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ABSTRACT
The Spectre attack by Kocher et al. [10] reads arbitrary data from
colocated processes by exploiting two common features of modern
processors: speculative execution and shared caches. While theo-
retically the attack works in many different settings, the current
variations all require that the attacker share with the target a mem-
ory region that includes vulnerable code which accepts input from
the attacker.

Motivated by the common practice in cloud computing of not
allowing shared memory between different users, we construct the
first Spectre type attack in which the target and the attacker do not
share any memory pages. The target is a server and the attacker
is colocated with the target, shares a Last-Level Cache with it and
provides input to the target as a typical client over TCP.

We develop new techniques for the attack including accurate
location of the target’s code and data in the shared cache, noise
suppression enabling reliable retrieval of the target’s data and opti-
mizations speeding up the retrieval process. An indispensable tool
in the retrieval process is a careful comparison of cache activity
between two scenarios: the attacker sending as input an address
of interest x and the attacker sending a different address x ′. The
comparison enables extraction of a single memory byte from the
target.

We report on a Proof-of-Concept implementation of our attack
and on tests on two Intel multi-core platforms with inclusive Last-
Level Caches and speculative execution. The tests ran in two virtual-
ization settings, Virtual Machines and Linux containers and in two
profiles of cache activity, relative inactivity and very high activity.
The setup phase in which the attacker locates the target’s data in
the cache requires on the order of several minutes to several tens of
minutes. The attack successfully extracts the data with probability
per byte between 0.91 to 0.99 and rate ranging from 0.4 to 10 bytes
per second.

CCS CONCEPTS
• Security and privacy→ Side-channel analysis and counter-
measures; Malicious design modifications;
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1 INTRODUCTION
Designers use many strategies to maximize the performance of
processor chips including prediction of future control flows and
of data required in future computation. Two important predictive
components are fast cache memories and speculative execution.
Cache memories are relatively small memory elements which en-
able faster access time than main memory. In speculative execution,
if the processor does not have all the information necessary to
continue its execution it guesses the control flow and continues
execution instead of stalling. If the prediction is correct then the
processor saves time, while if it is incorrect then the processor rolls
back to its initial state and continues with the correct execution
flow. Speculative execution can also be performed by executing two
or more control flows concurrently but retiring only one when the
correct flow can be determined.

Predictive components typically change the running time of a
program based on its input and state. An attacker who shares such
resources with a target may observe them to deduce information
on the target. The attacker’s general method is to create contention
with the target over a shared hardware resource that influences
execution time. Bymeasuring the time required for its own execution
the attacker can infer information on the target’s use of the shared
component which implies information on the target’s input.

Attacks based on timing side-channels in processors’ micro-
architecture have exploited both cache memory [3, 7, 9, 13, 15,
18, 21, 22, 24] and speculative execution [2]. Side-channel attacks
based on micro-architecture differ in the degree of sharing that they
require between the attacker and the target. If the attacker and the
target execute on the same core then they share all the levels of
cache memory and in addition processor components that support
speculative execution such as branch predictors. In this case, all
these components can potentially be exploited for side-channel
attacks. However, if the two processes execute on separate cores
then typically the only shared hardware resource is the Last Level
Cache (LLC) which is shared among all cores. A different type of
resource that is sometimes shared is part of the memory space of
each process. This is most often the case when the two processes
run the same software library and the underlying operating system
saves memory by using deduplication to load the same (typically
read only) memory pages once for both processes instead of twice.
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if (x < array1_size)
y = array2[array1[x] * 256];

Figure 1: Code fragment vulnerable to Spectre attack [10].

Cloud services are the most common ecosystem in which Virtual
Machines (VM) or Containers, provided by different users share
the same underlying hardware. Attacks by Ristenpart et al. locating
a target VM in the cloud [16] and extracting information from it
spurred interest in a variety side-channel attacks exploiting shared
resources to obtain secret data from victim VMs.

Cloud providers enable co-tenancy of VMs from different users
for economic reasons. Each VM is assigned a virtual CPU, which
is implemented as a series of time slots on a physical CPU. It is
considered unlikely that a cloud provider will run VMs from differ-
ent users on a single core allowing single core attacks. In addition,
due to security concerns most cloud providers disable deduplica-
tion of memory pages [19, 20] between VMs. Therefore, micro-
architectural side-channel attacks in cloud environments need to
be cross-core and not dependent on shared memory.

The Spectre attack by Kocher et al. [10] and its close relative, the
Meltdown attack by Lipp et al. [12] built on earlier work by Gruss et
al. [5] and exploiting both speculative execution and cache memory
to extract arbitrary data from the victim given very reasonable
assumptions. The two attacks differ in their target with Meltdown
enabling a user process to extract data from its kernel’s memory
space and Spectre allowing a user process (or a VM) to extract data
from another process or another VM.

In Spectre the target code includes a branch such as the example
in Figure 1 where the attacker controls x . The attacker trains the
branch predictor to enter the if statement by sending legal values
of x and then causes it to speculatively enter the statement for an
illegal x which allows the attacker to obtain the value of array1[x]
by a cache side-channel attack.

