

computation via arithmetic garbling [5]. Finally, VOLE can be help-

ful even for secure computation tasks that are not arithmetic in

nature. For instance, OLE has been applied for efficiently realizing

secure keyword search [34] and set intersection [37]. These applica-

tions can benefit from long instances of VOLE, e.g., when securely

computing the intersection of one set with many other sets.

NIZK with reusable setup. Finally, we demonstrate the useful-

ness of VOLE generators in the context of non-interactive zero-

knowledge proofs (NIZK). We consider the following setting for

NIZK with reusable interactive setup. In an offline setup phase,

before the statements to be proved are known, the prover and the

verifier interact to securely generate correlated random seeds. The

seeds can then be used to prove any polynomial number of state-

ments by having the prover send a single message to the verifier

for each statement. In this setting, we can leverage our fast VOLE
generators towards NIZK proofs for arithmetic circuit satisfiabil-

ity in which the proof computation and verification involve just

a small number of field operations per gate, and the setup cost is

comparable to the circuit complexity of (a single instance of) the

verification predicate.

Our NIZK protocols are based on simple honest-verifier zero-
knowledge protocols for arithmetic circuit satisfiability that consist

of parallel calls to VOLE, where the honest verifier’s VOLE inputs

are independent of the statement being proved. Such protocols,

in turn, can be obtained from linear PCPs for circuit satisfiabil-

ity [14, 35, 47]. This application of VOLE generators crucially relies

on the field being large for eliminating selective failure attacks.

(Similar NIZK protocols based on OT [50, 55] are not fully reusable

because they are susceptible to such attacks.) The honest-verifier

VOLE-based NIZK protocols we use are simplified variants of a

NIZK protocol from [21], which provides security against mali-

cious verifiers using only parallel calls to VOLE and no additional

interaction. The price we pay for the extra simplicity is that our

setup phase needs to rely on general-purpose interactive MPC for

ensuring that the verifier’s (reusable) VOLE inputs are well formed.

We conclude by summarizing the two advantages of VOLE cor-

relation over the string OT correlation which is easier to generate.

A quantitative advantage is that VOLE natively supports arithmetic

computations without the log
2
|F| communication overhead of the

OT-based approach discussed above. A qualitative advantage is that
in certain applications (such as the NIZK protocol from [21] and our

honest-verifier variants), VOLE can be used to eliminate selective

failure attacks by ensuring that every adversarial strategy is either

harmless or leads to failure with overwhelming probability.

1.2 Overview of the Techniques
Our VOLE generators are based on a novel combination of function

secret sharing (FSS) [17] and noisy linear encodings. For the pur-

pose of explaining the technique, it is convenient to view a VOLE
correlation as a “shared vector-scalar product.” That is, the sender

knows a random vector ®u ∈ Fn , the receiver knows a random scalar

x ∈ F, and they both hold additive shares of ®ux . The key idea is

that efficient PRG-based FSS techniques allow compressing this

correlation in the special case where ®u is sparse, namely it has few

nonzero entries. However, this alone is not enough, since ®u must

be pseudorandom to the receiver, which is certainly not the case

for a sparse vector.

To convert “sparse” to “pseudorandom” we rely on the LPN

assumption. This can be achieved in two different ways. In the

primal variant of our construction, we achieve this by adding to

the sparse ®u a random vector in a linear code C in which the LPN

assumption is conjectured to hold. To do this, the sender gets a

short message ®a and ®ax is shared between the parties. By locally

applying the linear encoding of C to ®a and the shares of ®ax , the
VOLE correlation is maintained, except that the sparse ®u is masked

with a random codeword C(®a) where both ®u and the codeword are

unknown to the receiver. If C satisfies the LPN assumption with

the level of noise corresponding to the sparsity of ®u, the sum looks

pseudorandom to the receiver.

The main advantage of the primal construction is that it is con-

jectured to be secure even with a code C that has constant locality,

namely each codeword symbol is a linear combination of a constant

number of message symbols [2, 4]. This enables fast incremental

generation of VOLE, one entry at a time. Its main disadvantage is

that its output size can be at most quadratic in the seed size. Indeed,

a higher stretch would make it possible to guess a sufficiently large

number of noiseless coordinates to allow efficient decoding via

Guassian elimination.

To achieve an arbitrary polynomial stretch, one can use the dual
variant of our construction. Here the parties shrink both the sparse

®u and the shares of ®ux by applying a public compressive linear

mapping H . If H is a parity check matrix of a code for which LPN

holds, the output of H looks pseudorandom even when given H . A

disadvantage of the dual approach is that the compressive mapping

H cannot have constant locality.

We propose several different optimizations of the above ap-

proaches. These include LPN-friendly mappings C and H that can

be computed in linear time, improved implementations of the FSS

component of the construction, and secure protocols for distribut-

ing the setup algorithm that generates the seeds. Under plausible

variants of the LPN assumption, the asymptotic time complexity

of the seed expansion is linear in the output size. We discuss fur-

ther optimizations and give some concrete efficiency estimates in

Section 5.

1.3 Related Work
The idea of compressing cryptographically useful correlations was

first put forward in [39], who focused on the case of multi-party

correlations that are distributed uniformly over a linear space. This

idea was generalized in [23]. The problem of compressing useful

two-party correlations was studied in [16], who presented solutions

that rely on “group-based” homomorphic secret sharing. However,

the compression schemes proposed from [16] have poor concrete

efficiency, despite significant optimization efforts.

Variants of the LPN assumption were used as a basis for secure

arithmetic computation in several previous works [4, 28, 52, 62].

The core idea is to use the homomorphic property of a linear code

to compute a linear function on a noisy encoded message, and then

filter out the noisy coordinates using OT. This technique is quite
different from ours. In particular, it inherently relies on erasure-

decoding which we completely avoid. This gives us more freedom

in choosing efficiently encodable (or checkable) codes in which

LPN resists known attacks.

2 PRELIMINARIES
We consider algorithms that take inputs and produce outputs from

a finite field F or finite Abelian group G. All of our protocols are
fully arithmetic in that they only require a black-box access to the

underlying algebraic structure in the same sense as in [4, 52]. In

particular, the number of arithmetic operations performed by our

protocols does not grow with the field or group size. By default

vectors ®v are interpreted as row vectors.

2.1 Vector OLE
Vector OLE (VOLE) is the arithmetic analogue of string OT. Con-
cretely, the VOLE functionality is a two-party functionality that

takes a pair of vectors from the sender P0, and allows the receiver
P1 to learn a chosen linear combination of these vectors. More

formally, given a finite field F, the VOLE functionality takes a pair

of vectors (®u, ®v) ∈ Fn × Fn from P0 and a scalar x ∈ F from P1.
It outputs ®w = ®ux + ®v to P1. We will also consider a randomized

version of VOLE where the sender’s inputs (®u, ®v) are picked at ran-

dom by the functionality and delivered as outputs to the sender.

The deterministic VOLE functionality can be easily reduced to the

randomized one analogously to the reduction of OT to random

OT [10] (see Section 6.1.1).

We note that our results can apply to generating VOLE over

non-field rings (e.g., Z
2
k) under suitable variants of the underlying

intractability assumptions [52]. This can be useful in turn for secure

arithmetic computation over rings [22, 24, 52]. For simplicity, we

focus here on the case of VOLE over fields.

2.2 Function Secret Sharing
Informally, a function secret sharing (FSS) scheme [17] splits a

function f : I → G into two functions f0 and f1 such that f0(x) +
f1(x) = f (x) for every input x , and each fb computationally hides

f . In this work we rely on efficient constructions of FSS schemes

for simple classes of functions, including multi-point functions and

comparison functions.

Definition 2.1 (Adapted from [18]). A 2-party function secret shar-
ing (FSS) scheme for a class of functions F = { f : I → G} with
input domain I and output domain an abelian group (G,+), is a pair
of PPT algorithms FSS = (FSS.Gen, FSS.Eval) with the following

syntax:

• FSS.Gen(1λ , f), given security parameter λ and description

of a function f ∈ F , outputs a pair of keys (K0,K1);

• FSS.Eval(b,Kb ,x), given party index b ∈ {0, 1}, key Kb , and
input x ∈ I , outputs a group element yb ∈ G.

Given an allowable leakage function Leak : {0, 1}∗ → {0, 1}∗, the

scheme FSS should satisfy the following requirements:

• Correctness. For any f : I → G in F and x ∈ I , we have

Pr[(K0,K1)
R

←FSS.Gen(1λ , f) :
∑
b ∈{0,1} FSS.Eval(b,Kb ,x) =

f (x)] = 1.

• Security. For any b ∈ {0, 1}, there exists a PPT simulator

Sim such that for any polynomial-size function sequence

fλ ∈ F , the distributions {(K0,K1)
R

←FSS.Gen(1λ , fλ) : Kb }

and {Kb
R

← Sim(1λ , Leak(fλ))} are computationally indistin-

guishable.

Unless otherwise specified, we assume that for f : I → G, the
allowable leakage Leak(f) outputs (I ,G), namely a description of

the input and output domains of f .

Some applications of FSS require applying the evaluation algo-

rithm on all inputs. Given an FSS (FSS.Gen, FSS.Eval), we denote
by FSS.FullEval an algorithm which, on input a bit b, and an evalua-

tion key Kb , outputs a list of |I | elements of G corresponding to the

evaluation of FSS.Eval(b,Kb , ·) on every input x ∈ I (in some arbi-

trary specified order). While FSS.FullEval can always be realized

with |I | invocations of FSS.Eval, it is typically possible to obtain a

more efficient construction. Below, we recall some results from [18]

on FSS schemes for useful classes of functions.

2.2.1 Distributed Point Functions. A distributed point function

(DPF) [40] is an FSS scheme for the class of point functions fα,β :

{0, 1}ℓ → G which satisfy fα,β (α) = β , and fα,β (x) = 0 for any

x , α . A sequence of works [17, 18, 40] has led to highly efficient

constructions of DPF schemes from any pseudorandom generator

(PRG), which can be implemented in practice using block ciphers

such as AES.

Theorem 2.2 ([18]). Given a PRGG : {0, 1}λ → {0, 1}2λ+2, there
exists a DPF for point functions fα,β : {0, 1}ℓ → G with key size

ℓ · (λ + 2)+ λ + ⌈log
2
|G|⌉ bits. Form = ⌈ log |G |λ+2 ⌉, the key generation

algorithm Gen invokes G at most 2(ℓ + m) times, the evaluation
algorithm Eval invokesG at most ℓ +m times, and the full evaluation
algorithm FullEval invokes G at most 2ℓ(1 +m) times.

Note that a naive construction of FullEval from Eval would re-

quire 2
ℓ(ℓ +m) invocations of G.

2.2.2 FSS for Multi-Point Functions. Our results crucially rely on

FSS schemes for multi-point functions, a natural generalization

of point functions. A t-point function evaluates to 0 everywhere,

except on t specified points. When specifying multi-point functions

we often view the domain of the function as [n] for n = 2
ℓ
instead

of {0, 1}ℓ . Formally:

Definition 2.3 (Multi-Point Function). An (n, t)-multi-point func-

tion over an abelian group (G,+) is a function fS, ®y : [n] → G,

where S = {s1, · · · , st } is a subset of [n] of size t , ®y = (y1, · · · ,yt) ∈

Gkt , and fS, ®y (si) = yi for any i ∈ [t], and fS,y (x) = 0 for any

x ∈ [n] \ S .

We assume that the description of S includes the input domain

[n] so that fS, ®y is fully specified.

A Multi-Point Function Secret Sharing (MPFSS) is an FSS scheme

for the class of multi-point functions, where a point function fS, ®y is

represented in a natural way. An MPFSS can be easily obtained by

adding t instances of DPF. We discuss optimizations of this simple

MPFSS construction in Section 4.

We assume that an MPFSS scheme leaks not only the input and

output domains but also the number of points t that the multi-point

function specifies.

2.3 Learning Parity with Noise
Our constructions rely on variants of the Learning Parity with Noise

(LPN) assumption over large fields. Similar assumptions have been

previously used in the context of secure arithmetic computation [4,

28, 36, 52, 62]. Unlike most of these works, the flavors of LPN

on which we rely do not require the underlying code to have an

algebraic structure and are thus not susceptible to algebraic (list-)

decoding attacks.

For a finite field F, we denote by Berr (F) the Bernoulli distribu-
tion obtained by sampling a uniformly random element of F with
probability r , and 0 with probability 1 − r . We define below the

Learning Parity with Noise assumption over a field F.

