
Secret Sharing Krohn-Rhodes:

Private and Perennial Distributed Computation∗

Shlomi Dolev1 Juan Garay2 Niv Gilboa3 Vladimir Kolesnikov4

1Dept. of Computer Science, Ben-Gurion University
2AT&T Labs – Research

3Dept. of Computer Science, Ben-Gurion University and Deutsche Telekom Laboratories
4Bell Laboratories

dolev@cs.bgu.ac.il garay@research.att.com niv.gilboa@gmail.com
kolesnikov@research.bell-labs.com

Abstract: In this paper we consider the problem ofn agents wishing to perform a given computation on common
inputs in a privacy preserving manner, in the sense that even if the entire memory contents of some of them are
exposed, no information is revealed about the state of the computation, and where there is noa priori bound on
the number of inputs. The problem has received ample attention recently in the context ofswarm computingand
Unmanned Aerial Vehicles (UAV) that collaborate in a common mission, and schemes have been proposed that
achieve this notion of privacy for arbitrary computations, at the expense of one round of communication per input
among then agents.

In this work we show how toavoid communication altogetherduring the course of the computation, with the
trade-off of computing a smaller class of functions, namely, those carried out by finite state automata. Our scheme,
which is based on a novel combination of secret-sharing techniques and the Krohn-Rhodes decomposition of finite
state automata, achieves the above goal in an information-theoretically secure manner, and, furthermore, does not
require randomness during its execution.

Keywords: Private computation; Information-theoretic security; Finite state automata; Krohn-Rhodes decompo-
sition.

∗Work partially supported by DIMACS, FRONTS EU Project, US Air Force European Office of Aerospace and Develop-
ment, grant #FA8655-09-1-3016, the Rita Altura trust chair in computer sciences, Deutsche Telekom Laboratories at Ben-Gurion
University of the Negev, and Lynne and William Frankel Center for Computer Sciences.

1 Introduction

There is great interest in pervasivead hocand
“swarm” computing [18], particularly in swarm-
ing Unmanned Aerial Vehicles (UAV) that collab-
orate in a common mission (e.g., [4, 10] and refer-
ences therein). Hiding the state of the swarm from
(a subset of) the swarm participants while keep-
ing and updating the global swarm state, due to a
possiblyunboundedsequence of inputs, is an im-
portant task (e.g., [4, 6]). In this work we make
progress in this area, by showing the feasibility of
non-interactive private distributed computation on
such unbounded input sequences.

Recently, Dolevet al. [4] presented schemes
that support infinite private computation by
implementing a distributed version of a so-
calledstrongly obliviousuniversal Turing machine
(TM)1. However, this is done at the expense of
one round of communication per received input
amongst the participants. In contrast, in this work
we show how to avoid communication altogether
during the course of the computation, with the
trade-off of computing a smaller class of functions.

1.1 Our setting and goal

Specifically, we consider a distributed compu-
tation setting in which a party, which we refer to
as the dealer, has a finite state automaton (FSA)
A which accepts an (a priori unbounded) stream
of inputs x1, x2, . . . received from an external
source. We are interested in situations in which the
dealer cannot perform the required computation,
but instead delegates the responsibility to agents
P1, . . . , Pn. Each of the agents receives all the
inputs destined toA during its execution. The
agents execute their distributed implementation of
A (without communication!) and, at a given signal
from the dealer, terminate the execution, compute
the current state ofA, and return it as output.

Furthermore, there is an additional entity, called
the adversaryAdv, who is able to adaptively “cor-
rupt” a subset of the agents (i.e., inspect their in-
ternal state) during the execution phase, up to a

1An obliviousTM moves the tape heads through the same
sequence of cells; astrongly obliviousTM is a Turing machine
in which the movement of tape heads is a function only of the
cell indices that the heads point to. Not every oblivious TM is
strongly oblivious, since the movement of the tape heads may
be a function of time, not only of space.

threshold2 t < n, and our objective is to ensure
that the agents’ computation is as private as pos-
sible. We do not aim to maintain the privacy of
the automatonA; however, we wish to protect
the secrecy of the state ofA and the inputs’ his-
tory. We note thatAdv may have external infor-
mation about the computation, such as partial in-
puts or length of the input sequence, state informa-
tion, etc. This auxiliary information, together with
the knowledge ofA, may exclude the protection of
certain configurations, or even fully determineA’s
state. We stress that this cannot be avoided in any
implementation, and we do not consider this an in-
security. Thus, our goal is to prevent the leakage
or derivation byAdv of any knowledge from see-
ing the execution traces whichAdv did not already
possess.

1.2 Our approach

We present a scheme that achieves the above
goal in an information-theoretically secure man-
ner (i.e., there are no bounds imposed onAdv’s
computational power), and does not require ran-
domness during the execution ofA. Our scheme
is based on a novel combination of secret-sharing
techniques [17] and the Krohn-Rhodes decomposi-
tion of finite automata [12, 13]. Informally, Krohn-
Rhodes theory states that any finite state automa-
ton can be emulated by a combination (cascade
product—see Section 2) of permutation automata
and flip-flop automata. (A permutation automa-
ton is any automaton such that each of its possi-
ble input symbols induces a permutation of the au-
tomaton’s states.) The computation complexity per
each received input symbol, and the storage com-
plexity required by our scheme are a function only
of (the decomposition of)A, and not of the num-
ber of symbols processed. A trade-off for this is
that, depending onA, the number of components
of its Krohn-Rhodes decomposition might be ex-
ponential in its number of states.