While the Spectre attack can theoretically be used in a cloud
setting, the proof-of-concept provided with the attack uses shared
memory between the attacker and the target in a fundamental way.
Sharing the variable array1_size and the addresses of array1 and
array2 enable the attacker to both identify all the necessary loca-
tions in the cache without error and use the low noise Flush+Reload
attack [24] to extract data from the cache. However, as previously
noted, the most important setting for this type of attack is cloud
computing in which such memory sharing is highly unlikely.

In this paper we fill the gap and construct a fully operational
Spectre attack that does not assume shared memory between the at-
tacker and the target. A naïve approach to the problem of construct-
ing Spectre without shared memory is to replace the Flush+Reload
attack with a cache attack that functions without shared memory
such as Prime+Probe of the LLC [13] and run the other parts of
the attack without modification. However, this approach fails in
several ways. Without shared memory the attacker does not know
the addresses or corresponding cache sets of array1_size and array2.
Without this information the attacker cannot flush array1_size from
the cache, which is crucial for triggering speculative execution, and
does not know which cache sets to test for activity. Furthermore,
the naïve approach is susceptible to significant noise that is exactly
correlated with sending an input x because it involves code and
data that the attacker and target use for sending and receiving x .

It is therefore highly likely that incorrect cache sets exhibit the
same behavior as the set holding array2[array1[x] ∗ 256] leading
to decoding errors.

Contribution. We make two contributions in this work. The first
is the construction of a Spectre type attack retrieving arbitrary
data from a target that does not share any memory region with
an attacker. The second contribution is a Proof-of-Concept imple-
mentation of the attack which we provide together with data on its
probability of success rate of data extraction.

The attack is divided into two phases, a setup phase and the
data retrieval phase. In both phases the attacker transmits pairs
of different inputs x and x ′ and by carefully comparing the cache
activity for each transmission deduces the location of memory
elements or their value.

In the setup phase, the attacker locates the cache sets that store
array1, array2 and array1_size by using the technique of pair trans-
mission. It uses several pairs to collect some of the cache sets hold-
ing addresses in array2 and then infers the rest of the locations of
array2. The attacker then finds the cache set holding array1_size
by a combination of brute force search on the cache sets, pair trans-
mission and triggering speculative execution in the target.

Following the setup, the attack extracts the value of array1[x]
by using pair transmission in which x indicates the address of in-
terest and x ′ is a legal address within array1. The attack requires
a noise suppression method that increases the signal to noise ra-
tio in the measurements of cache activity. The attack uses sev-
eral optimizations including weighted sampling of cache sets. The
attack estimates the probability of a set holding the address of
array2[array1[x] ∗ 256] and samples sets that are likelier to hold
the address more frequently than others.

We implement a PoC of our attack [1] and evaluate it on two
different Intel chips, on both VMs and containers and in two dif-
ferent cache activity profiles: low activity and very high activity.
We measure the rate of data extraction from the target and the
probability of each retrieved byte being correct. The extraction rate
we report ranges between about 0.4 byte per second to ten bytes
per second while the accuracy ranges between 0.91 to 0.99. This
extraction rate is still significantly lower than Spectre with shared
memory due to several factors. First and foremost is our usage of
TCP and virtualization which are together the bottleneck in this
attack. The second factor is that Flush+Reload is much faster than
Prime+Probe.

2 BACKGROUND
2.1 System Model

Cache memory. Cache memory in modern, multi-core computers
typically consists of a hierarchy of memory elements in which the
higher levels of the hierarchy are smaller, faster and are associated
with a single core. The lowest level of the hierarchy, the Last Level
Cache (LLC), is the largest and slowest of the elements and is shared
among all the cores. Despite being logically shared, beginning with
Intel’s Sandy Bridge architecture [13] the LLC in Intel designs is
physically divided into slices, one slice per core. Every core can
access all the slices but retrieval time is proportional to the distance
between the core and the cache slice.
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Memory is arranged in lines ofB bytes, typicallyB = 64. A read or
write instruction causes the hardware to retrieve the corresponding
memory line from the nearest cache in which it resides or from
main memory if the line is not found in any cache. A line retrieved
from main memory is stored in all levels of the cache for quick
future access.

Contention in the cache is inevitable due to the small size of all
cache levels compared to main memory. A common approach to
deal with contention is set associative caching. In this architecture a
cache is divided into sets of lines, each memory line is mapped to a
cache set and each set stores up tow lines of memory concurrently.
Attempting to store excess lines in a full set triggers line eviction
in which one or more lines are removed from cache according
to a cache replacement policy. Intel publicly states that the cache
replacement policy in its CPU chips is “pseudo Least Recently Used
(LRU)” without giving full details on the policy.

In Intel architectures, the lower logB bits of a memory address
identify its offset within a memory line. If a slice of the LLC con-
tains L cache sets then the next logL bits of the address are the set
index identifying the set in an LLC slice in which the line is stored.
Finally, the rest of the address bits are the tag. Intel architectures
use an undocumented hash function to map a memory address to
a slice of the cache. According to Liu et al. [13] (refining previous
observations by Hund et al. [7]) the hash function takes as input
the tag bits if the number of cores is a power of two and otherwise
takes both the tag and the set index as input.