Definition 2.4. Let C be a probabilistic code generation algorithm

such thatC(k,q,F) outputs (a description of) a matrixA ∈ Fk×q . For
dimension k = k(λ), number of queries (or block length) q = q(λ),
and noise rate r = r (λ), the LPN(k,q, r) assumption with respect

to C states that for any polynomial-time non-uniform adversary

A, it holds that

Pr[F← A(1λ),A
R

← C(k,q,F), ®e
R

← Berr (F)q ,

®s
R

← Fk , ®b ← ®s · A + ®e : A(A, ®b) = 1]

≈ Pr[F← A(1λ),A
R

← C(k,q,F), ®b
R

← Fq : A(A, ®b) = 1].

By default, we assume that C outputs a uniformly random matrix,

but other distributions of codes will be used for better efficiency.

Note that the decision LPN assumption, given above, can be

reduced in polynomial time to its search variant (where the attacker

must find the secret vector ®s). While this reduction is not tight, in

practice, no better attack is known on decision LPN than on search

LPN. Note also that the LPN assumption is equivalent to its dual

version, which states that it is infeasible to distinguish ®e · B from

a random vector, where ®e is a noise vector and B is the parity-
check matrix of the matrix A ∈ Fk×q (i.e., B is a full-rank matrix

in Fq×(q−k) such that A · B = 0). The equivalence to LPN follows

immediately from the relation ®e · B = (®s · A + ®e) · B for any ®s ∈ Fk .
The dual variant of LPN is also known as the syndrome decoding
problem.

2.3.1 Attacks on the LPN Problem. In spite of its extensive use in

cryptography, few cryptanalytic results are known for the general

LPN assumption. We briefly outline below the main results; we

refer the reader to [31] for a more comprehensive overview.

• Gaussian elimination. The most natural attack on LPN

recovers ®s from ®b = ®s · A + ®e by guessing k non-noisy co-

ordinates of
®b, and inverting the corresponding subsystem

to verify whether the guess was correct. This approach re-

covers ®s in time at least (1/(1 − r))k using at least O(k/r)

samples. For low-noise LPN, with noise rate 1/kc for some

constant c ≥ 1/2, this translates to a bound on attacks of

O(ek
1−c
) time using O(k1+c) samples.

• Information Set Decoding (ISD) [63]. Breaking LPN is

equivalent to solving its dual variant, which can be inter-

preted as the task of decoding a random linear code. The

best algorithms for this task are improvements of Prange’s

ISD algorithm, which attempts to find a size-w subset of the

rows of B (the parity-check matrix of the code) that sums to

®e · B, wherew = rq is the number of noisy coordinates.

• The BKW algorithm [15]. This algorithm is a variant of

Gaussian elimination which achieves subexponential com-

plexity even for high-noise LPN (e.g. constant noise rate),

but requires a subexponential number of samples: the attack

solves LPN over F2 in time 2
O (k/log(k/r))

using 2
O (k/log(k/r))

samples.

• Combinations of the above [31]. The authors of [31] con-
ducted an extended study of the security of LPN, and de-

scribed combinations and refinements of the previous three

attacks (called the well-pooled Gauss attack, the hybrid attack,
and the well-pooled MMT attack). All these attacks achieve
subexponential time complexity, but require as many sample

as their time complexity.

• Scaled-down BKW [58]. This algorithm is a variant of the

BKW algorithm, tailored to LPN with polynomially-many

samples. It solves LPN in time 2
O (k/log log(k/r))

, using k1+ε

samples (for any constant ε > 0) and has worse performance

in time and number of samples for larger fields.

In this paper, we will rely on the LPN assumption with high

dimension k , low-noise (noise rate 1/kε for some constant ε), and
a polynomially bounded number of samples (q < k2, or even

q = k+o(k)). We note that in this regime of parameters, no improve-

ment is known over the standard Gaussian elimination attack, both

in the asymptotic setting (BKW and the attacks of [31] require a

subexponential number of samples, and the attack of [58] does not

perform well on low-noise LPN), and in the concrete setting for any

reasonable parameters (according to the detailed recent estimations

of [31]). For a very limited number of samples (which is the case in

our setting), variants of ISD are expected to provide relatively good

results. However, they do not perform well in our specific scenario:

when the LPN instance has high dimension and very low error

rate (r (λ) → 0 when λ→∞), according to the analysis of [69], all

known variants of ISD (e.g. [11, 13, 33, 59, 60, 63, 67]) have essen-

tially the same asymptotic complexity 2
cw (1+o(1))

for a constant

c ≈ − log(1 − k/q) (withw = rq the number of noisy coordinates).

Therefore, their gain compared to the initial algorithm of Prange

collapse in our setting. In all the concrete instances we consider,

we estimated the security of the corresponding LPN instance using

both Gaussian attacks and ISD (using the detailed concrete effi-

ciency analysis of ISD given in [45]). In all situations, we found

Gaussian elimination to perform better than ISD.

LPN-friendly codes. For the purpose of optimizing the computa-

tional complexity of LPN-based constructions, one can use a code

generator C that outputs (the description of) a structured matrix A
such that encoding is fast and yet LPN is still conjectured to hold.

For instance, if A is a random Toeplitz matrix, encoding can be

done in quasi-linear time but no better attacks on LPN are known

compared to a random choice of A. There are in fact candidates for

asymptotically good LPN-friendly codes that can be encoded by

linear-size circuits over F [4, 29]. Finally, since we do not require
our codes to have good minimal distance and our constructions do

not require erasure-decoding, one can apply a heuristic randomized

construction of LPN-friendly codes by composing a linear number

of “simple” elementary linear operations (e.g., add to coordinate i a
random multiple of coordinate j).

3 PSEUDORANDOM VOLE GENERATOR
In this section, we formally define our main notion of a pseudoran-

dom VOLE generator (or VOLE generator for short), and provide

two constructions that are dual to each other (in a sense that will

be made formal). These constructions form the core technical con-

tribution of our paper.

3.1 Defining VOLE Generator
Informally, a VOLE generator allows stretching a pair of short,

correlated seeds into a long (pseudo)random VOLE, by locally ap-

plying a deterministic function Expand to the seeds. Defining the

security notion for this primitive requires some care. Ideally, we

would have liked to require that the protocol in which a trusted

dealer distributes the seeds and the parties output the result of

applying Expand to be a secure realization of the VOLE correlation

according to the standard real vs. ideal paradigm for defining se-

cure computation. However, as pointed out in [39], this security

notion cannot be achieved in general. Intuitively, this stems from

the fact that each party holds a short representation of its correlated

string. For instance, consider a very simple correlation, where both

parties should obtain the same long pseudorandom string. Then

any generator for this correlation will reveal to the first party a

short representation of the string of the other party, which cannot

happen in an ideal implementation.

To overcome this issue, we rely on an alternative security notion,

which roughly asserts the following. Consider the real-world exper-

iment of distributing the two seeds and locally expanding them. We

require that the seed seedσ observed by party σ together with the

expanded second output Expand(seed1−σ) are indistinguishable

from seedσ together with a random output of party 1 − σ condi-

tioned on Expand(seedσ) in a perfect VOLE correlation. We prove

that this notion suffices for securely instantiating the standard pro-

tocol for computing a chosen-input VOLE from a random VOLE
(see Section 6.1.1), and is hence sufficient for the applications we

consider.

We allow the setup algorithm of the VOLE generator to fix the

receiver’s input x rather than choose it at random. This stronger fla-

vor of VOLE generator, which is needed by some of the applications,

is formalized below.

Definition 3.1 (Pseudorandom VOLE generator). A pseudorandom

VOLE generator is a pair of algorithms (Setup, Expand) with the

following syntax:

• Setup(1λ ,F,n,x) is a PPT algorithm that given a security

parameter λ, field F, output lengthn, and scalar x ∈ F outputs
a pair of seeds (seed0, seed1), where seed1 includes x ;

• Expand(σ , seedσ) is a polynomial-time algorithm that given

party index σ ∈ {0, 1} and a seed seedσ , outputs a pair

(®u, ®v) ∈ Fn × Fn if σ = 0, or a vector ®w ∈ Fn if σ = 1;

The algorithms (Setup, Expand) should satisfy the following:

• Correctness. For any field F and x ∈ F, for any pair (seed0,
seed1) in the image of Setup(1λ ,F,n,x) (for some n), denot-
ing (®u, ®v) ← Expand(0, seed0), and ®w ← Expand(1, seed1),
it holds that ®ux + ®v = ®w .

• Security. For any (stateful, nonuniform) polynomial-time

adversary A, it holds that

Pr

[
(F, 1n ,x ,x ′) ← A(1λ),

(seed0, seed1)
R

← Setup(1λ ,F,n,x)
: A(seed0) = 1

]
≈ Pr

[
(F, 1n ,x ,x ′) ← A(1λ),

(seed0, seed1)
R

← Setup(1λ ,F,n,x ′)
: A(seed0) = 1

]
.

Similarly, for any (stateful, nonuniform) adversary A, it

holds that

Pr


(F, 1n ,x) ← A(1λ),

(seed0, seed1)
R

← Setup(1λ ,F,n,x),
(®u, ®v) ← Expand(0, seed0)

: A(®u, ®v, seed1) = 1


≈ Pr


(F, 1n ,x) ← A(1λ), ®u

R

← Fn ,

(seed0, seed1)
R

← Setup(1λ ,F,n,x),
®w ← Expand(1, seed1), ®v ← ®w − ®ux

: A(®u, ®v, seed1) = 1

 .
The reader might observe that one can trivially realize the above

definition, simply by letting Setup directly output seed0 ← (®u, ®v),
and seed1 ← ®ux+®v , and defining Expand to be the identity function.
We will be interested in non-trivial realizations of VOLE generators,

where the seed produced by Setup is significantly shorter than the

number n of the pseudo-random VOLE instances being produced.

3.2 Primal VOLE Generator
We present the first of two VOLE generator constructions. To sim-

plify the presentation, we introduce a “spreading function” spreadn
(for any integer n) which takes as input a subset S = {s1, · · · , s |S |}
of [n] (with s1 < s2 < · · · < s |S |) and a vector ®y = (y1, · · · ,y |S |) ∈

F |S | , such that spreadn (S, ®y) is the vector ®z satisfying zj = 0 for

any j ∈ [n] \ S , and zsi = yi for i = 1 to |S |. Note that the function
spreadn (S, ·) is a linear function. Our construction of a pseudoran-

dom VOLE generator Gprimal is given in Figure 2.

Theorem 3.2. Let n = n(λ),k = k(λ), t = t(λ),F = F(λ) be such
that LPN(k,n, t/n) holds over F with respect to the code with matrix
Ck,n , and suppose MPFSS is a secure MPFSS scheme. Then Gprimal is
a secure VOLE generator.

In the following, we prove Theorem 3.2.

3.2.1 Correctness. By the MPFSS correctness, it holds that

MPFSS.FullEval(0,K0)

+MPFSS.FullEval(1,K1) = spreadn (S,x ®y) = ®µx .

VOLE Generator Gprimal

• Parameters: dimension k = k(λ), noise parameter t =
t(λ)
• Building blocks: a code generator C, such that

C(k,n,F) defines a public matrix Ck,n ∈ Fk×n ,
and a multi-point function secret sharing MPFSS =
(MPFSS.Gen,MPFSS.Eval,MPFSS.FullEval).
• Gprimal.Setup(1λ ,F,n,x) : pick a random size-t subset

S of [n], two random vectors (®a, ®b)
R

← Fk × Fk , and a

random vector ®y
R

← Ft . Let s1 < s2 < · · · < st denote

the elements of S . Set ®c ← ®ax + ®b. Compute (K0,K1)
R

←

MPFSS.Gen(1λ , fS,x ®y). Set seed0 ← (F,n,K0, S, ®y, ®a, ®b)

and seed1 ← (F,n,K1,x , ®c). Output (seed0, seed1).
• Gprimal.Expand(σ , seedσ) :

If σ = 0, parse seed0 as (F,n,K0, S, ®y, ®a, ®b). Set ®µ ←
spreadn (S, ®y). Compute ®ν0 ← MPFSS.FullEval(0,K0).

Output (®u, ®v) ← (®a ·Ck,n + ®µ, ®b ·Ck,n − ®ν0).
If σ = 1, parse seed1 as (F,n,K1,x , ®c). Compute ®ν1 ←
MPFSS.FullEval(1,K1), and set ®w ← ®c · Ck,n + ®ν1. Out-
put ®w .

Figure 1: VOLE Generator Gprimal

Therefore,

®ux + ®v = (®a ·Ck,n + ®µ)x + ®b ·Ck,n − ®ν0

= (®ax + ®b) ·Ck,n + ®µx −MPFSS.FullEval(0,K0)

= ®c ·Ck,n + ®µx +MPFSS.FullEval(1,K1) − ®µx

= ®c ·Ck,n + ®ν1 = ®w,

which concludes the proof of correctness.