We note, however, that for many interesting and
relevant automata, there is a small Krohn-Rhodes
decomposition. Section 4.4 presents an example
of such an automata family with a small Krohn-
Rhodes representation.

For ease of exposition, in this submission we

2We note that more general access structures may be natu-
rally employed with our constructions; see Section 2.

1

concentrate on the case of passive corruptions—
i.e.,Adv is considered “honest but curious.” How-
ever, since our construction does not require com-
munication among parties at the time when cor-
ruptions are allowed, it can be readily strengthened
to handle active corruptions by employing secret-
sharing schemes (e.g.,unverifiedsecret sharing [5,
16]) that are robust against disruptive behavior,
and suitable for our scenario.

As noted earlier, swarms and sensor networks
(e.g., [4, 6]) are areas that can potentially benefit
from our scheme. Another area of great current
interest where user privacy is critical is that of out-
sourcing computation and storage to the “cloud.”
Yet, a big challenge in making the shift in comput-
ing to the cloud infrastructure is finding a way to
ensure the privacy of the computation. One pos-
sible approach is for the users to run the program
distributively on several computing clouds in such
a way that even if some of them collude and ex-
change information they still will not be able to
learn the program and/or the data they use for the
computation. Furthermore, the type of computa-
tion may be of a “never-ending” nature, such as
ongoing sequence of tasks performed by an oper-
ating system; the output of a given task or state of
an on-going system can then be revealed by receiv-
ing information from all or a sufficient number of
cloud suppliers participating in the computation—
very much like a terminal client is used to interface
with remote computers. Our work also addresses
this scenario.

1.3 Related work
Reactivek-secret sharing with no communica-

tion among agents participating in a swarm has
been suggested in [6]. Several solutions that
are able to withstand limited memory corruptions
were presented, some of them based on the lin-
earity of secret sharing, supporting addition and
multiplication by constants. The last solution is
based on maintenance of the vector of possible
states by each agent, masking the actual state of
the swarm (defined to be the one with a majority
of copies) by redundant states (with fewer copies).
In general, two states maintained by an agent may
yield the same next state when a certain input is
received, thus redundancy of states may be elimi-
nated over time. Randomization is used in [6] in
order to cope with such a convergence, randomly

choosing a state for the extra copies in the vec-
tor when two or more states become equal. In
contrast, in this work we show that it is possible
to solve the problem of convergence to the same
state in a deterministic way using Krohn-Rhodes
decomposition. Furthermore, the scheme in this
work is information-theoretically secure.

As mentioned above, the authors recently pre-
sented schemes that support the same type of
perennialprivate computation considered here by
implementing a universal Turing machine pri-
vately, with one round of communication per tran-
sition [4]. In this work we show how to avoid
communication completely during the course of
the actual execution, at the expense of computing
a smaller class of functions.

The type of private computation we consider
is also related to the problem of (information-
theoretic, or unconditional) secure multi-party
computation (MPC) [1, 3]. We perform a detailed
comparison below.

1.4 Unbounded-input private computation
vis-à-vis MPC

Recall that in secure multi-party computation,n

parties (“players”), some of which might be cor-
rupted, are to compute ann-ary (public) function
on their inputs, in such a way that no information
is revealed about them beyond what is revealed by
the function’s output. At a high level, we similarly
aim in our context to ensure the correctness and
privacy of the distributed computation. However,
as we now argue, our setting is significantly differ-
ent from that of MPC, and MPC solutions cannot
be directly applied here.

Firstly, MPC aims to solve a different problem,
that of protecting the players’ individual inputs
from Adv, who can corrupt some of them, learn
their input and observe the communication they re-
ceive. In contrast, in our problem the inputs are
common to all the players (but nota priori known
to Adv, or revealed in case of corruption), and the
goal is to protect the state of, as well as the in-
puts to the computation. (Therefore, we cannot in
particular treat the common input as public infor-
mation, and the shares received from the dealer as
MPC input.)

Of course, an adequate representation (circuit-
based, for example) of the MPC computation
would be able to evaluateA, with respect to a sub-

2

set of corrupted players, and at least for the basic
MPC setting, where there is a single (tuple of se-
cret) input(s) out of which an output (tuple) is pro-
duced. But then comes our main feature, of mul-
tiple, possibly unbounded number of input sym-
bols. This is reminiscent of securereactivesys-
tems (e.g., [15]), where the computation is not lim-
ited to “one shot” as above, but instead processes
inputs “in blocks” throughout several rounds of
interaction. However, because all MPC solutions
(and definitions) are explicitly tied to the length of
the input, being able to handle unbounded number
of inputs without communication does not seem
immediate. This is what our Krohn-Rhodes-based
approach achieves, at the expense of solving a nar-
rower problem.

Looking at the relationship with MPC from
another perspective, we note that it is thecom-
bination of our requirements of non-interactivity
during the input-processing phase, information-
theoretic security, and computation on inputs of
unbounded length, that precludes the use of known
MPC techniques. That is, with any of the three re-
quirements removed, known techniques would al-
low stronger results to be achieved.