An important property of the cache hierarchy is inclusiveness. In
inclusive caches a lower level, larger cache, holds a strict super-set
of the items in a higher level cache. A consequence of inclusive
caches is that evicting a cache line from the shared LLC initiates the
invalidation of the corresponding lines from the other cache levels.
In most Intel architectures the LLC is inclusive, with the notable
exception of the recent Skylake-server architecture [8].

Speculative execution enables processing instructions evenwhen
the execution path depends on data that the processor does not
possess. Consider for example a conditional branch that depends
on uncached data. A processor can speculatively choose a branch
and continue execution while in parallel retrieving the data from
memory and saving a checkpoint allowing it to roll back to a pre-
vious state if the speculation was wrong, with no performance
penalty compared to idling until data arrives. If the speculation is
correct then the processor uses the cycles needed to retrieve the
data to move forward in its execution path. Speculative execution
is supported by several hardware components including the Branch
Prediction Unit (BPU). The BPU stores information on whether
branches were previously taken in a Branch Target Buffer (BTB)
and predicts whether a branch will be taken in the future based on
these previous execution paths.

2.2 Cache Attacks
Cache side-channel attacks exploiting the measurable timing differ-
ences between access to main memory and access to cache memory
were used by Tsunoo et al. [18] to retrieve DES keys and by Bern-
stein [3] and Osvik et al. [15] to extract AES keys. The work of
Ristenaprt et al. [16] on locating a target VM and conducting side-
channel attacks in the cloud, was followed by cache side-channel

attacks against a variety of targets including recovering crypto-
graphic keys, [6, 9, 13, 24], defeating Address Space Layout Ran-
domization (ASLR) [5, 7] and discovering which web pages a user
is browsing [14].

Cache side-channel attacks are based on a number of techniques
including Prime+Probe and Flush+Reload. In a Prime+Probe attack
[15] the attacker primes a portion of the cache by filling it with
memory lines from the attacker’s memory space, and after an ap-
propriate period of idling the attacker probes the cache by reading
the same memory lines. If during the idle period the victim accesses
a memory line (in its own space) that is mapped to the primed cache
area, that line will likely evict one of the attacker’s lines, allowing
the attacker to deduce this event by timing each of its probes. In
a Flush and Reload attack [24] the attacker and the victim share
the same memory page. The attacker flushes a shared memory line,
e.g. by using the clflush instruction, idles and then reloads the
same memory line. The attacker can deduce victim access to the
line by measuring the required time for reload. Flush+Reload is
faster and more accurate than Prime+Probe but is only applicable
in a shared-memory setting.

2.3 Spectre
There are currently several known variants of a Spectre including
variants 1 and 2 in the Spectre paper [10]. See [4] for a classification
and overview of Spectre exploits. In this paper we focus on Spectre
variant 1 which is arguably the most intractable of all variants.

Several basic assumptions are required for Spectre variant 1:
speculative execution must be allowed in the victim system, the
attacker and the target must be co-resident on the same physical
system, allowing the attacker to observe the effects of speculative
execution and the target must include a vulnerable code snippet,
such as the code in Figure 1, with the attacker supplying the input
x . In that example array1 is defined as an array of bytes of length
array1_size and array2 is an array of bytes in which there are 2561
bytes for every byte of array1.

The goal of the attacker is to read the value array1[x] for any
offset x, regardless of whether that address is within the bounds of
array. The attacker trains the branch predictor by sending several
legal values of x, which cause the execution path to continue to the
assignment to y. The attacker then proceeds to flush the memory
line that contains array1_size and then sends the desired offset x.
The target’s speculative execution causes a misprediction and the
execution continues with an illegal assignment to y, which is not
discovered until array1_size is retrieved from main memory. The
assignment causes the target to read the address array2[array1[x]
* 256] and store that value in the LLC. A standard Flush+Reload
attack is sufficient to test the collection of all the possible cache
sets in which array2[array1[x] * 256] is stored.

Prototype implementations of Spectre variant 1 for several dif-
ferent settings appear in [10] including a C implementation for the
setting of an attacker process running natively on the victim host
and sharing the vulnerable memory region with the victim process.

1While we use the same code fragment as the Spectre paper, our tests verify that the
value 256 can be reduced to 64. Any further reduction results in array2[array1[x ]]
being mapped to the same cache line as array2[array1[x ′]] for array1[x ] , array1[x ′]
and therefore the attacker cannot assign values to array1[x ] with certainty.
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The interest in the Spectre and Meltdown attacks has already
resulted a significant body of work including automatic verification
tools that identify the necessary conditions for conducting such
attacks [17]. This work achieves Spectre using Prime+Probe, as we
do in this current work, but uses shared memory to do so, unlike
our attack.