3.2.2 Security. We start by proving that Gprimal satisfies the first

security requirement of VOLE generators under the secrecy prop-

erty of the MPFSS. Recall that this first requirement states that no

PPT adversary can distinguish the pair (seed0,x) from (seed0,x ′),

where (F, 1n ,x ,x ′)
R

←A(1λ) and (seed0, seed1)
R

←Setup(1λ ,F,n,x),
for a field F and a size parameter n chosen by A. Note that the

only part of seed0 = (F,n,K0, S, ®y, ®a, ®b) which depends on x is the

MPFSS key K0. By the secrecy property of the MPFSS, there exists a

simulator which, given only the allowable leakage (F,n, t), outputs
a key K ′

0
which is indistinguishable from K0. As this simulator does

not know any information about x , this immediately implies the

first requirement.

We now turn our attention to the second requirement, which

states that no efficient adversary A can distinguish (®u, ®v, seed1)

from (®u ′, ®v ′, seed1), where (seed0, seed1)
R

←Setup(1λ ,F,n,x), (®u, ®v) ←

Expand(0, seed0), ®u ′
R

← Fn , and ®v ′ ← Expand(1, seed1) − ®u ′x , with
(F,n,x) chosen by A.

Let A be a stateful PPT adversary, and let (F, 1n ,x) ← A(1λ).
We prove the second security requirement through a sequence of

games.

• Game 0. Compute (seed0, seed1)
R

← Setup(1λ ,F,n,x), set
(®u, ®v) ← Expand(0, seed0), and send (®u, ®v, seed1) to A. De-

note β0 the output of A in this game. Note that the input of

A in this game is seed1 = (F,n,K1,x , ®c), ®u = ®a ·Ck,n+ ®µ, and

®v = ®b ·Ck,n+ ®ν0 = ®b ·Ck,n+ ®ν1−®µx = ®c ·Ck,n+ ®ν1−(®a·Ck,n+®µ)x

(using the fact that ®c = ®ax + ®b and ®ν0 + ®ν1 = ®µx).
• Game 1. In this game, compute the input of A as before,

except that K1 is now computed solely from (F,n, t) using
the simulator for the secrecy of the MPFSS. Note that in this

game,K1 carries no information whatsoever about ®µ. Denote
β1 the output ofA in this game; by the secrecy of the MPFSS,

| Pr[β1 = 1] − Pr[β0 = 1]| = negl(λ).

• Game 2. In this game, pick ®u ′
R

← Fn and set ®v ′ ← ®c ·Ck,n +

®ν1 − ®u ′x = Expand(1, seed1) − ®u ′x . Note that the only dif-

ference between this game and the previous one is that we

replaced ®u = ®a ·Ck,n + ®µ by a uniformly random vector ®u ′.
Observe that ®u is exactly a noisy linear encoding of ®a, using

the linear code Ck,n ∈ F
k (λ)×n

, with noise vector ®µ. Since
seed1 carries no information about ®µ, ®u is therefore a noisy

linear encoding of ®a, where the number of noisy coordinates

is exactly t(λ) (as ®µ = spreadn (S, ®y) and | ®y | = k), and each

noisy coordinate is masked by a uniformly random element

of F. Therefore, distinguishing Game 2 from Game 1 is equiv-

alent to breaking the LPN assumption of dimension k(λ)
over F, with n samples and a noise rate t(λ)/n: denoting β2
the output ofA in this game, under the LPN(k(λ),n, t(λ)/n)
assumption over F, | Pr[β1 = 1] − Pr[β2 = 1]| = negl(λ); this
concludes the proof of security of Gprimal.

3.2.3 Efficiency. Instantiating the MPFSS with the PRG-based con-

struction outlined in Section 2.2.2, the setup algorithm of Gprimal
outputs seeds of size t · (⌈logn⌉(λ + 2) + λ) + (t + k) · log

2
|F| =

Õ(λ · (k + t)) for a field of size |F| = 2
O (λ)

. The best known attack

on LPN(k,n, t/n) is the Gaussian elimination attack, which takes

timeO((1 − t/n)k). This implies that, over a large field F (such that

log
2
|F| ≥ λ), the optimal expansion factor is obtained by setting

k = t = O(n1/2+ε) for some ε > 0, in which case the Expand algo-

rithm of the VOLE generator expands a seed of size Õ(n1/2+ε) into
a pseudorandom VOLE of size O(n) (counting size as a number of

elements of F), and the best known attack takes subexponential

time O(en
2ε
). Regarding computational efficiency, expanding the

seed requires O((k + t) · n) arithmetic operations, and t · n PRG

evaluations.

InstantiatingGprimal with parameters (k,n, t) over a field F yields
a VOLE generator with seed length t · (⌈logn⌉(λ + 2)+ λ)+ (t +k) ·
log

2
|F| bits and output length 2n group elements (for Expand(0, ·))

or n group elements (for Expand(1, ·)). This VOLE generator is

(T , ε)-secure iff LPN(k,n, t/n) with code Ck,n is (T ′, ε)-secure and
theMPFSS is (T ′′, ε)-secure, withT ′ = T−O((k+t)·n·log

2
|F|+t ·n·λ)

and T ′′ = T −O((k + t) · n · log
2
|F|).

A downside of this approach is that the expansion factor of the

VOLE generator is limited to subquadratic. Below, we describe an

alternative “dual” approach which overcomes this limitation and

allows for an arbitrary polynomial expansion.

VOLE Generator Gdual

• Parameters: noise parameter t = t(λ).
• Building blocks: a (dual) code generator C′

(which generates on input (n,n′,F) a public

matrix Hn′,n ∈ Fn
′×n

, a random matrix by de-

fault), and a multi-point function secret sharing

MPFSS = (MPFSS.Gen,MPFSS.Eval,MPFSS.FullEval).
• Gdual.Setup(1λ ,F,n,n′,x) : pick a random size-t(λ) sub-

set S of [n′], and a random vector ®y
R

← Ft . Let s1 < s2 <

· · · < st denote the elements of S . Compute (K0,K1)
R

←

MPFSS.Gen(1λ , fS,x ®y). Set seed0 ← (F,n,n′,K0, S, ®y)

and seed1 ← (F,n,n′,K1,x). Output (seed0, seed1).
• Gdual.Expand(σ , seedσ).
If σ = 0, parse seed0 as (F,n,n′,K0, S, ®y). Set ®µ ←
spreadn (S, ®y). Compute ®ν0 ← MPFSS.FullEval(0,K0).

Output (®u, ®v) ← (®µ · Hn′,n ,− ®ν0 · Hn′,n).

If σ = 1, parse seed1 as (F,n,n′,K1,x). Compute ®ν1 ←
MPFSS.FullEval(1,K1), and set ®w ← ®ν1 ·Hn′,n . Output ®w .

Figure 2: VOLE Generator Gdual.

3.3 Dual VOLE Generator
Theorem 3.3. Assuming that LPN(n′ − n,n′, t/n′) holds over F

with respect to the code with parity-check matrix Hn′,n and MPFSS
is a secure multi-point function secret sharing, Gdual is a secure and
correct VOLE generator.

In the following, we prove Theorem 3.3.

3.3.1 Correctness. ®ux+®v = (®µx− ®ν0)·Hn′,n = (®µx+ ®ν1−®µx)·Hn′,n =

®ν1 · Hn′,n = ®w .

3.3.2 Security. The first security requirement follows from the

same argument as in the proof of Theorem 3.2. We now turn our

attention to the second requirement.

Let A be a stateful PPT adversary, and let (F,n,n′,x) ← A(1λ).
We now prove the second security requirement. Consider the fol-

lowing game: compute (seed0, seed1)
R

← Setup(1λ ,F,n,n′,x), set
(®u, ®v) ← Expand(0, seed0), and send (®u, ®v, seed1) to A. Denote by

β0 the output of A in this game. Note that the input of A in this

game is seed1 = (F,n,n′,K1,x), ®u = ®µ ·Hn′,n , and ®v = − ®ν0 ·Hn′,n =

®ν1 ·Hn′,n−®µx ·Hn′,n . Under the secrecy of theMPFSS, the keyK1 can

be simulated solely from (F,n,n′). It remains to show that the distri-

bution of (®u, ®v) is indistinguishable from the following distribution:

pick ®u ′
R

← Fn , set ®v ′ ← Expand(1, seed1) − ®u ′x = ®ν1 · Hn′,n − ®u ′x ,

and output (®u ′, ®v ′). To show it, it suffices to show that the distribu-

tion of ®µ · Hn′,n is indistinguishable from the uniform distribution

over Fn .
Let Dn′−n,n ∈ F

n′−n×n′
be a generating matrix of the dual code

ofHn′,n (i.e.,Dn′−n,n ·Hn′,n = 0
n′−n×n

). Observe that for any vector

®a ∈ Fn
′−n

, it holds that ®µ · Hn′,n = (®µ + ®a · Dn′−n,n) · Hn′,n . As ®µ
is a uniformly random noise vector with k non-zero coordinates

over Fn
′

(given that the simulated K1 is independent of ®µ), it holds
that ®µ + ®a · Dn′−n,n is indistinguishable from a uniformly random

vector over ®n′, under the LPN(n′ − n,n, t/n′) over F (using the

fact that the dual matrix of a uniformly random matrix is itself a

uniformly random matrix). Therefore, the distribution of ®µ ·Hn′,n is

indistinguishable from the distribution obtained by picking ®a′
R

←Fn
′

and outputting ®a′ ·Hn′,n , which is exactly the uniform distribution

over Fn . This concludes the proof of security of Gdual.

3.3.3 Efficiency. Instantiating the MPFSS with the PRG-based con-

struction outlined in Section 2.2.2, the setup algorithm of Gdual
outputs seeds of size t · (⌈logn⌉(λ + 2) + λ + log

2
|F|) bits, which

amounts to Õ(t) field elements over a large field (log
2
|F| = O(λ)).

The Gaussian elimination attack on LPN(n′ −n,n′, t/n′) takes time

O(1/(1 − t/n′)n
′−n) ≈ O(e(n

′−n)·t/n′) when t/n′ is sufficiently

small, and the ISD attack takes time 2
f (n/n′)·t

, where f (n/n′) ≈
− log

2
(1 − n/n′) when t/n′ is sufficiently small [69]. This implies

that this approach leads to a VOLE generator with arbitrary ex-

pansion factor; furthermore, taking n′ to be a small multiple of n,
e.g. n′ = 2n, leads to a (conjectured) security of O(et) which does

not degrade with the expansion factor (and depends only on the

seed size t). However, expanding the seed requires more work than

for Gprimal: it involves t · n
′
PRG evaluations and O(n · n′) > n2

arithmetic operations.

InstantiatingGdual with parameters (t ,n,n′) over a field F yields
aVOLE generator with seed length t ·(⌈logn⌉(λ+2)+λ+log

2
|F|) bits

and output length 2n group elements (for Expand(0, ·)) or n group

elements (for Expand(1, ·)). This VOLE generator is (T , ε)-secure
iff LPN(n′ − n,n′, t/n′) with code Dn′−n,n is (T ′, ε)-secure and the

MPFSS is (T ′′, ε)-secure, with T ′ = T −O(n′ · (tλ + n log
2
|F|)) and

T ′′ = T −O(n′ · n · log
2
|F|).

3.4 Optimizations via Structured Matrices
We describe optimizations to the VOLE generators described so

far. These optimizations allow us to obtain VOLE generators with

constant computational overhead.
A downside of using bothGprimal andGdual with a random code

is that this incurs quadratic computational complexity. Ideally, we

would like to be able to computeGprimal.Expand andGdual.Expand
in time O(n) (counted as a number of arithmetic operations and

PRG evaluations).

Note that the complexity ofGprimal.Expand andGdual.Expand is

dominated by multiplication by the matrixCk,n (orHn′,n) as well as

evaluation ofMPFSS.FullEval. In Section 4, we discuss optimization

of MPFSS.FullEval. We now discuss an approach for decreasing

the cost of the matrix-vector multiplication. These optimizations

together allow us to reduce the computational complexity of both

VOLE generators from quadratic to linear in the size parameter n.

Primal construction. A significant optimization ofGprimal can be

obtained by replacing the uniformly random matrix Ck,n with a

local linear code, where each column contains a small (constant)

number of random non-zero coordinates. We note that using local

alternatives to random linear encoding is relatively standard and

is not known to weaken the security. Similar hardness conjectures

were made in [2, 4]. Using such codes, computing ®a ·Ck,n for any

vector ®a can be done using O(n) arithmetic operations. Note that

arithmetic pseudorandom generators with constant computational

overhead can be obtained from the LPN assumption for some linear-

time encodable code, see, e.g., [49]. This is needed for implementing

the primal construction in linear time.