Indeed, we have discussed above the possibil-
ity of solutions in the setting where the inputs are
bounded. Alternatively, if we only required com-
putational secrecy, then the players could use fully
homomorphic encryption [9] to maintain under en-
cryption the current state of the computation on un-
bounded inputs (and carry shares of the scheme’s
private key). Further, if ana priori bound on
the input length existed, players could simply en-
crypt their inputs with any public-key encryption
scheme, again keeping shares of the decryption
key. Finally, allowing interaction during the in-
put processing phase can effectively bring us to the
bounded-input setting, since interaction—and thus
share updates using MPC—could occur after a cer-
tain fixed number of inputs has been processed.

1.5 Organization of the paper.

Section 2 presents the necessary background for
this paper. Section 3 defines our notion of secure
computation in a swarm and Section 4 describes
our construction in detail. For the purpose of read-
ability, proofs are presented in an appendix.

2 Preliminaries, Notation and Back-
ground

In this section we introduce the notation used
throughout the paper, and present the necessary
background material and tools—secret sharing
schemes, finite state automata, and Krohn-Rhodes
theory. LetP1, . . . , Pn be then agents that dis-
tributively will executeA.

2.1 Secret sharing
We start with an overview of our basic tool,se-

cret sharing[17], where essentially, a secret piece
of information is “split” into shares by a distin-
guished player calledthe dealer, in such a way that
up to a thresholdt < n of the players pulling to-
gether their shares are not able to learn anything
about it, whilet+ 1 are able to reconstruct the se-
cret. In fact, we consider general secret sharing
for anymonotone access structure[11], a general-
ization of threshold secret sharing. More formally,
anaccess structureU is simply a set of subsets of
P1, . . . , Pn, that is,U ⊆ 2{P1,...,Pn}. We say that
U is monotoneif for every I ∈ U , we have that
I ′ ∈ U for everyI ′ such thatI ⊆ I ′.

Definition 2.1 We say that a secret-sharing
schemeS has anaccess structureU , if any set of
shares held by players of any setI ∈ U allows the
reconstruction of the secret, while shares held by
playersI ′ 6∈ U yields no information on the se-
cret. Additionally, we say thatS has a monotone
access structure, ifU is monotone.

For simplicity, sometimes in our discussion we
concentrate on(t, n) threshold secret sharing,
whereU is the set of all subsets of then play-
ers of size greater thant. Further, the presenta-
tion above is only concerned with the privacy of
the secret. Correctness in our scenario can also be
guaranteed against actively disruptive behavior by
at mostt parties by employing so-calledunverified
secret sharing schemes [5, 16] (“unverified” relates
to the fact that the dealer is honest), and adjusting
the threshold (resp., access structure) tot < n

3
.

2.2 Some automata theory notions
A finite-state automaton(FSA)A has a finite set

of statesST , a finite set of input symbolsΓ, and
a transition functionµ : ST × Γ −→ ST . We do
not assume an initial state or a terminal state; the

3

automaton may begin its execution from any state
and does not necessarily stop.A′ = (ST ′,Γµ′)
is a sub-automatonof A if ST ′ ⊆ ST , Γ′ ⊆ Γ
and µ′ is the reduction ofµ to ST ′ × Γ′ and
µ′(s′, γ′) ∈ ST ′, for any s′ ∈ ST ′ and any
γ′ ∈ Γ′. For every input symbolγ ∈ Γ and ev-
ery s ∈ ST , we denote byµγ : ST −→ ST the
functionµγ(s) = µ(s, γ). Further, we denote the
state ofA when executed with initial statesinit
and inputγ1 . . . , γk byA(sinit, γ1 . . . , γk).

Definition 2.2 A permutation automatonis a finite
automaton such that for everyγ ∈ Γ, the function
µγ is a permutation onST .

Definition 2.3 A flip-flop automatonis a finite au-
tomaton with two statesST = {s0, s1} and three
inputs Γ = {γ0, γ1, γ2}, such thatµγ0

is the
identity function,µγ1

is defined byµγ1
(s0) =

µγ1
(s1) = s0, andµγ2

is defined byµγ2
(s0) =

µγ1
(s1) = s1.

Figure 1 shows an example of apermutation au-
tomaton. Figure 2 shows a flip-flop automaton.

Figure 1: A permutation automaton

Figure 2: A flip-flop automaton

A cascade productof automata is a sequence of
automata such that the input to thei-th automaton
is a function of a global input and of the states of
automata1, 2, . . . , i − 1. As an example consider
the automaton in Figure 3, that starting at states0
reaches statesa if and only if fourγ1 symbols ap-
pear in its input. This Four-γ1 checker can be em-
ulated by a sequence of two automata: the permu-
tation automaton in Figure 1 and the flip flop of
Figure 2.

Let the permutation automaton and the flip
flop begin execution froms0. The input of the
permutation automaton is the same input as that
of the fourγ1 checker. The input of the flip-flop
is determined by a functionΨ that maps a state of
the permutation automaton and an input symbol
of the fourγ1 checker to an input symbol of the
flip-flop. Ψ(s3, γ0) = γ2, and for any other input
pair 〈s, γ〉, we defineΨ(s, γ) = γ0. This cascade

product emulates the fourγ1 checker because the
flip flop is in states1 if, and only if, the fourγ1
checker is in statesa while the flip flop is in state
s0; thus the permutation automaton is in the same
state as the fourγ1 checker.

Figure 3: Fourγ1 checker

2.3 Krohn-Rhodes theory
At a high level, the hierarchical algebraic de-

composition of finite state automata, known as
Krohn-Rhodes theory [12, 13], shows how to
emulate a finite automaton by a combination
(product—see below) of permutation and flip-flop
automata. We now present the background on
Krohn-Rhodes theory that is necessary for the cur-
rent work. Our presentation follows the interpre-
tation given in [7], which greatly expands on the
short summary we present, and by Margolis in
[14].