3 THE ATTACK
3.1 Key Components and Assumptions
The attacker has two major components. The first is a send process
that transmits values x to the victim in order to change the state
of the cache sets that store array1[x] and array2[array1[x]*256].
The second is a receive process that performs a cache side-channel
attack to recover the value of array1[x] by determining the cache
set storing the line of array2[array1[x]*256]. The two processes can
be implemented as Virtual Machines, Containers or standard user-
space processes. We assume that each process runs on a dedicated
core and executes in parallel. The receive process must be colocated
with the victim. Although the send process may be theoretically
located elsewhere, we assume that it is also located on the same
machine to facilitate synchronization. We further assume that the
receive process has access to a fine-grained clock, such as Intel’s
rdtscp instruction. We denote an invocation of this clock by time().

Similarly to [13] we assume that the memory of the receive
process is arranged in huge pages, which is the standard practice
in cloud computing. In the Proof of Concept attack we implement,
the victim and the receive process execute on a computer with a
number of cores that is a power of two. That assumption simplifies
the setup process of the attack in Section 3.3, but can be dispensed
with at the cost of longer setup time.

Similarly to [10] we assume that the victim code contains a code
fragment of the type presented in Figure 1, that the victim enables
speculative execution and that the attacker controls the x input in
that code. Unlike [10] and [17] we do not assume that the attacker’s
shares memory with the victim or has knowledge on the victim’s
code or data except for the existence of the code fragment.

3.2 The Communication-Channel Approach
The attack can be abstractly modeled as a communication system
in which the victim is a sender, transmitting data to the attacker. In
more detail, consider a sender and a receiver who have a synchro-
nized clock and share 256 ordered communication sub-channels
which at each time unit can be either active or inactive. The sender
can activate a sub-channel and the receiver can test a sub-channel
for activity. The sender transmits a byte b by activating the corre-
sponding sub-channel and the receiver obtains the byte by testing
every sub-channel for activity.

In our proposed attack, the sub-channels are the cache sets that
store the memory addresses array2 + 256b for b = 0, . . . , 255. The
victim signals on sub-channelb = array1[x] by speculatively access-
ing array2[b∗256]. The attacker tests a sub-channel b for activity by
running Prime+Probe on the cache set that stores array2[b ∗ 256].

A basic tool for transmission and reception is the LocateSets
algorithm described in Figure 2 in pseudo-code. The algorithm
makes no assumptions about the victim beyond the assumptions

LocateSets(S,p,w,n, interval ,x ,x ′,α)
(1) For each s ∈ S do score(s) ← 0
(2) Let {S1, . . . , S |S |/p } be a partition of S into subsets of size p.
(3) For each S̃ ∈ {S1, . . . , S |S |/p } run simultaneously
(a) Send(w,n,x ,x ′)
(b) Receive(w,n, interval , S̃)

(4) Let S ′ ← {s ∈ S | score(s) > α }.
(5) Return S ′

Figure 2: Finding a collection of cache sets S ′ that are corre-
lated to an input x .

of Section 3.1 and is therefore especially useful for setting up the
communication system.

The goal of LocateSets is to discover cache sets s that are corre-
lated to an input x , i.e the state of s changes when x is sent, but
does not change when x ′ , x is sent. LocateSets accepts as input a
collection of cache sets S , inputs x ,x ′ and a threshold 0 ≤ α ≤ 1
and assigns a score in the range [0, 1] to every s ∈ S . It returns a
sub-collection S ′ ⊆ S of cache sets with a score greater than α .

LocateSets initiates two processes that run in parallel and are
described in Figure 3. The Send process takes as input two different
indices x ,x ′, a time parameter w in units of clock cycles and a
number of repetitions n. The basic procedure of the Send algorithm
is to transmit x repeatedly for a period ofw clock cycles and then
transmit x ′ for another w clock cycles. This basic procedure is
repeated n times allowing the Receive process to obtain accurate
measurements.

The Receive process takes as input a collection of cache sets
S̃ , the same w and n parameters as Send and a time parameter
interval which is an upper bound on the time between consecutive
transmissions of a value x (or x ′) and the time required for the
victim to process the input, reaching the code fragment that affects
the cache. Receive estimates the correlation of a set s ∈ S̃ to x by
repeatedly probing the set and comparing the number of misses
during the transmission periods, i.e. the miss count during the
transmission of x to the miss count during the transmission of x ′.
The idea is that any cache set that is correlated with x will have
more cache misses in the first period than in the second. Note that
sets involved in transmission and reception of data regardless of
the transmitted value (e.g. the TCP/IP stack in our implementation)
are equally active during the two periods and are therefore not
correlated to x .

The Receive process should probe each set in S̃ once for every
x that the send process transmits. Probing at a slower rate wastes
transmissions, while probing at a higher rate increases the noise
since the number of times the receiver obtains data on the com-
munication channel is at most the number of times that x is sent
(each probe of a set s flushes that set until the next transmission).
Therefore, the size of the input collection |S̃ | = p is chosen so that
running prime and probe p times is at most interval clock cycles.

3.3 Setup Phase
In order to initialize the communication channel, the attacker has to
locate the cache set that stores array1_size, the value of array1_size
and the cache sets that store array2[256 ∗b] for b = 0, . . . , 255. The
attacker begins by estimating the values of thew,n, interval and α
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Send(w,n,x ,x ′)
(1) Do n times
(a) clock ← time()
(b) While (time() − clock) < w) do

(i) Transmit x to the victim.
(c) clock ← time()
(d) While (time() − clock) < w) do

(i) Transmit x ′ to the victim.