Dual construction. In the dual case, we need the matrix Hn′,n
to define a compressive linear mapping, such that the code whose

parity-check matrix is Hn′,n satisfies the LPN assumption. There

are several alternative possibilities to implement this compressive

mapping in linear time, which we outline below.

• One possibility is to use the transpose of the (randomized)

linear-time encodeable code from [29]. As discussed in [29],

LPN is a plausible assumption for these linear-time encodable

codes as well as their dual codes. Moreover, the (compressive)

transpose mapping can be computed with the same circuit

complexity as the encoding (cf. [49]).

• Alternatively, one can replace the code from [29] by an LDPC

code. The parity-check matrix of an LDPC code is a sparse

matrix, for which LPN is conjectured to hold [2, 4]. Fur-

thermore, while a naive encoding of an LDPC code requires

quadratic time, recent results have established the existence

of very efficient linear-time encoding algorithms for LDPC

codes, both in the binary case [57] and in the general case, for

codes over arbitrary fields [56]. The latter requires at most

n′ · rw(Dn′−n,n) + w(Dn′−n,n) field multiplications, where

Dn′−n,n is the parity check matrix of Hn′,n , rw(Dn′−n,n) de-

notes the row-weight ofDn′−n,n , andw(Dn′−n,n) denotes its

total weight (i.e., the number of its non-zero elements); for

n′ = O(n), this gives a linear time algorithm since Dn′−n,n
is sparse.

• Eventually, we observe that the only property we require

from the encoding is to “sufficiently mix” the encoded vec-

tor: we do not require any structure or decoding properties.

Hence, we conjecture that any suitable (linear-time) heuris-

tic mixing strategy should work. A possibility is to apply

a sequence of random atomic operations (switching two

coordinates, multiplication by a constant, summing two co-

ordinates). A better heuristic procedure (which achieves a

better randomization with fewer steps) can be obtained us-

ing a mixing strategy based on expander graphs, such as the

approach developped by Spielman in [66].

4 MPFSS CONSTRUCTIONS
An (n, t)-MPFSS for a multi-point function fS, ®y : [n] → G can be

readily constructed using t invocations to a DPF over G:

• MPFSS.Gen(1λ , fS, ®y): denoting s1, · · · , st (an arbitrary or-

dering of) the elements of S , for any i ≤ t , compute (K i
0
,

K i
1
)

R

← DPF.Gen(1λ , fsi ,yi), where fsi ,yi is the point func-
tion over G which evaluates to yi on si and to 0 otherwise.

Output (K0,K1) ← ((K
i
0
)i≤t , (K

i
1
)i≤t).

• MPFSS.Eval(σ ,Kσ ,x): parse Kσ as (K i
σ)i≤t and compute

zσ ←
∑t
i=1 DPF.Eval(σ ,K

i
σ ,x).

As with DPF, we can enhance an MPFSS with a full domain eval-

uation algorithmMPFSS.FullEval which, on input (σ ,Kσ), outputs
the vector (MPFSS.Eval(σ ,Kσ ,x))x ∈[n].

Plugging the construction of Theorem 2.2 leads to an (n, t)-
MPFSS with key size t · (⌈logn⌉(λ + 2) + log

2
|G|), where the com-

putational cost of the evaluation algorithm is dominated by t group
operations and t ⌈logn⌉ evaluations of a PRG, and the cost of a

full domain evaluation is dominated by tn group operations and

evaluations of a PRG.

4.1 Optimizing MPFSS Evaluation
The above simple reduction means that inMPFSS.FullEval the par-
ties must make t passes over the entire domain [n] for privately
“writing” t entries (corresponding to the noisy coordinates) in a

shared size-n vector. Below, we show how to improve this asymptot-

ically, to writing a batch of t coordinates making a constant number

of passes on the data. We discuss two alternatives: a concretely

efficient approach which relies on a stronger (yet well-established)

assumption than LPN, namely, the regular syndrome decoding as-

sumption, and an asymptotically efficient approach using batch
codes [48] which relies directly on LPN. Intuitively, the idea for the

second approach is the following: evaluating MPFSS.FullEval on a

vector shared between two parties can be seen as writing t entries
(the noisy coordinates, known to the party who holds x) at secret
locations (known to the other party), on a database secretly shared

between the parties. A naive writing strategy makes t passes over
the entire database, each pass writing a single entry at a secret

position. Our goal, therefore, is to write a batch of t entries at secret
positions using only a constant number of passes on the database.

A closely related problem involves secretly reading a batch of t
secret entries from a database shared between several servers. This

problem has been studied at length (see [48] and follow ups), and

can be solved using a combinatorial object called batch code. Our
solution essentially applies the same strategy, formulating the task

as a private writing problem, and shows that the same batch-code-

based strategy can similarly be used for this related task.

4.1.1 Optimized MPFSS Evaluation using Regular Syndrome De-
coding (RSD). The RSD assumption is a strengthening of the LPN

assumption which was introduced in [8] as the assumption under-

lying the security of a candidate for the SHA-3 competition, and

which has been studied at length (see [45] for a recent survey about

the cryptanalysis of the RSD assumption and a detailed discussion

about its security). It states that LPN remains hard, even if the sparse

noise vector is regular, meaning that it is divided into t blocks of
size n/t each, each block containing a single random 1, and zeroes

everywhere else. Furthermore, there is a smooth tradeoff between

the underlying assumption (from LPN to RSD) and the complexity

(from tn to n operations): one can consider overlapping subsets

instead of disjoint subsets, with larger subsets leading to a longer

MPFSS evaluation time but a noise pattern closer to uniform (hence

an assumption closest to plain LPN).

While the noise distribution obtained with this procedure is

not uniform anymore, it seems to resist all known attacks [45]. In

particular, note that it is not broken by the attack of [7], (which,

in particular, does not apply when we use random large enough

overlapping subset instead of small non-overlapping subsets): the

attack of [7] requires at least a quadratic number of samples (note

that forGdual, the number of samples is N +o(N), where N = n′−n
is the dimension).

Using a regular noise pattern instead of a random noise pattern

directly allows to reduce MPFSS.FullEval to t calls to a DPF on

length-n/t vectors, for a total cost of n operations in the underlying

field F and at most n(1 + ⌈log |F|/(λ + 2)⌉) PRG evaluations [18].

However, this comes at the cost of relying on the stronger RSD

assumption; below, we outline an alternative strategy which also

leads to an O(n) cost, without relying on RSD.

4.1.2 Batch Codes. We first recall the definition of batch codes,

from [48].

Definition 4.1 (Batch Code [48]). An (n,N , t ,m)-batch code over

an alphabet Σ encodes any string x ∈ Σn into anm-tuple of strings

(z1, · · · , zm) ∈ Σ
∗
(called buckets) of total length N , such that any

t-tuple of coordinates of x can be recovered by reading at most a

single entry from each bucket.

Specifically, we will rely on a combinatorial batch code (CBC) [48,
68], a special type of batch code in which an encoding of a string x
consists only of replicating the coordinates of x over “buckets” (i.e.,
each bucket contains a subset of the coordinates of x).

A CBC can be represented by a bipartite graph, with n left-nodes,

m right-nodes, and N edges. Each string zj , j ∈ [m] corresponds to
the j-th right-node, where the value of zj is set to the concatenation
of (xi) for i ∈ [n] such that (i, j) is an edge (with some canonical

ordering). The CBC requirement states that any subset of t left-
nodes has a matching to them right nodes. By Hall’s theorem, such

a bipartite graph represents an (n,N , t ,m)-CBC if and only if it

satisfies the following weak expansion property: each subset S of

at most t left-nodes has at least |S | neighbors on the right.

4.1.3 From CBC to Better MPFSS. Assume for now that, for given

parameters t and n = O(ts) (for some constant expansion factor s),
there is a (n,N = O(n), t ,m = t1+ε)-CBC (for some constant ε > 0).

Loosely speaking we use such a batch code to construct an effi-

cientMPFSS.FullEval by the following steps. Instead of t instances
of DPF with domain size n, we will usem DPF instances, each with

domain size |zj | (for j ∈ [m]). Namely, the multi-point function

over [n]maps n − t inputs to 0 and t values to group elements. Con-

catenating these n values together we obtain a string x which can

be batch-encoded intom strings z1, . . . , zm with total length N . By

the property of batch codes the t points defined by the multi-point

function can be recovered by reading one entry of each of them
strings. Therefore,MPFSS.FullEval can be implemented by running

DPF.FullEvalm times, with the domain size of the j-th invocation

corresponding to the length of zj for a total length of O(N) (in-
stead of total length tn in the simple reduction ofMPFSS.FullEval
to DPF.FullEval). The details follow.

Let T1, · · · ,Tm ⊂ [n] denote the left neighbors of each right-

node of the graph associated to the CBC. Let fS, ®y : [n] → F be

a t-point function, with S = {s1, · · · , st }. Let DPF = (DPF.Gen,
DPF.Eval,DPF.FullEval) be a function secret sharing for the class

of all point functions from |zj | to F.

• MPFSS.Gen(1λ , fS, ®y) : let I = {i1, · · · , im } denote a size-m
subset of [n] such that i j ∈ Tj for any j ≤ m, and S ⊂ I (such
a subset necessarily exists by definition of a CBC). For j = 1

to m, define fj : [|zj |] → F to be the following function:

if there exists ℓ such that sℓ = i j , fj is the point function

that outputs yℓ on i j , and 0 otherwise. Else, fj is the all-zero
function, which is a point function with a 0 value defined for

the designated point. Compute (K
j
0
,K

j
1
)

R

← DPF.Gen(1λ , fj).

Output (K0,K1) ← ((K
j
0
)i≤m , (K

j
1
)i≤m).

• MPFSS.FullEval(σ ,Kσ) : parse Kσ as (K
j
σ)i≤m . Compute ®α

by ®α =
∑m
j=1 DPF.FullEval(σ ,K

j
σ). Output ®α .

The correctness of the above construction immediately follows

from the CBC property. Regarding efficiency, a key thatMPFSS.Gen
outputs is slightly longer compared to the simple construction out-

lined in the beginning of this section (the length is O(t(λ⌈logn⌉ +
log |G |)) in the simple construction andO(t1+ε (λ⌈logn/t⌉+log |G |))
in the batch-code based construction). However, the computational

cost of the simple construction is dominated by O(tn) PRG evalua-

tions while the batch-code based method requires O(
∑m
j=1 |zi |) =

O(n) PRG evaluations saving a factor of O(t) in computation.

4.1.4 Instantiating CBC. Unfortunately, known explicit construc-

tions of (provable) expander graphs fail to match our efficiency re-

quirements. We outline below two standard ways of getting around

this issue.

• First, consider a random construction of the graph, as follows:

pick any constant ε , set d ← (1 + s) · ε + 1, andm ← t1+ε .
For each left-node u, repeat the following d times: pick a

uniformly random right-node v , and add the edge (u,v) to
the graph if it does not already exist. By a standard union

bound, with probability at least 1 − t−2(d−1), the graph will

satisfy the required expansion property. Note that this is a

one-time setup, which fails with a probability 1/tΩ(d) that
can be made as small as we want, and which is independent

of both the running time of any adversary, and the number

of executions of the MPFSS algorithms.

• Second, one can consider a heuristic approach using some

fixed sequence of bits (say, e.g., the digits of π) and interpret-
ing it as the graph of a (n,N ,k,m)-CBC under some fixed

translation. Assuming that this heuristic leads to a graph

with the required expansion property can be viewed as a

relatively weak combinatorial assumption, which we refer

to as the existence of explicit polynomially unbalanced bi-
partite expanders. This assumption has been made (either

explicitly or implicitly) in prior works on expander-based

cryptography [3, 4, 6, 41, 49].

Indeed, in the context of this work, this issue is in fact even less

of a concern. Observe that if the graph of the CBC fails to be suffi-

ciently expanding then the noise distribution will slightly deviate

from being uniform. However, the LPN assumption for such slightly

skewed noise distributions remains a very conservative assumption.

Therefore, we get the following guarantee: either a simple combina-

torial assumption holds, and our VOLE generators are secure under

the standard LPN assumption; or it fails, in which case our VOLE
generators remain secure assuming a plausible variant of LPN.

5 EFFICIENCY OF VOLE GENERATION
In this section, we discuss the asymptotic and concrete efficiency

we can obtain with the VOLE generators Gprimal and Gdual.