Definition 2.4 Let A = (ST,Γ, µ) and A′ =
(ST ′,Γ′, µ′) be two automata. A pairΨ =
(Ψ1,Ψ2) of surjective mappingsΨ1 : ST −→
ST ′ andΨ2 : Γ −→ Γ′ is a homomorphismof
A ontoA′ if for everys ∈ ST, γ ∈ Γ we have
Ψ1(µ(s, γ)) = µ′(Ψ1(s),Ψ2(γ)).

If A has a sub-automaton which can be mapped
homomorphically byΨ ontoA′, then we say that
A homomorphically representsA′. An important
property of such homomorphism is thatA can be
executed instead ofA′ in the following sense. Sup-
poseA′ begins execution at states′, receives a
stream of input symbolsγ′

1, . . . , γ
′
k, and terminates

in statet′. Then, ifA begins execution in state
s, such thatΨ1(s) = s′ and receives a stream of
input symbolsγ1, . . . , γk such thatγi = Ψ2(γi)
for every i thenA terminates in statet such that
Ψ1(t) = t′.

There are several different ways to arrange a
sequence of automata,A1 = (ST1,Γ1, µ1), . . .,
Am = (STm,Γm, µm), to define a singleproduct
automaton. We are interested in the following type
of product.

Definition 2.5 A finite automatonA = (ST,Γ, µ)
is called acascade productofA1 = (ST1,Γ1, µ1),

4

. . ., Am = (STm,Γm, µm), denoted byA1, . . .,
Am(Γ, ϕ1, . . . , ϕm), if ST = ST1 × . . . × STm,
there exist functionsϕ1, . . . , ϕm such that
ϕi : ST1× . . .×STi−1×Γ −→ Γi, for everyi =
1, . . . ,m, andµ is defined byµ((s1, . . . , sm), γ) =
(µ1(s1, ϕ1(γ)),. . .,µm(sm, ϕm(s1, . . . , sm−1, γ)).

Thus, in a cascade product, the input to theith
component automaton (“child” automaton) is a
function of the global input (γ) and thei− 1 states
of the previousi−1 cascade components (“parent”
automata).

Let A = (ST,Γ, µ) be an automaton and de-
note byµw a function on the states defined by
µw(s) = µ(s, w) for every w ∈ Γ∗ (that is,
words defined overΓ). The characteristic semi-

groupof A is S(A)
△
= {µw : w ∈ Γ+} with com-

position of functions as the semigroup’s binary op-
erator. S(A) together withµλ (whereλ is the
empty word) forms the characteristic monoid. If
this monoid is a group, thenA is a permuta-
tion automaton.S(A) is a transformation semi-
group, i.e., it includes functions ofST into it-
self. We denote this transformation semi-group by
(ST, S(A)).

Definition 2.6 (ST, S(A)) divides (ST ′, S(A))′

if for some subsetY ⊆ ST ′, and sub-semigroup
T of S(A))′ that mapsY into itself, there exists
an onto functionθ2 : Y −→ ST and a surjective
semigroup homomorphismθ1 : T −→ S(A)) sat-
isfyingθ2(t(y)) = θ1(t)(θ2(y)) for all y ∈ Y, t ∈
T .

Theorem 2.7 (Krohn-Rhodes)A finite automa-
ton A can be homomorphically represented
by a cascade product of components from
{AF ,AG1

, . . . ,AGℓ
}, whereAF is a flip-flop au-

tomaton andAG1
, . . . ,AGℓ

are permutation au-
tomata. Furthermore, ifS(A) is the characteristic
semi-group ofA andG1, . . . , Gℓ are the charac-
teristic groups ofAG1

, . . . ,AGℓ
, thenG1, . . . , Gℓ

can be chosen as all the simple groups that divide
S(A).

To be concrete, we will be interested in the most
efficient method of constructing a Krohn-Rhodes-
type cascade product, namely, Eilenberg’sholon-
omy decomposition[8, 19]. In holonomy decom-
position, an automaton is decomposed into compo-
nent automata that have two kinds of transitions:

permutations and resets; a reset transition is sim-
ply the constant function from all the states to one
single state. Specifically, each componentH in a
holonomy decomposition includes a permutation
automatonH and all resets onH.

Theorem 2.8 (Holonomy decomposition [8])A
finite automatonA with m states can be homo-
morphically represented by a cascade product of
componentsH1, . . . ,Hk, such thatk ≤ m and the
number of states inHi, i = 1, . . . ,m, is at most
m− i+ 1.

In our scheme, we will require a decomposition
into permutation automata and flip-flops (which
have resets on two states). Transforming ani-state
componentH into a cascade product of permuta-
tion automata and flip-flops is easy by usingH and
log2 i flip-flops to represent all the resets onH.

3 Private Distributed Computation
on Global Inputs

In this section we define the exact notion of pri-
vate distributed computation in our context. Re-
call that our goal is for agentsP1, . . . , Pn to jointly
compute a state of a given finite automatonA on
the (a priori unbounded) global input streamX re-
ceived by each agent, in such a way not of them re-
veal any information about it. The agents’ compu-
tation is divided into three phases: sharing phase,
online (computation) phase, and reconstruction. In
the sharing phase, the dealer initializes the agents
based on his random tape, the automatonA, and its
initial statesinit. In the online phase, the agents
process the inputs and update their state accord-
ingly; in this phase, no communication takes place,
and the agents may be corrupted byAdv. Finally,
in the reconstruction phase, the agents collaborate
to reconstruct the state ofA. We stress that it is
assumed thatAdv is not able to interfere with or
observe the sharing and reconstruction phases.