Receive(w,n, interval , S̃)
(1) For each s ∈ S̃ , Let rs ← 0, r ′s ← 0
(2) Let sendx ← True
(3) Do n times
(a) Let clock1← time()
(b) While (time() − clock1 < w) do

(i) Let clock2← time()
(ii) For every s ∈ S̃ do
(A) If (sendx ) then rs ← rs + Probe(s)

Else then r ′s ← r ′s + Probe(s)
(iii) While (time() − clock2 < interval ) Wait

(c) sendx ← !sendx
(d) If (sendx ) then //Every 2w

(i) For each s ∈ S̃ do
(A) if (rs > r ′s ) then score(s) ← score(s) + 1/n
(B) rs ← 0, r ′s ← 0

Figure 3: The send and receive algorithms. Probe(s) performs
a cache probe of the cache set s and returns the number of
cache misses.

which are system dependent and then proceeds with the following
steps.

3.3.1 Discovering the value of array1_size . Let S be the collection
of all cache sets. For every 0 ≤ x the attacker computes a set S ′x =
LocateSets(S,p,w,n, interval ,x ,−1,α) until S ′x = ∅. The attacker
then assigns array1_size = x .

When the Send process transmits x , 0 ≤ x < array1_size to
the victim then the if statement in Figure 1 is true, but when the
victim receives −1 that statement is false. As a result S ′x contains
the cache sets that store array2[array1[x ∗ 256]] and array1[x]. If
x ≥ array1_size then S ′x is expected to be empty as the if statement
in Figure 1 is false and the same sets will be active during the
transmission of x and the transmission of −1.

3.3.2 Locating array1 and array2. Define Sarray2 to be the collec-
tion of cache sets that store array2[256 ∗ b] for 0 ≤ b ≤ 255. Begin
by constructing upper and lower bounds on array2[256 ∗ b], i.e.
Sℓ , Su such that Sℓ ⊆ array2[256 ∗ b] ⊆ Su and locates the cache
set that holds array1.

Initialize Sℓ ←
⋃
x S
′
x and remove any cache set s that appears

in successive collections S ′x , . . . , S ′x+c for 0 ≤ x < array1_size − c
and some small constant c < B. For every 0 ≤ x < array1_size the
set S ′x contains the cache set that stores array2[256 ∗ array1[x]],
the cache set that stores array1[x] and possibly the cache set that
stores array2. If n and w are sufficiently large in the LocateSets
algorithm then S ′x includes only these three sets. Every contiguous
B addresses of array1 are stored in a single cache line and therefore,

except for the boundaries of the array, the same cache set appears
in B successive collections S ′x , . . . , S ′x+B−1. Therefore, the attacker
learns the cache set that holds array1 and in addition Sℓ ⊆ Sarray2.
Furthermore, unless the values of array1 are arranged in runs of
identical values that are all longer than c then Sℓ , ∅.

Compute Su from Sℓ by exploiting the contiguous layout of
array2 in memory and the mapping of that portion of memory to
the LLC. If a line is of length B bytes, there are L sets in a slice and
the number of cores is a power of two then LB contiguous bytes
in memory, beginning at a slice boundary, are stored in order in a
single LLC slice. If the LB bytes begin in cache line i , which is not
at the slice boundary then these are stored in at most two slices in
sets i, . . . ,L in the first slice and 1, . . . , i − 1 in the second slice.

In all current Intel architectures we are aware of including the
architectures we tested, L ≥ 1024 and B = 64. Therefore, the 256
addresses of array2 are stored one address per cache line in cache
sets that are exactly four apart and reside in at most two slices.

As a consequence, either all the cache sets of Sℓ are in the same
cache slice or they are part of at most two slices. In the first case, all
the cache sets of Sℓ are in sliceC between cache sets a and b. In this
case, if Sarray2 includes cache sets outsideC they could potentially
reside in any of the other slices.We introduce the following notation
to define Su . Denote the i-th cache set in slice C by C[i], let i4 =
i mod 4 and let i4 = L − 4 + i4. In the first case, let

Su = {C[a + 4i] | 0 ≤ i < 256,a + 4i < L}⋃
{C ′[a4 + 4i] | ∀ slice C ′, 0 ≤ i < 256 − ⌈L − a4 ⌉}⋃
{C[b − 4i] | 0 ≤ i < 256,b − 4i ≥ 0}⋃
{C ′[b4 − 4i] | ∀ slice C ′, 0 ≤ i < 255 − ⌊b/4⌋}