We start with asymptotic efficiency. Using an “LPN-friendly”

code which is linear-time encodable (alternatively, its dual is linear-

time encodable for the dual construction), and using the CBC-based

MPFSS (alternatively, using the “regular noise” variant of LPN, as

in Section 4.1.1) our VOLE generators can be computed using O(n)
arithmetic operations. This is captured by the following theorem.

Theorem 5.1. Assume the existence of explicit constant-degree
polynomially unbalanced bipartite expanders (see Section 4.1.4). Then
the following holds.

• Primal. For any ε > 0 and 1 < c < 2, under the LPN(n1/c ,n,nε−1/c)
assumption over F with respect to a linear-time encodable code,
there exists a VOLE generatorGprimal over Fwith seed length
n1/c field elements and output length n.
• Dual. For any ε > 0 and d > 1, under the LPN(n/2,n,nε−1/d)
assumption over Fwith respect to a code whose dualH is linear-
time encodable, there exists a VOLE generator Gdual over F
with seed length n1/d field elements and output length n.

In both cases, computation ofG requiresO(n) field operations. Further-
more, using the regular syndrome decoding assumption instead of LPN
(with the same parameters) removes the need for explicit expanders.

We note that the random local encoding of Alekhnovich or the

code ensemble from [29] (see [4] and Section 3.4) can be used to

instantiate the linear-time LPN assumption.

5.1 Optimal Seed Size for a Given Output Size
We turn to analyze the concrete efficiency of our VOLE generators,

starting with a concrete optimization of the seed size. The opti-

mal seed size for a given desired output size can be obtained by

numerically solving an optimization problem in two variables (k
and t) under the constraint that the corresponding LPN instance

requires 2
σ
bit operations to be solved. We represent on Table 1

the optimal choices of parameters to minimize the size of the seed

for a given output size, under the constraint that the corresponding

LPN problem requires 2
80

arithmetic operations to be solved with

a Gaussian elimination attack (which is the best known attack as

of today on LPN for this regime of parameters).

Gdual satisfies the counterintuitive property that the optimal

seed size become smaller as the target output size grows larger.

This is a consequence of the fact that LPN(n′ −n,n′, t/n′) becomes

harder to attack as n grows, independently of the other parameters

(unlike the LPN instance which underlies Gprimal, LPN(k,n, t/n)):
the cost of breaking LPN(n′ − n,n′, t/n′) is roughly et · (n′ − n)w ,

where w ≈ 2.7 is a conservative estimated exponent of practical

matrix multiplication algorithms (we further conservatively assume

the multiplicative constant to be 1 in the matrix multiplication

algorithm). Therefore, to get the same level of security, the optimal

choice of t is smaller when n,n′ increase. However, this comes at

the cost of a higher computation: recall that expanding the seed of

Gdual requires O(n · n
′) arithmetic operations. Nonetheless, using

a linear-time encodable code (see Section 3.4) can bring this cost

down to O(n′) = O(n) for the same (conjectured) security.

Table 1: Optimal parameters of Gprimal and Gdual for a given
output size. Both the security parameter λ and the bitsize of
field elements log

2
|F| are set to 128. We set n′ to 2n. The pa-

rameters are optimized under the constraint that solving the
corresponding LPN instance must require at least 280 arith-
metic operations with either Gaussian elimination or ISD.
The seed size is counted as a number of field elements (bit-
size divided by 128) to facilitate comparison with the trivial
solution (directly sharing the output vector-OLE). Ratio is n
divided by the seed size; it measures the gain in storage with
respect to the trivial solution.

Gprimal

n 2
11

2
14

2
16

2
18

2
20

2
24

t 74 204 329 600 1114 3613

k 984 2659 6167 12664 25460 106933

Seed size 1959 5968 12171 24833 50316 202226

Ratio 1.05 2.74 5.38 10.56 20.84 82.96

Gdual

n 2
10

2
12

2
14

2
16

2
18

2
20

k 71 64 57 49 41 34

Seed size 863 908 924 894 832 759

Ratio 1.19 4.51 17.73 73.31 315.08 1382

5.2 Heuristic Optimizations
In this section, we describe heuristic optimizations which strongly

improve the computational efficiency of Gprimal and Gdual, while

seemingly resisting known attacks.

5.2.1 Better Encoding. While using uniformly random matrices

Ck,n and Hn′,n inGprimal andGdual allows to reduce their security

to the hardness of the standard LPN assumption, it is wasteful in

terms of computation. Heuristically, it suffices to apply a linear

mapping that “sufficiently mixes” the coordinates of the encoded

vector (which is either some random small vector in Gprimal, or

some long noise vector in Gdual) to defeat Gaussian elimination

attacks.

Concretely, we suggest the following heuristic procedure:

• For Gprimal: set m ← n. Pad ®a with zeroes to get a size-

m vector. Apply 10m rounds of one of the following three

operations, picked at random (and fixed in the specifications

of Gprimal):

– Swap two coordinates

– Multiply a coordinate by a random scalar

– Add to one of the coordinates a multiple of another

where the coordinates on which to apply the operations are

picked at random (and fixed in the specifications).

• For Gdual: setm ← n′ = 2n. Apply 10m rounds of the same

three operations as above. Truncate the output to length-n.

The cost of applying the above heuristic linear mapping is domi-

nated by ≈ 7m multiplications over F.

5.2.2 Simplified Full Domain Evaluation. Wedescribed in Section 4.1

a strategy to optimize the full evaluation procedure of the MPFSS.

Using, e.g., the RSD-based solution, the entire cost ofMPFSS.FullEval
is 2m PRG evaluations for field sizes that are roughly the size of

the security parameter.

5.2.3 Time Complexity Estimates. The computational performance

of our VOLE generators is dominated by computing a linear map-

ping of the seed over a field F and by computingMPFSS.FullEval.
Emmart et al. [30] report 12.2 billion modular multiplications per

second over a field Fp for a 128-bit prime p using a common graph-

ics card (Nvidia GTX 980 Ti). Hence, applying the heuristic linear

mapping can be performed in at most 7m/(12.2 · 109) seconds on a

personal computer with the appropriate graphics card.

Implementing the PRGusingAES,
2
each PRG evaluation amounts

to 2 calls to AES. A computer equipped with an Intel i7-6700 can

encrypt 2607 megabytes per second using AES-128-GCM.
3
There-

fore, a computer equipped with the same processor can execute a

heuristically optimized full domain evaluation, dominated by 4m
AES encryption operations inm/(41 · 106) seconds.

As an example for this estimate, consider VOLE output size of 2
20

field elements for a prime field with a 128-bit prime. In the primal

generator, the linear mapping part requires 7 · 220/12.2 · 109 ≈ 0.6

milliseconds. In the same setting, the MPFSS scheme uses 4 · 220

AES operations which require 25.5 milliseconds. Taken together

the time for the primal VOLE generation is approximately 26.1

milliseconds. For the dual generator with the same n and F we

have thatm = 2
21

and therefore the linear mapping takes 1.2 ms,

MPFSS.FullEval takes 51 ms and the total is 52.2 ms.

Note that for a smaller field size, e.g. a prime field of length 64

bits, the MPFSS.FullEval is about twice as fast, using the “early

termination” optimization of [18]. This optimization results (for

λ = 127 and |F| ≤ 2
64
) in halving the time ofMPFSS.FullEval and

therefore requiring about 13 ms for the primal generator.

We stress that the numbers reported in this section assume a

heuristic encoding based on an arbitrary constant (here, 7), which

might be overly optimistic or overly pessimistic, and deserves fur-

ther investigations. Therefore, the numbers should only be seen as

an estimation of a potentially achievable efficiency (a few dozen

milliseconds on practical instances) rather than an exact efficiency

statement. Note also that with the configuration above, the cost

as a function of the constant c (which was set to 7 above) and

c ′ = n′/n (which was arbitrarily set to 2; smaller values give a

more efficient computation for Gdual, but require a longer seed to

achieve 80 bits of LPN security) is 0.085 · c + 25.5 millisecond for

Gprimal, and c ′ · (0.085 · c + 51) millisecond for Gdual. Therefore,

one can easily increase c to get a larger security margin without

significantly increasing the cost.

If one wants to ressort instead on a more conservative assump-

tion, an alternative is to use Alekhnovich’s assumption [2]. In the

case of Gprimal, this would amount to c ·m multiplications, where

c is the row-weight of the code matrix (which is a constant in

2
The PRG can either be defined to use AES in counter mode, i.e. PRG(s) is AESs | |0(0),
AESs | |0(1) for a seed s ∈ {0, 1}127 or a fixed key alternative AESk

0
(s | |0) ⊕ s | |0,

AESk
1
(s | |0) ⊕ s | |0 for fixed keys k0, k1 . The choice of AES is motivated by the

hardware support for AES encryption and decryption in modern CPUs.

3
https://calomel.org/aesni_ssl_performance.html

https://calomel.org/aesni_ssl_performance.html

Alekhnovich’s assumption), the same as with the heuristic encod-

ing described above. In the case of Gdual, using the linear-time

encoding algorithm of [56], which requires at most c · (2m − n)
(since it is bounded by n′ · rw(Dn′−n,n) + w(Dn′−n,n) andm = n

′
,

rw(Dn′−n,n) = c , see Section 3.4, and w(Dn′−n,n) < (n
′ − m) ·

rw(Dn′−n,n) = c · (m − n)). Using for examplem = n′ = 2n gives

a cost of 3 · c ·m multiplications, three times larger than the cost

obtained with the heuristic encoding.

5.3 Distributed Generation of MPFSS
So far we thought of the VOLE generator Setup as being performed

by a trusted dealer who samples and sends seed0 and seed1 to the

respective parties. In practice, the trusted dealer can be emulated

via secure two-party computation. For both of our VOLE generator

constructions, the complexity of Setup is dominated by the execu-

tion ofMPFSS.Gen which in turn consists of a series of executions

of DPF.Gen. More specifically, for each DPF.Gen, one party (VOLE
sender) selects and knows the position of the the designated DPF

point and the evaluation of the DPF is taken to be the product of the

noise value yi known to the VOLE sender and the secret x known

to the second party (VOLE receiver). Note that this is also the case

for the batch-code based and RSD based constructions ofMPFSS.
In the DPF.Gen construction of [18] for point functions over the

domain Fn the two output keys are K0 = (s
(0)

0
, cw1, . . . , cwν+1) and

K1 = (s
(0)

1
, cw1, . . . , cwν+1) where s

(0)

0
, s
(0)

1
are two random seeds

for the PRG and ν = min{⌈logn − log λ
log |F |

⌉, logn}. Gen proceeds

in ν + 1 steps. In the i-th step it expands s
(i−1)
0

and s
(i−1)
1

by using

one PRG invocation for each seed and obtains s
(i)
0
, s
(i)
1

and cwi . In

the final step the algorithm computes cwν+1 as a function of the

expanded seeds and the target value. We discuss and analyze two

different approaches for distributing DPF.Gen.

5.3.1 Generic 2PC. Any protocol for 2PC can compute the output

of Gen securely. Both the communication and computation of the

protocol are dominated by two factors: λ OTs for one seed and

2(ν + µ) secure evaluations of the PRG for µ = ⌈
log |G |
λ+2 ⌉. Setting λ =

127 and the PRG to two AES evaluations, as suggested previously,

results in 127 OTs and 4(ν + µ) secure evaluations of AES.
Assume that securely evaluating AES is implemented by an effi-

cient protocol such as [64] or [70]. Wang et al. [70] uses an Amazon

EC2 c4.8xlarge instance over a LAN, with statistical security param-

eter ρ = 2
−40

, and securely evaluates a single AES instance in 16.6

milliseconds, while the amortized cost of 1024 AES evaluations is

roughly 6.66 milliseconds in the malicious model (and 2.1 millisec-

onds in the semi-honest model). The evaluation of the OTs required

for the AES is about 20 milliseconds. Assuming that the amortized

cost of an AES evaluation for our likely range of parameters, i.e.

several dozen AES evaluations, is about 10 milliseconds in the mali-

cious setting implies that the total execution time of the protocol is

about 40(ν + µ) + 20 milliseconds. The communication complexity

is roughly (ν + µ)(
|C |ρ

log |C |+log(ν+µ)) field elements, where |C | = 6800

is the circuit size, or more precisely the number of AND gates in the

evaluated AES circuit. For example, if n = 2
20

and |F| ≤ 2
128

then

by Table 1 the number of times that DPF.Gen is executed in the

dual generator is k = 34. Therefore, the running time is estimated

to be 34 · 840 ms, or 29.2 seconds and the communication is about

11.34 million field elements.