As noted above, in the online phase, up to
a thresholdt of the agents3 may be corrupted
by the adversaryAdv, who then learns their in-
ternal states. We require that the agents carry
out the computation without leaking any informa-
tion, such as initial and current states and inputs

3Our protocols and definitions can be readily extended to
general access structures.

5

seen. For simplicity, we considersemi-honest(also
called “honest-but-curious”) adversaries; that is,
each participant (even when corrupted) continues
to execute the protocol as required. Note, how-
ever, that since the online phase does not involve
any communication, an actively malicious behav-
ior would be of no consequence and only amount
to inspection of the states of corrupted players.
During the reconstruction, disruptive behavior and
“cheating” can be overcome simply by using secret
sharing with stronger reconstruction (lower thresh-
old) properties. Informally, we say that the dis-
tributed computation performed by the agents as
described above issecureif it is correct, and the
combined state of up to the threshold of corrupted
parties gives no information about the state of the
computation or on the history of inputs.

We define two notions of security in this work.
Security in a weaker setting, which we call thesi-
multaneous corruptionmodel, relates to the adver-
sary who is only allowed to corrupt up tot parties
simultaneously. Although weaker than the next,
this is perhaps a more intuitive model, which is
also practical and interesting in its own right. We
then consider the strongerprogressive corruption
model, where the adversary is allowed to corrupt
players as the execution of the protocol proceeds4.
Our protocols are secure in the stronger progres-
sive corruption model.

As mentioned before, we allow the adversary
to have unbounded computational power, and are
thus interested in protocols that are information-
theoretically secure. Our definitions follow the
standard paradigm in cryptography of indistin-
guishability/simulatability of views of the adver-
sary.

Let A = (ST,Γ, µ) be an FSA with initial
states ∈ ST . Let X = (γ1, γ2, . . .) ∈ Γ∗ be
the (global) input given to all agents. LetI =
{Pi1 , . . . , Piℓ}, ℓ ≤ t, be a subset of agents. We
denote byViewΠ

I (X, s) the probability distribu-
tion of the view ofAdv, which is the aggregated
memory contents of all parties inI as they execute

4We note that our two allowed corruption models resemble
the secure multi-party computation (MPC) notions ofstaticand
adaptivesecurity, respectively [2]. However, since in our set-
ting the adversary is not allowed to corrupt agents at the onset
of the computation, as well as to continue to monitor their state
after corruption, as is the case in MPC, we use different names
to avoid confusion.

protocolΠ on inputX starting onA’s initial state
s.

Definition 3.1 (Correctness)We say that proto-
col Π evaluatesautomatonA with respect to
thresholdt if for any natural numberk and any
input streamγ1 . . . , γk as above, (only) the mem-
bers of any subsetS ⊂ {P1, ..., Pn}, |S| > t, cor-
rectly outputA(sinit, γ1 . . . , γk) in its reconstruc-
tion phase.

Definition 3.2 (Privacy in the SCM) We say that
Π is private in the Simultaneous Corruption Model
(SCM) if for every two statess1, s2 ∈ ST , in-
put streamsX1, X2 ∈ Γ∗, and sets of agents
I1, I2, |I1| = |I2| ≤ t, ViewΠ

I1
(X1, s1) =

ViewΠ
I2
(X2, s2).

We now give some intuition behind Defini-
tion 3.2. The simultaneous corruption model ad-
dresses the case whereAdv takes a “snapshot” of
the states of corrupted players at an arbitrary point
during the online phase. Our requirement of iden-
tical distribution of views means that the combined
memories of the corrupted players are independent
of the so-far processed inputs, initial states, and
even of the IDs of the corrupted players (note that
they are not included in the view). As an instruc-
tive example, let us verify that the definition guar-
antees that the current state ofA is hidden from
Adv. Indeed, suppose otherwise, and thatAdv can
recover some information about the state ofA if
a certain input sequence is executed. Then,Adv

could distinguish this view from, for example, the
view resulting from the execution on an empty in-
put on a random initial state, which is prohibited
by the definition.

Next, we introduce a stronger notion of security,
which allowsAdv to corrupt the agents as the ex-
ecution progresses. First, we define acorruption
timeline as the vectorρ = (〈n1, Pi1〉, 〈n2, Pi2〉,
..., 〈nℓ, Piℓ〉), wherenj ∈ N, 1 ≤ j ≤ ℓ, is the
number of symbols that are received beforePij is
corrupted, andℓ ≤ t. For clarity, we state that
Pij 6= Pik for i 6= k, i.e., a player cannot be
corrupted twice. We denote byViewΠ

ρ (X, s) the
probability distribution of the aggregated internal
states of corrupted agents at the time of corruption,
when executed on inputX ∈ Γ∗ and initial states.

6

Definition 3.3 (Privacy in the PCM) We say that
Π is private in the Progressive Corruption Model
(PCM) if for every two statess1, s2 ∈ ST , in-
put streamsX1, X2 ∈ Γ∗, and corruption time-
lines ρ1, ρ2, |ρ1| = |ρ2|, ViewΠ

ρ1
(X1, s1) =

ViewΠ
ρ2
(X2, s2).