In the second case, Sℓ is located in two slices C and C ′ between
the sets a and b in C and a′ and b ′ in C ′. In this case the two slices
of Sarray2 are already known and w.l.o.g we assume that a > b ′

and the definition of Su is

Su = {C[a + 4i] | 0 ≤ i < 256,a + 4i < L}⋃
{C[b − 4i] | 0 ≤ i < 256 − ⌈b

′

4 ⌉ − ⌈
L − b

4 ⌉}⋃
{C ′[a′ + 4i] | 0 ≤ i < 256 − ⌈a

′

4 ⌉ − ⌈
L − a

4 ⌉}⋃
{C[b ′ − 4i] | 0 ≤ i < 256,b ′ − 4i ≥ 0}

3.3.3 array1_size. The next step is to detect the cache set that
holds array1_size . The main observation is that if array1_size is
stored in the cache then speculative execution does not occur. We
use the SendSE algorithm which is a modification of Send that
during even numbered windows of w cycles sends only a legal
x ′ value and during odd numbered windows it first sends two
x ′ followed by an out-of-bounds x hoping to cause a mispredic-
tion. Consequently, the LocateSets method is also modified to re-
ceive and pass down to SendSE a set ssize which is a candidate
for the set that holds array1_size . For every set s ∈ S the attacker
tests whether it stores array1_size by setting ssize ← s and run-
ning S ′x = LocateSets(Sarray2,p,w,n, interval ,x ,x ′,α , s) for some
x ≥ array1_size and 0 ≤ x ′ < array1_size . With overwhelm-
ing probability S ′x will not be empty and will contain the set that
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stores array2[array1[x] ∗ 256] only if s is the cache set that stores
array1_size .

3.4 Reliable Transmission and Reception
After the setup phase, the attacker can try to mount a Spectre
attack as follows. To learn an out-of-bounds address array1[x] the
attacker can send several legal values x ′, prime the set ssize to
remove array1_size from the cache, prime the cache sets of Su , send
x and then probe the cache sets of Su to look for activity.

However, the attacker needs to overcome two problems with
the straightforward Spectre attack: noise in the measurements and
the difference between Sarray2 and Su . The first source of noise
is software activity that is independent of the attacker and that
affects the cache and therefore cache measurements. Such activity
is inevitable in a multi-tenant and multi-process system, but since
it is independent of the attacker, it is likely that by repeating mea-
surements sufficiently many times the activity in a cache set storing
array2[array1[x] ∗ 256] will be on average noticeably higher than
a cache set storing some independent instructions and data.

The second source of noise is due to failed synchronization
between the send and receive processes of LocateSets. The main
mitigation for this issue is to choose a large enough valuew .

The third source of noise is triggered by the attacker itself in
the process of running the attack. One problem can arise if one of
the cache sets that stores part of the attacker’s code that is used
for transmitting x , but not for transmitting x ′, is also part of Su .
Such a cache set will be correlated with transmission of x , without
being the correct set holding array2[array1[x] ∗ 256]. A second
problem occurs if the cache set storing array1[x] happens to be
one of the sets storing array2[256 ∗ b]. Since array1 is practically
unbounded, this type of noise is very likely to occur for some
values of x resulting in LocateSets returning several candidates for
array2[array1[x] ∗ 256].

To counter the first type of attacker generated noise, the attacker
performs memory accesses to the corresponding instructions re-
gardless of their execution during the two periods, transmission
of x (after transmitting x ′ twice) and transmission of x ′ only. The
result of this idea is that the activity generated by the attacker’s
code will be exactly identical in both periods. In order to reduce
the second type of attacker-generated noise, recall that after the
setup phase, the attacker knows the cache set that holds array1.
Moreover, due to the contiguous layout of array1 in memory, the
attacker can predict the cache sets that store array1[i] for i ≥ 0.
The attacker performs a memory access to the cache set that stores
array1[x] within each period that x is not transmitted, again to
remove the correlation of this set to x .

If Sarray2 ⊊ Su then the attack is slower, because all the sets of
Su must be checked for activity. In addition, correlating the activity
of a set in array2 to a transmitted x does not necessarily reveal
the value of array1[x] since the location of the set within array2
may not be clear. As the attacker proceeds, extracting correlated
sets for values x ≥ array1_size, more values in array2 will be
revealed, leading to a recalculation of Sℓ and Su . Even if a gap
remains between the two collections the attack can still proceed.
Note that the distance between active cache sets, i.e. the cache
sets in Sℓ , is known and the only possible missing information

to determine each set correctly is the location of the first address
of array2. Therefore, the values that attacker extracts act as the
ciphertext of a shift cipher in which the possible shift is one of 256
values, which in practice will be easily broken by guessing the shift.

SendSE-I(w,n,x ,x ′, ssize )
(1) Do n times
(a) clock ← time()
(b) While (time() − clock < w) do

(i) Repeat for x1 = x ′,x2 = x ′ and x3 = x
(A) Probe(ssize ) // Flush the set storing array1_size
(B) Transmit xi to the victim.

(c) clock ← time()
(d) While (time() − clock < w) do

(i) Probe(ssize )
(ii) Transmit x ′ to the victim.
(iii) Access addresses of instructions in 1b, which do not

appear in 1(d)i and 1(d)ii.
(iv) Access a memory address which is mapped to the same

cache set as array1[x].

Figure 4: Improved SendSE with the noise cancellation of
Section 3.4

3.5 Performance Optimization
There are several ways to optimize the rate at which the attack
extracts information from the victim.