These numbers can be further improved using an MPC-friendly

PRG with few AND gates instead of AES; e.g., using LowMC [1]

would give approximately a 23-time improvement for communica-

tion and computation of the setup.

5.3.2 Black-Box Approach. Themost expensive part of using generic

2PC to distributeDPF.Gen is the multiple evaluations of AES. An al-

ternative approach which treats the PRG as a black box was offered

by Doerner and shelat in [27]. The idea is to expand all the seeds at

each level i of the tree described byDPF.FullEval. In each such level

the only difference between the expanded strings computed by each

party are the result of the two expanded seeds along the path to the

designated point. Securely computing cwi is possible using a single

OT and local computation that is proportional to the size of the

tree level. The total computation time of this protocol is dominated

by ν + 1 OTs and 2
ν+1

locally computed AES operations, which

for n = 2
20 |F| ≤ 2

128
is 2

21
AES operations. Using the previous

estimate of 2607 MBPS for AES on a standard PC we get that the

computation requires only 13 ms and that the number of oblivious

transfers is much lower than what is required for the competing

2PC approach (21 OTs vs. 127 OTs). Therefore, for n = 2
20

using the

black box approach to distribute the setup is much cheaper than

the generic 2PC approach.

6 APPLICATIONS
As discussed in the Introduction, VOLE generators can be used as

a general-purpose tool in any application that benefits from large

VOLE instances.

6.1 Secure Arithmetic Computation
There are numerous applications of secure computation that benefit

from representing the function being computed as an arithmetic

circuit. See, e.g., [4, 28, 52, 53, 61] and reference therein. Many of

these applications involve multiplying a secret scalar by a secret

vector, where the two inputs can either be held by a single party of

secret-shared by the two parties. Such scalar-vector multiplication

is a useful building block for more complex protocols that involve

matrix-vector or matrix-matrix multiplication.

More concretely, suppose that a scalar x ∈ F and vector ®u ∈ Fn

are additively shared between P0 and P1. Let x0,x1 and ®u0, ®u1 denote
the shares. Then, an additive sharing of x · ®u can be obtained via two

invocations of VOLE, by breaking the product (x0+x1)(®u0+ ®u1) into
four terms and using the two VOLE instances to obtain additive

shares of the cross-terms x0 · ®u1 and x1 · ®u0 (the other two terms can

be computed locally). Other than being directly useful for secure

linear algebra, this sub-protocol can be used to speed up protocols

for arithmetic circuits that have a large multiplication fan-out.

6.1.1 Vector OLE from Pseudorandom VOLE Generator. We now

describe and analyze the standard method for converting random

VOLE into standard VOLE (cf. [52]), and prove its security when

using the output of the VOLE generator to produce a random VOLE.
This justifies the security notion ofVOLE generatorswe put forward
in Definition 3.1.

We start by recalling the standard protocol for implementing

VOLE from an ideal random VOLE correlation.

Preprocessing. A trusted dealer picks (®ru , ®rv , rx)
R

←Fn×Fn×F,
sets ®rw ← ®rurx + ®rv , and outputs (®ru , ®rv) to P0 and (®rw , rx)
to P1.

Input. P0 has input (®u, ®v), and P1 has input x .
Protocol. P1 sendsmx ← x − rx . P0 sends ®mu ← ®u − ®ru and

®mv ←mx ®ru + ®v − ®rv . P1 outputs ®w ← ®mux + ®mv + ®rw .

Correctness: ®w = ®mux + ®mv + ®rw = (®u − ®ru)x + (x − rx) ®ru + ®v −
®rv + ®rurx + ®rv = ®ux + ®v . Security is straightforward.

We now consider a modification of the above protocol that re-

places the ideal random VOLE correlation by the output of the

VOLE generator:

Preprocessing. A trusted dealer picks rx
R

← F, proceeds to

compute (seed0, seed1)
R

← Setup(1λ ,F,n, rx), and outputs

seed0 to P0 and (rx , seed1) to P1.
Offline Expansion. P0 computes (®ru , ®rv) ← Expand(0, seed0).

P1 computes ®rw ← Expand(1, seed1).
Input. P0 has input (®u, ®v), and P1 has input x .
Protocol ΠVOLE. P1 sendsmx ← x−rx . P0 sends ®mu ← ®u− ®ru

and ®mv ←mx ®ru + ®v − ®rv . P1 outputs ®w ← ®mux + ®mv + ®rw .

Correctness follows from the correctness of the VOLE generator

and the same analysis as before.

Proposition 6.1. Assuming (Setup, Expand) is a secure VOLE
generator (as in Definition 3.1), the protocol ΠVOLE is a secure vector-
OLE protocol in the preprocessing model.

Proof. We exhibit a simulator Sim that generates a view indis-

tinguishable from an honest run of the protocol as long as a single

party is corrupted.

Case 1: P0 is corrupted. In the preprocessing phase, Sim picks

a random rx
R

← F, computes (seed0, seed1)
R

← Setup(1λ ,F,n, rx),

and outputs seed0 to P0. In the online phase, Sim sendsmx
R

← F.
Observe that the view of P0 in this simulated protocol is perfectly

equivalent to an honest run of the protocol where P1 would pick a

uniformly random r ′x and sendmx ← x − r ′x instead of computing

mx ← x − rx using the random rx received from the trusted dealer.

This implies that distinguishing the simulated protocol from the

real one is equivalent to distinguishing a run of the protocol with

the random rx picked by the dealer from a run of the protocol with

a fresh random r ′x . Therefore, the indistinguishability between the

simulated protocol and the real protocol follows immediately from

the first security requirement of the VOLE generator.

Case 2: P1 is corrupted. In the preprocessing phase, Sim picks

a random rx
R

← F, computes (seed0, seed1)
R

← Setup(1λ ,F,n, rx),
and outputs (rx , seed1) to P1. In the online phase, Sim receives

mx from P1, and the target output ®w of P1. Sim computes ®rw ←
Expand(1, seed1), and sets ®mw ← ®w − ®rw and x ← mx + rx . Sim

picks ®mu
R

← Fn and set ®mv ← ®mw − ®mvx . Sim sends (®mu , ®mv) to

P1. The indistinguishability between the simulated protocol and

the real protocol follows immediately from the second security

requirement of the VOLE generator. □

6.1.2 Malicious Security. An attractive feature of ΠVOLE is that as

long as the preprocessing is trusted then ΠVOLE is secure against

a malicious adversary. The reason is that if one of the players

is corrupt then any deviation it makes from the protocol can be

simulated by a corresponding change of input in the ideal model.

This effectively means that our VOLE generator can be used as

a plug-and-play alternative to ideal VOLE, as long as the setup

implementation is secure (e.g., it is distributed between the parties

using maliciously secure two-party computation).

In more detail, if P1 is corrupted then since the only message

it sends in the protocol ismx = x − rx its only possible deviation

is to change that message to somem′x . The trusted setup outputs

rx and therefore an honest player would send the messagem′x on

input x ′ =m′x + rx and output ®w ′ = ®ux ′ + ®v . As a consequence the
simulator for P1 with input x ′ in the semi-honest setting simulates

the malicious adversary with input x , which proves that in this case

the protocol is secure in the malicious setting.

If P0 is corrupted then it can only output two messages
®m′u and

®m′v that are different from the real vectors. An honest player would

send
®m′u on input ®u ′ = ®m′u + ®ru and

®m′v on input ®v ′ = ®m′v− ←

mx ®ru + ®rv and the output would be ®w ′ = ®u ′x + ®v ′. Again there

exists a simulator for a malicious adversary since a simulator exists

in the semi-honest case with inputs ®u ′ and ®v ′.

6.1.3 Rate-1/2 VOLE protocol in the plain model. By distributing

the setup of our (primal or dual) VOLE generators using general-

purpose protocols for secure two-party computation, we get VOLE
protocols in the plain model with attractive efficiency features. The

protocols can be implemented in a constant number of rounds and

have asymptotic communication rate of 1/2. That is, the commu-

nication complexity is dominated by the cost of communicating

two vectors in Fn . Using the dual construction, the protocol can be

based on OT together with LPN with a linear number of samples

n = O(k) (in fact, n = k + o(k) samples suffice) and a slightly sub-

linear noise (n1−ϵ noisy samples). This is strictly better than the

flavor of LPN known to imply public-key encryption [2].

Combined with linear-time encodable LPN-friendly codes, we

get VOLE protocols in the plain model that have constant com-

putational overhead and make a black-box use of the underlying

field. Compared to the recent constant-overhead VOLE protocols

from [4], the protocol ΠVOLE obtained by combining Proposition 6.1

and Theorem 5.1 has the qualitative advantage of non-interactive

generation and the quantitative advantage of asymptotic rate of

1/2 (compared to 1/3 in [4]). The underlying LPN assumption is

similar but technically incomparable: our protocol requires LPN

with a slightly sub-constant noise rate (compared to constant noise

rate in [4]) but also uses a smaller number of samples (linear vs.

super-quadratic). Another advantage of our protocol is that it avoids

any kind of erasure decoding or Gaussian elimination that were

required in [4] and in other previous protocols. Finally, a unique fea-

ture of our protocol is that it can achieve security against malicious

parties at a vanishing amortized cost.

Focusing on communication complexity alone, VOLE with rate

1 could be previously obtained via the Damgård-Jurik encryption

scheme, and rate 1/2 could be obtained from LWE, DDH, or Paillier

via homomorphic secret sharing [16, 19, 26, 32]. Note that since

neither our flavor of LPN nor OT are known to imply collision-

resistant hashing (CRH), rate 1/2 seems to be a barrier under these

assumptions. Indeed, using the techniques of [46] one can show

that any constant-round (semi-honest) VOLE protocol that achieves

better than 1/2 rate implies constant-round statistically hiding com-

mitment, which currently can only be based on CRH.

6.2 Non-Interactive Zero-Knowledge with
Reusable Correlated Randomness Setup

Consider the following model for non-interactive zero-knowledge

(NIZK) with setup. In an offline phase, before the statements to be

proved are known, the prover and the verifier receive correlated

randomness from a trusted dealer. Alternatively, they may generate

this correlated randomness on their own using an interactive secure

computation protocol that is carried out once and for all during

a preprocessing phase. Then, in the online phase, the prover can

prove each NP-statement non-interactively, by sending a single

message to the verifier.

We would like the setup to be reusable in the sense that the

number of statements that can be proved is polynomially larger

than the communication cost of the setup. Moreover, the soundness

of the protocol should hold even if the prover can learn whether

the verifier accepts or rejects a maliciously generated proof. NIZK

protocols based on OT (e.g., [50, 55]) fail to satisfy this property,

since the prover can gradually learn the verifier’s OT selections via

small perturbations of an honest prover’s strategy.

We observe that a suitable type of zero-knowledge linear PCPs

for NP, which exist unconditionally, can be compiled in a simple

way into information-theoretic reusable NIZK protocols in the

VOLE-hybrid model. Concretely, provingn instances of satisfiability
of an arithmetic circuit of size s over F requires O(s) instances of
VOLE of length O(n) each, where the verifier’s VOLE inputs are

assumed to be honestly generated. (This is a simplified version of a

similar construction from [21] which is zero-knowledge against a

malicious verifier.) Applying our VOLE generator, the cost of the

setup depends only on s and not on n, and each circuit satisfiability

instance consumes only a constant number of entries from each of

the O(s) VOLE instances.

Following the local expansion of the VOLE seeds, which does not

require interaction, generating and verifying each proof involves

only O(s) field operations on both sides (and no “cryptographic”

computations), and the proof consists of O(s) elements of F. This
should be contrasted with traditional approaches to SNARGs, which

can have sublinear communication
4
and verifier computation, but

on the other hand are much heavier in terms of prover computation.

Our NIZK constructions are particularly attractive in settings where

the prover and verifier have comparable computational resources

and where communication is relatively cheap.

We now define the notion of linear proof systems on which

we rely, which is a variant of the “linear interactive proof” model

from [14]. At a high level, such a proof system proceeds by multi-

plying a proof matrix Π picked by the prover by an independently
chosen query vector ®q picked by the verifier, where the verifier

decides whether to accept or reject based on ®q · Π alone. Note that

unconditional zero-knowledge is possible in this model because

4
Since our NIZK protocols are proof systems for NP (rather than arguments), there

is no hope to make them succinct [43]. Moreover, the assumptions on which we rely

(LPN andOT) are not known to imply even collision-resistant hash functions, let alone

succinct arguments for NP.

of the restricted mode of interaction. We will later use a VOLE
generator to securely realize such proofs non-interactively with

reusable setup.