This definition follows the spirit of Definition
3.2, with the notable addition of the power ofAdv

to corrupt agents at different stages of execution
of the online phase, perhaps more natural in some
scenarios than taking a simultaneous “snapshot” of
the agents’ internal states. Yet, by not allowing
the adversary in this corruption model to see the
subsequent inputs of a corrupted agent, we are able
to impose a stronger security requirement, namely,
the indistinguishability of the views generated by
two different input streams.

Remark 3.4 In our definitions, we require that the
views of adversary based on any two executions be
distributed identically. Clearly, this implies that
it is possible to simulate the views without know-
ing the dealer’s shares, inputs, and even the length
of the input stream. The simulation is simply per-
formed by executing the protocol on any (e.g., ran-
domly chosen) input. Further, the complexity of
the simulator is exactly equal to that of an honest
player executing the potocol.

4 Privately Computing an Automaton
State

In this section we present our automata-based
construction, which allows us to achieve the notion
of distributed private computation formulated in
Section 3; the construction is based on the Krohn-
Rhodes decomposition. We first present a high-
level intuition of how it works.

4.1 The construction at a high level
Assume we are given a cascade product of per-

mutation and flip-flop automata. We show how to
secret-share the composed automaton and its cur-
rent state, and how to update the shares as a result
of the agents receiving (an unbounded number of)
input symbols.

At any time, a quorum of secret-sharing agents
can reconstruct the state of the automaton. Recall
that the automaton itself is public, and need not be
protected.

An (independent) permutation automatonA is
shared simply by secret-sharing among the agents
a1 for the active state, and a0 for each other state.
Thus, for an automaton withm states, each partici-
pant will havem shares, one share associated with
each state ofA. Upon inputγ ∈ Γ, the player will
simply reassign each share according toγ. That is,
for each statesi, the share associated withsi will
be assigned to stateµ(γ, si). It is easy to see, from
the properties of secret sharing, that such sharing
and input processing maintains the privacy of cur-
rent states and the correctness of state reconstruc-
tion.

An (independent) flip-flop automatonA is
shared and processed as follows. AsA consists of
only two states, we simply create a “mirror” flip-
flopA′, which, on any sequence of inputs, always
remains in the state opposite to that ofA. Then,
the dealer sends each player the two automata in a
random order, and a share of a pointer to the “cor-
rect” one. Upon inputγ ∈ Γ, the agents simply
apply the input to each of the two automata they
have. Clearly, the secrecy of the current state is
preserved; further, correctness of reconstruction is
assured since the quorum of agents can reconstruct
the pointer to the correct automaton, and obtain the
current state.

However, recall that we are interested in the
cascade product representation, where the the in-
put for each component automaton depends on
the states of its “parent” automata in the cascade
(see Definition 2.5 and the following paragraph).
Clearly, the agents must not know any of the au-
tomaton’s states. Our solution is to maintain many
instances of each child automaton (one for each
state configuration of parent automata). Then we
can apply the transition function based on the
state associated with each particular instance. Of
course, as inputs are processed and the parent state
configuration changes, we need to reassign these
configurations to the child instances.

One natural way to do the above is by represent-
ing the automaton composition as a tree, rooted
with the upper level automaton,A1. In the tree,
each parent permutation automatonAi has mi

children (one for each of its states). A parent flip-
flop automatonAi has two child automata. Each
of the children is labeled (via the tree edge) with
the state ofAi it is associated with. Thus, a la-

7

beling of the path to the root represents the entire
parent configuration, and allows the players to ap-
ply the transition function to each (share of the)
automaton in the tree.

Finally, as the input is processed, we maintain
the correct associations between child instances
and parent states by reassigning the edge labeling
according to the parent state transition. That is, for
each state transitionsi → µ(γ, si) in the parent
automaton, each edgesi is relabeled withµ(γ, si).
This ensures that the child, which has a state that
depends on the state of its immediate parent, con-
tinues to properly “follow” the parent’s state. Be-
cause the parent’s labels are also adjusted, each
child automaton consistently “follows” its parent
configuration.

State reconstruction for this scheme is also nat-
ural. Given the quorum, we start by reconstructing
the parent state, and then proceed with the recon-
struction down the appropriate path.

4.2 The construction in detail
Initialization phase. The dealer begins this
phase by computing a cascade product of
permutation automata and flip-flops,A1, . . .,
Am(Γ, ϕ1, . . . , ϕm) that homomorphically repre-
sentsA. Krohn-Rhodes theory (cf. Section 2)
states that such a cascade exists, and holonomy de-
composition is a way to construct it.

The dealer constructs a rooted tree,T , based on
this cascade. The tree consists ofm+1 levels, level
1 for the root and levelm+ 1 for the leaves. Each
node in levels1, 2, . . . ,m contains an automaton,
while all the nodes in levelm+1 are empty. IfAi

is a permutation automaton, then all leveli nodes
containAi. If Ai is a flip-flop automaton, then
every node at leveli contains two flip-flops.

In each node that holds two flip-flops, there is
one flip-flop such that the initial state iss0, γ0 is
the identity function,γ1 resets tos0 andγ2 resets
to s1. In the other flip-flop, the initial state iss1,
and the reset edges are switched:γ1 resets tos1
andγ2 resets tos0. This arrangement ensures that
if both flip-flops receive the same input they will
always be in opposite states.