3.5.1 Tuning parameters. An obvious goal is to tune the various
parameters of the attack so that performance is optimized with
minimal impact on reliability. Some of the parameters including
interval ,w andn depend heavily on system hardware, software and
environment. For example, the size of a set in the LLC determines

ExractData(xinit ,xterm , S,p,w,n, interval ,x ′,α , β, ssize )
1. For each xinit ≤ x ≤ xterm do
(a) Stmp ← S
(b) For each s ∈ Stmp do score(s) ← 0
(c) While (max{score(s) | s ∈ Stmp } ≤ α ) do

i. Partition S into subsets {S1, S2, . . . , S |Stmp |/p } of size at
most p.

ii. For every S̃ ∈ {S1, S2, . . . , S |Stmp |/p }

A. Run simultaneously
(I) SendSE-I(w,n,x ,x ′, ssize )
(II) Receive(w,n, interval , S̃)

iii. For every s ∈ Stmp do
A. If (score(s) > α ) then output (x , s).
B. If (score(s) < β) then Stmp ← Stmp \ {s}.

Figure 5: Data extraction process. The algorithm receives as
input a range of x values from xinit to xterm , a collection of
sets S (typically S = Su ), architecture dependent parameters
p,w,n and interval , a legal index x ′ for array1, the thresholds
α and β and the set ssize that holds array1_size. The algo-
rithm outputs for each x the corresponding set s which can
be used to learn array1[x].
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the minimum time for probing the set, while the round-trip-time be-
tween the sender and the target impacts interval andw . In Section
4 we provide details on the parameters we used for our tests.

An interesting parameter is the number of times that the branch
predictor needs to receive input that enters a specific branch to be
trained for that branch. Our tests confirm that in Intel’s Haswell and
Skylake architectures the branch predictor can be trained with two
inputs. Therefore, we consistently send exactly two legal inputs
x ′ followed by an out-of-bounds input x to trigger speculative
execution.

3.5.2 Repeated noise. Common cache replacement algorithms use
“pseudo”-LRU policies indicating that recently accessed memory
addresses are likely to be accessed again in the near future and
should therefore remain in the cache.When LocateSets runs SendSE
and Receive in parallel, the same set s is repeatedly probed by
Receive while SendSE repeatedly transmits an input x . While this
strategy will read x as many times as it is sent (assuming that
Prime+Probe is faster than transmission, which is typically the
case), it will also read a lot of repeated “noise”, i.e. memory lines
which are mapped to the same cache set as array2[array1[x] ∗ 256]
that are accessed due to some other process in the system. The
benefit of probing a set s many times in succession is therefore
much lower than accessing at longer intervals due to the temporal
locality of most processes. Therefore, the value of interval should
typically be significantly larger than the bare minimum required for
sending an out-of bounds x and probing a set. Indeed, our approach
is to set interval to be large enough to probe many sets (between
ten and a hundred) within the same interval.

3.5.3 Non-uniform sampling of sets. The process described in Lo-
cateSets probes each cache set the same number of times, disregard-
ing differences between the sets that can be translated to savings
in time and communication. The goal of this optimization is to
identify cache sets that are unlikely to hold array2[array1[x] ∗ 256]
dynamically during the receive process. These sets are discarded
from the collection of sets being probed, leaving more time for
likelier sets to be sampled.

Let tx , tx ′ be time windows of length w cycles each such that
the send process transmits x during tx and transmit x ′ during
tx ′ . If a set s holds array2[array1[x] ∗ 256] and is “quiet”, i.e. has
very little activity that is unrelated to x , then the number of cache
misses during tx is likely to be higher than the number of cache
misses during tx ′ . If s holds array2[array1[x] ∗ 256] and is “noisy”,
then this measurement may need to be repeated several times to
reach the correct conclusion about s . Furthermore, if s does not hold
array2[array1[x] ∗256] then it is very unlikely that over a sufficient
number of measurements activity in tx will be significantly higher
than activity in tx ′ .

To decide which sets are likely to hold array2[array1[x] ∗ 256].
We use a threshold n as the number of times the activity of a set
is compared between periods tx and tx ′ and two rating thresholds
0 ≤ β < α ≤ 1.

The heuristic rating of cache sets proceeds as follows. Initialize
a collection of sets S ← Su and iterate over S probing each cache
set s ∈ S during several tx and tx ′ windows. If after n iterations,
score(s) < β then remove s from S for the next iteration. If there

exists a set s ∈ S such that score(s) > α then return s as the likely
set to hold array2[array1[x] ∗ 256].

3.6 Putting it all together
In this section we put together the insights from Sections 3.4 and
3.5 to improve the basic data extraction algorithms. Pseudo code for
the improved SendSE process, SendSE-I appears in Figure 4. The
Receive process remains the same as presented earlier in Figure 3.

Pseudo-code for the data extraction process appears in Figure
5. The algorithm attempts to extract every byte from array1[x] by
using SendSE − I and Receive to grade the sets based on their cache
misses sampled in Receive . The algorithm either discards them for
the current x or returns a likely candidate for a cache set that stores
array2[array1[x] ∗ 256].