Definition 6.2 (HVZK-LIP). An honest-verifier zero-knowledge lin-
ear interactive proof (HVZK-LIP) is a triple of algorithms (Prove,Query,
Verify) with the following syntax:

• Prove(F,C,x ,w) is a PPT algorithm that given an arithmetic

verification circuitC : Fℓ ×FL → F, an input (NP-statement)

x ∈ Fℓ , and witness w ∈ FL , outputs a proof matrix Π ∈

Fm×d , where d andm depend only on C .
• Query(F,C) is a PPT algorithm that given an arithmetic ver-

ification circuit C outputs a query vector ®q ∈ Fm .

• Verify(F,x , ®q, ®a) is a polynomial-time algorithm that given

input x ∈ Fℓ , query vector ®q, and answer vector ®a, outputs
acc or rej.

The algorithms (Prove,Query, Verify) should satisfy the following:

• Completness. For any arithmetic circuit C : Fℓ × FL → F,

input x ∈ Fℓ and witnessw ∈ FL such that C(x ,w) = 0 we

have Pr[Π
R

←Prove(F,C,x ,w), ®q
R

←Query(F,C) : Verify(F,x ,
®q, ®q · Π) = acc] = 1.

• Reusable ϵ-soundness. For any C : Fℓ × FL → F, input

x ∈ Fℓ such that C(x ,w) , 0 for all w ∈ FL , adversarially

chosen Π∗ ∈ Fm×d and vector
®b∗ ∈ Fd , we have Pr[®q

R

←

Query(F,C) : Verify(F,x , ®q, ®q ·Π∗+®b∗) = acc] ≤ ϵ . Moreover,

for every F,C,x ,Π∗, ®b∗ the probability of Verify accepting

(over the choice of ®q) is either 1 or ≤ ϵ . Unless otherwise
specified, we assume that ϵ ≤ O(|C |/|F|).
• Honest-verifier zero-knowledge. There exists a PPT sim-

ulator Sim such that for any arithmetic circuit C : Fℓ ×

FL → F, input x ∈ Fℓ , and witness w ∈ FL such that

C(x ,w) = 0, the output of Sim((F,C,x) is a pair (®q, ®a) that is

identically distributed to { (®q, ®a) : Π
R

←Prove(F,C,x ,w), ®q
R

←

Query(F,C); ®a ← ®q · Π}.

Note that the final requirement in the definition of reusable

soundness guarantees that even by observing the verifier’s behavior

on a maliciously chosen input x∗ and proof Π∗, the prover cannot
obtain significant information about the query ®q. This ensures that
®q can be reused without compromising soundness. We note that

our proofs also satisfy the knowledge property as defined in [14].

We focus here on soundness for simplicity.

From HVZK-LIP to reusable NIZK over VOLE. We now describe a

simple transformation from any HVZK-LIP to reusable NIZK in the

VOLE-hybrid model, where the prover plays the role of the VOLE
sender P0 and the verifier plays the role of the VOLE receiver P1.
The verifier’s VOLE inputs xi depend only on the query ®q. This
allows us to reuse the same xi for multiple proofs, where each proof

instance j uses fresh values of (®u
j
i , ®v

j
i) to mask the proof matrix Π.

The main idea behind the transformation is that the matrix-

vector product ®a = ®q · Π can be encoded by ®ai = (qi · Πi + ®bi),

1 ≤ i ≤ m, together with ®c =
∑
®bi , where Πi is the i-th column of

Π and the
®bi are random vectors in Fd . Indeed, it is easy to check

that ®a =
∑m
i=1 ®ai − ®c , and the information available to the verifier

(namely, ®q, ®ai , ®c) reveals no information about Π other than ®a. Thus,

the value of ®a can be transferred to the prover viam instances of

VOLE of length d , where the VOLE inputs of the prover (sender)

are (Πi , ®bi) and the VOLE inputs of the verifier (receiver P1) are
qi . Completeness and honest-verifier zero-knowledge are directly

inherited from the HVZK-LIP via the properties of the encoding

discussed above. Soundness follows by observing that any mali-

ciously chosen (®u∗i , ®v
∗
i) that the prover feeds as inputs to the VOLE

instances in the NIZK protocol and any message ®c∗ have the same

effect as using the matrix Π∗ such that Π∗i = ®u
∗
i and the offset

®b∗ =
∑
®v∗i − ®c

∗
in the HVZK-LIP protocol. This construction of

NIZK from a VOLE generator is formally described in Figure 3.

NIZK protocol from VOLE generator

• Building blocks: VOLE generator (Setup, Expand);
HVZK-LIP (Prove,Query, Verify) with answer length d .
• Setup: Given a verification circuitC over F and a bound

T on the number of statements, securely generate the

following correlated randomness:

– Let (q1, . . . ,qm)
R

←Query(F,C).

– For i = 1, . . . ,m and n = dt , let (seedi
0
, seedi

1
)

R

←

Setup(1λ ,F,n = dT ,qi).
– For i = 1, . . . ,m, Prover gets seedi

0
, Verifier gets seedi

1

and qi .
• Local computation: For i = 1, . . . ,m, Prover computes

(®ui , ®vi)
R

← Expand(0, seedi
0
) and Verifier computes ®wi =

Expand(1, seedi
1
). Parse each ®ui as (®u

j
i), 1 ≤ j ≤ T , where

®u
j
i ∈ F

d
, and similarly for ®vi , ®wi .

• Prover algorithm: For 1 ≤ j ≤ T , on input (x j ,w j),

Prover letsΠj R

←Prove(F,C,x j ,w j). It sends a proof π j =

(®a
j
1
, . . . , ®a

j
m , ®c =

∑m
i=1 ®v

j
i), where ®a

j
i = Π

j
i − ®u

j
i .

• Verifier algorithm: For 1 ≤ j ≤ T , on input x j , Verifier

lets ®aj =
∑m
i=1(qi · ®a

j
i + ®w

j
i) − ®c . It decides whether to

accept by running Verify(F,x j , (q1, . . . ,qm), ®aj).

Figure 3: NIZK with reusable setup from VOLE generator.

Instantiations. As shown in [14], any linear PCP can be compiled

into an HVZK-LIP with a very small overhead. In particular, the

QAP-based linear PCP of GGPR [35] implies an HVZK-LIP prov-

ing the satisfiability of arithmetic circuit C of size s over F with
parametersm = O(s), d = 4, and ϵ = O(s/|F|), where the proof Π is

generated from (x ,w) in time quasi-linear in s . This results in NIZK

protocols in whichO(s) instances of a VOLE generator can be used

to non-interactively prove any polynomial number of statements

C(x j , ·), and where each proof contains O(s) field elements. One

can further improve the prover’s time complexity from quasi-linear

to linear by partitioning the circuit gates into constant-size blocks

and applying an instance of the GGPR-based LPCP (or even the

simpler “Hadamard-based LPCP” [47]) separately to each block.

This optimization exploits the fact that we give up on succinct-

ness in our setting. We leave the refined tuning of parameters and

implementation of our NIZK technique to future work.

Comparison with designated verifier NIZK.. It is instructive to

compare our NIZK protocols to designated-verifier NIZK proto-

cols from the literature: see [20] and references therein. Our NIZK

protocol is weaker in that it relies on a stronger setup: whereas

in standard designated verifier NIZK a verifier can post a public

key that can be used by many different provers, our setup requires

correlated randomness or interaction between a designated verifier

and a designated prover. However, in cases where the same prover

proves many statements to the same verifier, the amortized cost of

this setup is small. The main advantage of our protocol is that its

online phase is very lightweight and does not involve public key

cryptography. In fact, if the Expand function of the VOLE generator

is invoked in the offline phase (without any interaction), computing

and verifying each proof is less efficient than evaluating C(x ,w)
in the clear by only a small constant factor. Our protocols are the

first (reusable) NIZK protocols of any kind to rely on LPN, or al-

ternatively LPN and OT if the setup is generated by a distributed

protocol.

ACKNOWLEDGMENTS
Work supported by ERC grant 742754 (project NTSC). E. Boyle

additionally supported by ISF grant 1861/16 and AFOSR Award

FA9550-17-1-0069. G. Couteau additionally supported by ERC grant

724307 (project PREP-CRYPTO). N. Gilboa additionally supported

by ISF grant 1638/15, and a grant by the BGU Cyber Center. Y.

Ishai additionally supported by ISF grant 1709/14, NSF-BSF grant

2015782, and a grant from the Ministry of Science and Technology,

Israel and Department of Science and Technology, Government of

India.

REFERENCES
[1] Martin R Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and

Michael Zohner. 2015. Ciphers for MPC and FHE. In Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques. Springer,
430–454.

[2] Michael Alekhnovich. 2003. More on Average Case vs Approximation Complexity.

In 44th FOCS. IEEE Computer Society Press, 298–307.

[3] Benny Applebaum. 2012. Pseudorandom generators with long stretch and low

locality from random local one-way functions. In 44th ACM STOC, Howard J.

Karloff and Toniann Pitassi (Eds.). ACM Press, 805–816.

[4] Benny Applebaum, Ivan Damgård, Yuval Ishai, Michael Nielsen, and Lior Zichron.

2017. Secure Arithmetic Computation with Constant Computational Overhead

(LNCS). Springer, Heidelberg, 223–254.
[5] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. 2011. How to Garble

Arithmetic Circuits. In 52nd FOCS, Rafail Ostrovsky (Ed.). IEEE Computer Society

Press, 120–129.

[6] Benny Applebaum and Shachar Lovett. 2016. Algebraic attacks against random

local functions and their countermeasures. In 48th ACM STOC, Daniel Wichs and

Yishay Mansour (Eds.). ACM Press, 1087–1100.

[7] Sanjeev Arora and Rong Ge. 2010. Learning Parities with Structured Noise.. In

Electronic Colloquium on Computational Complexity (ECCC), Vol. 17. 66.
[8] Daniel Augot, Matthieu Finiasz, and Nicolas Sendrier. 2003. A Fast Provably Se-

cure Cryptographic Hash Function. Cryptology ePrint Archive, Report 2003/230.

http://eprint.iacr.org/2003/230.

[9] Donald Beaver. 1992. Efficient Multiparty Protocols Using Circuit Randomization.

In CRYPTO’91 (LNCS), Joan Feigenbaum (Ed.), Vol. 576. Springer, Heidelberg,

420–432.

[10] Donald Beaver. 1995. Precomputing Oblivious Transfer. In CRYPTO’95 (LNCS),
Don Coppersmith (Ed.), Vol. 963. Springer, Heidelberg, 97–109.

[11] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. 2012. Decod-

ing Random Binary Linear Codes in 2
n/20

: How 1 + 1 = 0 Improves Information

Set Decoding. In EUROCRYPT 2012 (LNCS), David Pointcheval and Thomas Jo-

hansson (Eds.), Vol. 7237. Springer, Heidelberg, 520–536.

http://eprint.iacr.org/2003/230

[12] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. 2011. Semi-

homomorphic Encryption and Multiparty Computation. In EUROCRYPT 2011
(LNCS), Kenneth G. Paterson (Ed.), Vol. 6632. Springer, Heidelberg, 169–188.

[13] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. 2011. Smaller Decoding

Exponents: Ball-Collision Decoding. In CRYPTO 2011 (LNCS), Phillip Rogaway

(Ed.), Vol. 6841. Springer, Heidelberg, 743–760.

[14] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.

2013. Succinct Non-interactive Arguments via Linear Interactive Proofs. In

Theory of Cryptography - 10th Theory of Cryptography Conference, TCC 2013,
Tokyo, Japan, March 3-6, 2013. Proceedings. 315–333. https://doi.org/10.1007/

978-3-642-36594-2_18

[15] Avrim Blum, Adam Kalai, and Hal Wasserman. 2000. Noise-tolerant learning,

the parity problem, and the statistical query model. In 32nd ACM STOC. ACM
Press, 435–440.

[16] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, and Michele Orrù. 2017.

Homomorphic Secret Sharing: Optimizations and Applications. In CCS 2017.
2105–2122.

[17] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2015. Function Secret Sharing. In EURO-
CRYPT 2015, Part II (LNCS), Elisabeth Oswald and Marc Fischlin (Eds.), Vol. 9057.

Springer, Heidelberg, 337–367. https://doi.org/10.1007/978-3-662-46803-6_12

[18] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2016. Function Secret Sharing: Improve-

ments and Extensions. In ACM CCS 16, Edgar R. Weippl, Stefan Katzenbeisser,

Christopher Kruegel, Andrew C. Myers, and Shai Halevi (Eds.). ACM Press,

1292–1303.

[19] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2017. Group-Based Secure Computation:

Optimizing Rounds, Communication, and Computation. In Eurocrypt’17. 163–
193.