A node in leveli, 1 ≤ i ≤ m, has several chil-
dren in leveli + 1. If Ai = (STi,Γi, µi) is a per-
mutation automaton then the node has|STi| chil-
dren, a child for each state ofAi. If Ai is a flip-
flop, then the node has two children, one for each

of the two flip-flops in the node. Each edge be-
tween parent and child has a value that marks, or
labels it. IfAi is a permutation automaton, then
the label is the state with which the edge is asso-
ciated. This label may change after each transition
of the automaton. IfAi is a flip-flop, then the label
indicates which of the two flip-flops is associated
with this edge. This label does not change during
execution of the automaton.

The dealer distributes to every player the func-
tionsϕ1, . . . , ϕm to compute transitions based on
input symbols for each component of the cascade.

SinceA1, . . ., Am(Γ, ϕ1, . . . , ϕm) homomor-
phically representsA, there exists a homomor-
phism Ψ = (Ψ1,Ψ2) that maps anm-tuple of
states inA1, . . ., Am to a state inA. Let the state
set ofAi beSTi for every i = 1, . . . ,m. Then,
the dealer secretly sharesΨ among then players
by sharing the value ofΨ1(s1, . . . , sm) for every
tuple of states(s1, . . . , sm), si ∈ STi.

The dealer completes the initialization stage by
sharing secrets. Lets be the secret initial state of
A. Since the cascadeA1, . . .,Am(Γ, ϕ1, . . . , ϕm)
homomorphically representsA there is a sequence
of states(s1, . . . , sm) ∈ A1 × . . .Am, such that
the homomorphism maps(s1, . . . , sm) to s. Thus,
the dealer regardssi as the initial state ofAi. If Ai

is a permutation automaton then the dealer shares
value1 for si and0 for any other state inAi. A
player denotes its share of the value for a states by
Share(s) and uses it to label the edge marked bys.
If Ai is a flip-flop then the dealer shares value1 for
the correct flip-flop and shares0 for the opposite
flip-flop. A player denotes its share of the value for
a flip-flop FF by Share(FF) and uses it to label
the edge marked byFF . Each player attaches all
the shares associated withAi to every node in level
i of T .

8

Algorithm 1 Online Phase(γ)
1: Go over every node inT beginning at the root

in order of Depth First Search.
2: Let N be a node at leveli of the tree and let

N1, . . . , Ni−1 be the sequence of nodes from
the root toN .

3: for j = 1 to i− 1 do
4: if Aj is a permutation automatonthen
5: Set sj to be the state marking the edge

fromNj toNj+1.
6: else
7: Setsj to be the current state of the flip-

flop marking the edge fromNj toNj+1.
8: ComputeγN ← ϕi(s1, . . . , si−1,Ψ

−1
2 (γ))

and storeγN in N .
9: for all nodesN do

10: if N holds a permutation automaton, say,
Ai = (STi,Γi, µi) then

11: for all edges fromN to its childrendo
12: Change the state marking this edge

from s to µi(s, γN), but do not change
the secret share.

13: else
14: Change the current state of the first flip-

flop froms to µi(s, γN).
15: Change the current state of the second

flip-flop from s′ to µi(s
′, γN).

Online phase. We now describe the online com-
putation that each player performs. The basic idea
is to view each path from root to leaf inT as a
cascade product of automata. Given an input sym-
bol for T , each such cascade executes a step. A
step of a permutation automaton is represented by
moving the marks on each edge according to the
transition of automaton states. A step of a flip-flop
is represented by moving the state of each of the
two flip-flops in a node. Algorithm 1 shows the
processing performed by an agent upon receiving
an input symbolγ.

Reconstruction phase. After the online phase,
executing Algorithm 1 on a (possibly unbounded)
number of input symbols, a subset of agents in the
access structure run Algorithm 2 to reconstruct the
current state ofA from T and their shares.

Algorithm 2 Reconstruction of current state
1: SetN to be the root ofT .
2: for i = 1 tom do
3: if N holds a permutation automatonAi =

(STi,Γi, µi) then
4: for all edges fromN to its childrendo
5: Let the subset of players reconstruct

the secrets marking those edges.
6: Set a variablesi ← s, wheres is the

only edge marked with the secret value
1.

7: else
8: Let the subset of players reconstruct the

secrets marking the two edges fromN to
its children.

9: Set a variablesi to be the current state of
FF , whereFF is the flip-flop associated
with the only edge marked with a secret
value1.

10: The subset of players returnsΨ1(s1, . . . , sm)
as the current state ofA.

4.3 Analysis of the construction

We first show that our construction satisfies Def-
inition 3.1, i.e., using the initialization procedure
of Section 4.2 together with running Algorithms
1 and 2 ensures that the playersP1, . . . , Pn cor-
rectly compute a state ofT . For simplicity, we
state and prove the result for passive (“honest-but-
curious”) corruptions; in the case of active corrup-
tions, “all agents” would be replaced by “all uncor-
rupted agents,” and setting the threshold of allowed
corruptions accordingly. Next, in Proposition 4.2
we show the privacy of the construction; we di-
rectly address the stronger notion of security.

Proposition 4.1 Let A = (ST,Γ, µ) be the au-
tomaton held by the dealer, andsinit an initial
state. Fix a natural numberk, and a sequence ofk
input symbols(γ1, . . . , γk), γj ∈ Γ, j = 1, . . . , k.
Assume that executingA on (γ1, . . . , γk) from
statesinit terminates in statesterm. Then per-
forming the initialization procedure described in
Section 4.2, and all agentsP1, . . . , Pn executing
Algorithm 1 on everyγj and Algorithm 2 afterγk

is processed, returns the statesterm.