4 EVALUATION
We evaluated the attack in a lab environment and report on the
rate and the accuracy of the setup and attack phases. The labora-
tory setup included a Lenovo Ideapad Y700 laptop equipped with
an Intel i7-6700HQ Processor (Skylake family), running Ubuntu
16.04.4 LTS, as well as a desktop PC with an Intel i5-4590 Processor
(Haswell family), running Ubuntu 14.04 LTS. Both processors have
four physical cores and an LLC of size six megabyte. However, the
Skylake processor has hyper-threading, which enables eight virtual
cores and therefore the LLC is divided into eight slices of 1024 sets
each. The Haswell processor does not have hyper-threading and
its LLC is divided into four slices of 2048 sets each.

On each machine, the attack was carried out in two virtualization
environments, using either VMs or Linux containers. In the first case
the VMs were compatible with x86 instructions, running Lubuntu
18.04. In each test a simple victim ran as a VM (or a container) on
one core, while the attacker ran on two cores (physical cores in
the Haswell and two virtual cores on a single physical core in the
Skylake). One of the attacker’s cores was used for the Send process
and the other for executing the rest of the attack. The source code
of the attack software we developed can be downloaded from [1].
The software uses the Mastik toolkit [23] for cache attacks.

4.1 Setup Phase
The attacker performs the setup in two main stages. In the first it
discovers the sets Sℓ , Su and the value of array1_size. In the second
stage the attacker finds the cache set that stores array1_size. The
time required for the first stage is linear in the value of array1_size
and the time required for the second stage is linear in the size of the
LLC (no information on the location of array1_size is assumed). The
evaluation optimizes the second stage compared to the description
in Section 3.3 by using the non-uniform sampling optimization of
Section 3.5. This optimization results in a complex relation between
the running time of the second stage, the size of Su and the noise
in the system.

Thew andn parameters were chosen for accuracy. Smaller values
lead to more errors, while higher values lead to slower running
time without improving accuracy. The value of interval was chosen
to be much larger than the minimum (which was about 4000 clock
cycles for containers and 20000 cycles for VMs) to reduce the effects
of system noise. In all measurements, α = 0.9 and β = 0.55.



SAC ’19, April 8–12, 2019, Limassol, Cyprus Ben Amos, Niv Gilboa, and Arbel Levy

Stage 1 Stage 2 worst case Stage 2 best case Parameter choice
time (seconds) time (seconds) time (seconds) w (cycles) n interval(cycles)

Haswell VMs 5.9 ∗ array1_size 2191 1170 5 · 106 16 2 · 105
Haswell Containers 1.17 ∗ array1_size 456 192 2 · 106 10 2 · 105
Skylake VMs 2.16 ∗ array1_size 3503 732 5 · 106 10 2 · 105
Skylake Containers 1.15 ∗ array1_size 837 242 2 · 106 10 2 · 105

Table 1: Time measurements for the setup phase. Stage 2worst case refers to the largest possible size for Su , which is 255 or 256
sets in each slice, resulting from |Sℓ | = 1. Stage 2 best case refers to Su = Sarray2, i.e. 256 sets in a single slice.

Accuracy Rate Stress (Accuracy) Stress (Rate)
Prob. Bytes/sec Prob. Bytes/sec Prob. Bytes/sec Prob. Bytes/sec

Haswell VMs 0.95 1.52 0.93 1.78 0.98 0.41 0.91 0.90
Haswell Containers 0.98 5.84 0.96 9.34 0.97 4.92 0.94 9.09
Skylake VMs 0.99 2.93 0.96 6.71 0.96 0.84 0.90 1.33
Skylake Containers 0.96 10.0 0.96 10.0 0.96 3.33 0.96 3.33

Table 2: Attack Performance: Each entry includes the probability of successful byte extraction and the extraction rate. Pa-
rameters are tuned for each case and range between w = 2 · 106,n = 7, interval = 5 · 104 for containers to w = 107,n = 60 and
interval = 4 · 105 for VMs. The thresholds are α = 0.90 and β = 0.55.

4.2 Attack Phase
We use two measures to evaluate the attack, its rate, i.e. the number
of bytes per second that the attack retrieves, and its accuracy, i.e.
the probability that a byte that the attack extracts is correct.

We perform the evaluation for both hardware platforms and
virtualization environments in four different regimes. We run the
tests on either a relatively quiet system or using a stress tool [11]
that runs at maximum utilization to allocate large memory regions,
thus causing sustained activity in the LLC. In addition, we tune
parameters either to a regime of maximum accuracy, defined as
probability of correctly extracting each byte in the range 0.95 − 1
per byte, or for higher rate while maintaining at least 0.9 probability
of success per byte. The results are summarized in Table 2.

5 MONITOR AND STEALTH ATTACK
5.1 Monitoring Architecture Design Scheme
5.2 Stealth Attack
Since the attack as described can be detected, we wish to reduce
the impact the attack has on the various hardware counters such
as L3_TCM and BR_MSP. It is clear that in order to lower these
counters from the victim’s perspective, the attacker needs to re-
design some of the algorithms described as to lower the intensity
of branch mispredictions and LLC misses. First, the attacker needs
to apply random idle intervals frequently as possible in order to
not pose as a suspect the majority of the time. Second, the attacker,
when not in idle mode, needs to perform actions such that only
attack-crucial (atomic) bundle of instructions are not separated by
idle intervals.
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