[20] Pyrros Chaidos and Geoffroy Couteau. 2018. Efficient Designated-Verifier Non-

interactive Zero-Knowledge Proofs of Knowledge. In EUROCRYPT 2018, Part III.
193–221.

[21] Melissa Chase, Yevgeniy Dodis, Yuval Ishai, Daniel Kraschewski, Tianren Liu,

Rafail Ostrovsky, and Vinod Vaikuntanathan. 2018. Reusable Non-Interactive

Secure Computation. Manuscript.

[22] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and Chaoping

Xing. 2018. SPD \mathbb Z_2ˆk : Efficient MPC mod 2ˆk for Dishonest Majority.

In Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part II. 769–
798. https://doi.org/10.1007/978-3-319-96881-0_26

[23] Ronald Cramer, Ivan Damgård, and Yuval Ishai. 2005. Share Conversion, Pseudo-

random Secret-Sharing and Applications to Secure Computation. In TCC 2005
(LNCS), Joe Kilian (Ed.), Vol. 3378. Springer, Heidelberg, 342–362.

[24] Ronald Cramer, Serge Fehr, Yuval Ishai, and Eyal Kushilevitz. 2003. Efficient

Multi-party Computation over Rings. In Advances in Cryptology - EUROCRYPT
2003, International Conference on the Theory and Applications of Cryptographic
Techniques, Warsaw, Poland, May 4-8, 2003, Proceedings. 596–613. https://doi.org/

10.1007/3-540-39200-9_37

[25] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. 2012. Multi-

party Computation from Somewhat Homomorphic Encryption. In CRYPTO 2012
(LNCS), Reihaneh Safavi-Naini and Ran Canetti (Eds.), Vol. 7417. Springer, Hei-

delberg, 643–662.

[26] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. 2016. Spooky

Encryption and Its Applications. In Advances in Cryptology - CRYPTO 2016 - 36th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2016, Proceedings, Part III. 93–122. https://doi.org/10.1007/978-3-662-53015-3_4

[27] Jack Doerner and Abhi Shelat. 2017. Scaling ORAM for secure computation. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 523–535.

[28] Nico Döttling, Satrajit Ghosh, Jesper Buus Nielsen, Tobias Nilges, and Roberto

Trifiletti. 2017. TinyOLE: Efficient Actively Secure Two-Party Computation from

Oblivious Linear Function Evaluation. In ACM CCS 17. ACM Press, 2263–2276.

[29] Erez Druk and Yuval Ishai. 2014. Linear-time encodable codes meeting the gilbert-

varshamov bound and their cryptographic applications. In ITCS 2014, Moni Naor

(Ed.). ACM, 169–182.

[30] Niall Emmart, Justin Luitjens, Charles Weems, and Cliff Woolley. 2016. Optimiz-

ing modular multiplication for nvidia’s maxwell gpus. In Computer Arithmetic
(ARITH), 2016 IEEE 23nd Symposium on. IEEE, 47–54.

[31] Andre Esser, Robert Kübler, and Alexander May. 2017. LPN Decoded (LNCS).
Springer, Heidelberg, 486–514.

[32] Nelly Fazio, Rosario Gennaro, Tahereh Jafarikhah, and William E. Skeith III. 2017.

Homomorphic Secret Sharing from Paillier Encryption. In Provable Security -
11th International Conference, ProvSec 2017, Xi’an, China, October 23-25, 2017,
Proceedings. 381–399. https://doi.org/10.1007/978-3-319-68637-0_23

[33] Matthieu Finiasz and Nicolas Sendrier. 2009. Security Bounds for the Design of

Code-Based Cryptosystems. In ASIACRYPT 2009 (LNCS), Mitsuru Matsui (Ed.),

Vol. 5912. Springer, Heidelberg, 88–105.

[34] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. 2005. Key-

word Search and Oblivious Pseudorandom Functions. In Theory of Cryptography,

Second Theory of Cryptography Conference, TCC 2005, Cambridge, MA, USA, Febru-
ary 10-12, 2005, Proceedings. 303–324. https://doi.org/10.1007/978-3-540-30576-7_
17

[35] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. 2013. Qua-

dratic Span Programs and Succinct NIZKs without PCPs. In EUROCRYPT. 626–
645.

[36] Satrajit Ghosh, Jesper Buus Nielsen, and Tobias Nilges. 2017. Maliciously Se-

cure Oblivious Linear Function Evaluation with Constant Overhead. In ASI-
ACRYPT 2017, Part I (LNCS). Springer, Heidelberg, 629–659.

[37] Satrajit Ghosh and Tobias Nilges. 2017. An Algebraic Approach to Maliciously

Secure Private Set Intersection. IACR Cryptology ePrint Archive 2017 (2017), 1064.
http://eprint.iacr.org/2017/1064

[38] Niv Gilboa. 1999. Two Party RSAKeyGeneration. InCRYPTO’99 (LNCS), Michael J.

Wiener (Ed.), Vol. 1666. Springer, Heidelberg, 116–129.

[39] Niv Gilboa and Yuval Ishai. 1999. Compressing Cryptographic Resources. In

CRYPTO’99 (LNCS), Michael J. Wiener (Ed.), Vol. 1666. Springer, Heidelberg,

591–608.

[40] Niv Gilboa and Yuval Ishai. 2014. Distributed Point Functions and Their Ap-

plications. In EUROCRYPT 2014 (LNCS), Phong Q. Nguyen and Elisabeth Os-

wald (Eds.), Vol. 8441. Springer, Heidelberg, 640–658. https://doi.org/10.1007/

978-3-642-55220-5_35

[41] Oded Goldreich. 2000. Candidate One-Way Functions Based on Expander Graphs.

Cryptology ePrint Archive, Report 2000/063. http://eprint.iacr.org/2000/063.

[42] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any Mental

Game or A Completeness Theorem for Protocols with Honest Majority. In 19th
ACM STOC, Alfred Aho (Ed.). ACM Press, 218–229.

[43] Oded Goldreich, Salil Vadhan, and Avi Wigderson. 2002. On interactive proofs

with a laconic prover. Computational Complexity 11, 1 (2002), 1–53. https:

//doi.org/10.1007/s00037-002-0169-0

[44] Shai Halevi, Yuval Ishai, Abhishek Jain, Eyal Kushilevitz, and Tal Rabin. 2016.

Secure Multiparty Computation with General Interaction Patterns. In ITCS 2016,
Madhu Sudan (Ed.). ACM, 157–168.

[45] Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. 2018.

TinyKeys: A New Approach to Efficient Multi-Party Computation. In CRYPTO.
[46] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. 2005. Sufficient Conditions for

Collision-Resistant Hashing. In TCC. 445–456. https://doi.org/10.1007/b106171

[47] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. 2007. Efficient Arguments

without Short PCPs. In CCC. 278–291.
[48] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. 2004. Batch

codes and their applications. In 36th ACM STOC, László Babai (Ed.). ACM Press,

262–271.

[49] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. 2008. Cryptog-

raphy with constant computational overhead. In 40th ACM STOC, Richard E.

Ladner and Cynthia Dwork (Eds.). ACM Press, 433–442.

[50] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. 2009. Zero-

Knowledge Proofs from Secure Multiparty Computation. SIAM J. Comput. 39, 3
(2009), 1121–1152. https://doi.org/10.1137/080725398

[51] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. 2008. Founding Cryptography

on Oblivious Transfer - Efficiently. In CRYPTO 2008 (LNCS), David Wagner (Ed.),

Vol. 5157. Springer, Heidelberg, 572–591.

[52] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. 2009. Secure Arithmetic Com-

putation with No Honest Majority. In TCC 2009 (LNCS), Omer Reingold (Ed.),

Vol. 5444. Springer, Heidelberg, 294–314.

[53] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.

GAZELLE: A Low Latency Framework for Secure Neural Network Inference.

In 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD,
USA, August 15-17, 2018. 1651–1669. https://www.usenix.org/conference/

usenixsecurity18/presentation/juvekar

[54] Joe Kilian. 1988. Founding Cryptography on Oblivious Transfer. In 20th ACM
STOC. ACM Press, 20–31.

[55] Joe Kilian, Silvio Micali, and Rafail Ostrovsky. 1989. Minimum Resource Zero-

Knowledge Proofs (Extended Abstract). In FOCS ’89. 474–479.
[56] Kazuki Kobayashi and Tomoharu Shibuya. 2012. Generalization of Lu’s linear time

encoding algorithm for LDPC codes. In Information Theory and its Applications
(ISITA), 2012 International Symposium on. IEEE, 16–20.

[57] Jin Lu and José MF Moura. 2010. Linear time encoding of LDPC codes. IEEE
Transactions on Information Theory 56, 1 (2010), 233–249.

[58] Vadim Lyubashevsky. 2005. The parity problem in the presence of noise, decod-

ing random linear codes, and the subset sum problem. In Approximation, ran-
domization and combinatorial optimization. Algorithms and techniques. Springer,
378–389.

[59] Alexander May, Alexander Meurer, and Enrico Thomae. 2011. Decoding Random

Linear Codes in
˜O(20.054n). In ASIACRYPT 2011 (LNCS), Dong Hoon Lee and

Xiaoyun Wang (Eds.), Vol. 7073. Springer, Heidelberg, 107–124.

[60] Alexander May and Ilya Ozerov. 2015. On Computing Nearest Neighbors with

Applications to Decoding of Binary Linear Codes. In EUROCRYPT 2015, Part I
(LNCS), Elisabeth Oswald andMarc Fischlin (Eds.), Vol. 9056. Springer, Heidelberg,

https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/3-540-39200-9_37
https://doi.org/10.1007/3-540-39200-9_37
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/978-3-319-68637-0_23
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-540-30576-7_17
http://eprint.iacr.org/2017/1064
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-642-55220-5_35
http://eprint.iacr.org/2000/063
https://doi.org/10.1007/s00037-002-0169-0
https://doi.org/10.1007/s00037-002-0169-0
https://doi.org/10.1007/b106171
https://doi.org/10.1137/080725398
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar

203–228. https://doi.org/10.1007/978-3-662-46800-5_9

[61] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable

Privacy-Preserving Machine Learning. In 2017 IEEE Symposium on Security and
Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017. 19–38. https://doi.org/10.

1109/SP.2017.12

[62] Moni Naor and Benny Pinkas. 2006. Oblivious Polynomial Evaluation. SIAM J.
Comput. 35, 5 (2006), 1254–1281.

[63] Eugene Prange. 1962. The use of information sets in decoding cyclic codes. IRE
Transactions on Information Theory 8, 5 (1962), 5–9.

[64] Peter Rindal and Mike Rosulek. 2016. Faster Malicious 2-Party Secure Com-

putation with Online/Offline Dual Execution.. In USENIX Security Symposium.

297–314.

[65] Peter Scholl. 2018. Extending Oblivious Transfer with Low Communication via

Key-Homomorphic PRFs (LNCS). Springer, Heidelberg, 554–583.
[66] Daniel A Spielman. 1996. Linear-time encodable and decodable error-correcting

codes. IEEE Transactions on Information Theory 42, 6 (1996), 1723–1731.

[67] Jacques Stern. 1988. A method for finding codewords of small weight. In Interna-
tional Colloquium on Coding Theory and Applications. Springer, 106–113.

[68] Doug Stinson, Ruizhong Wei, and Maura Paterson. 2009. Combinatorial batch

codes. Advances in Mathematics of Communications 3, 1 (2009), 13–27.
[69] Rodolfo Canto Torres and Nicolas Sendrier. 2016. Analysis of information set de-

coding for a sub-linear error weight. In International Workshop on Post-Quantum
Cryptography. Springer, 144–161.

[70] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. 2017. Authenticated garbling

and efficient maliciously secure two-party computation. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security. ACM,

21–37.

https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1109/SP.2017.12

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Overview of the Techniques
	1.3 Related Work

	2 Preliminaries
	2.1 Vector OLE
	2.2 Function Secret Sharing
	2.3 Learning Parity with Noise

	3 Pseudorandom VOLE Generator
	3.1 Defining VOLE Generator
	3.2 Primal VOLE Generator
	3.3 Dual VOLE Generator
	3.4 Optimizations via Structured Matrices

	4 MPFSS Constructions
	4.1 Optimizing MPFSS Evaluation

	5 Efficiency of VOLE Generation
	5.1 Optimal Seed Size for a Given Output Size
	5.2 Heuristic Optimizations
	5.3 Distributed Generation of MPFSS

	6 Applications
	6.1 Secure Arithmetic Computation
	6.2 Non-Interactive Zero-Knowledge with Reusable Correlated Randomness Setup

	Acknowledgments
	References