Proposition 4.2 The construction of Section 4.2—
initialization procedure, and Algorithms 1 and 2—

9

guarantees privacy in the progressive corruption
model, according to Definition 3.3.

Regarding the complexity of our construction,
we consider two measures: the space complexity,
which is dominated by the number of states in the
treeT , and the computational complexity, given
by the number of steps we perform inT for each
transition ofA; this second measure is identical to
the number of separate automata inT .

Given a cascade productA1, . . .,Am(Γ, ϕ1, . . . ,

ϕm), our scheme constructs a tree of depthm such
that the number of children for each node of depth
i is |STi|. Thus, the number of states in the leaves
of our tree is exactly the number of states in the
cascade product, that is,

∏m
i=1
|STi|. Since each

inner node in the tree has at least two children, the
total number of states is at most twice the number
of leaves. The number of different automata in the
leaves is

∏m−1

i=1
|STi|.

The remaining question is relating the size of a
cascade product to the originalA. As stated pre-
viously, holonomy decomposition is the best gen-
eral construction method known. If the number of
states inA is |ST | = m, then the total number
of states resulting from the decomposition is the
product of the number of states of each compo-
nent, and is thusm!. The total number of states in
T is therefore at most2m!, and the total number
of automata is at most2(m− 1)!.

In some cases, holonomy decomposition gives
exponentially more states than the optimum. As
an example, consider an automatonA that enters a
sink states if and only if it is given a sequence of
n consecutive symbolsγ. Decomposing that au-
tomaton is possible with one permutation automa-
ton and one flip-flop. However, holonomy decom-
position would decompose it intom flip-flops. In
the first case,T is of sizeO(m), while in the lat-
ter it is of sizeO(2m). Not to despair, in the next
section we present a natural automata family ad-
mitting a small Krohn-Rhodes decomposition.

4.4 KR decomposition example
Consider a decision tree of depthd and fan-out

at mostk. Each edge in the tree is marked with
a character in a finite alphabet that denotes some
external input. The edges connecting a nodeN to
its children are all marked by different characters.
In such a tree, one reaches a decision by beginning

at the root and traversing a path to a leaf which
stores some decision. At each node the choice of
which child to choose next depends on an input
which defines the next edge, and thus the “right”
child. Such trees are commonly used in various
branches of artificial intelligence, natural language
processing and other disciplines.

Consider a generalization of such a decision
tree, given by adding to each nodeN a loop edge
back toN . In every internal node, such a loop de-
termines the action to take when the input is not
one of the characters marking an edge to a child
of N . In every leaf, this loop is marked by every
character in the input alphabet. This construction
yields an automaton that emulates a decision tree
that can wait as long as required for the right input
to reach decisions. Figure 4 shows an example of
such a generalized tree, that has depthd = 3, fan-
out k = 2, accepts as input the set{1, 2, 3, 4} and
is currently in the right node of the second level.

Figure 4: Generalized decision tree

We next prove that such a generalized deci-
sion tree has a Krohn-Rhodes decomposition with
(d−1)(1+log k) flip-flops. As a first step we trans-
form the generalized decision tree into a cascade
product ofd− 1 automata, where each automaton
represents one internal level of the decision tree.
Each such automaton hask + 1 nodes. The firstk
nodes represent the (at most)k children of a node
at the current level, while the last node, number
k + 1 represents the current level.

Each node in the generalized decision tree is
mapped to a product ofd − 1 nodes in the cas-
cade product. A node in the decision tree that is
reached from the root by a paths1, . . . , sj , where
j < d is represented by the tuple(s1, . . . , sj , k +
1, . . . , k + 1) in the cascade product.

The automaton representing the root accepts ev-
ery input that the decision tree accepts. The first
k nodes of this automaton loop to the same node
for every input (in other words, once the state of
the decision tree moves from the root to one of its
children, it will never move to a different child).
Nodek + 1 has an edge to nodei, i = 1, . . . , k
marked with any input that sends the root to the
i-th child in the decision tree. For any other input
nodek + 1 loops back into itself.

10

In the automaton representing levelj, 1 < j <

d, there arek+1 possible inputsγ1, . . . , γk+1. The
first k nodes loop to the same node for every input.
Nodek + 1 has an edge markedγi to nodei for
everyi = 1, . . . , k and loops back into nodek + 1
with input γk+1. Thus inputγi for i = 1, . . . , k
means that the current state of the decision tree
moves to thei-th child, while inputγk+1 means
that the state does not change.

Computing an input for an automaton in thej-th
level of the cascade product is done in the natural
way: given that the firstj1 automata are in states
s1, . . . , sj−1 and that the input to the cascade prod-
uct isδ we emulate the decision tree when its state
is reached by a path(s1, . . . , sj−1 from the root
and its input isδ. If the decision tree moves to
child i, the input to thej-th automaton isγi and if
the state of the decision tree does not change on in-
put δ then the input to thej-th automaton isγk+1.

Each of the automata in the cascade product
havek + 1 nodes and can be represented by a cas-
cade product of1 + log k flip-flops. The first flip-
flop in the product determines whether the automa-
ton is in statek + 1 or in one of the otherk states.
This flip-flop has the identity transition and a reset
to the state representing thek children. The other
log k flip-flops represent which child is chosen.

Figure 5: KR representation of the generalized de-
cision tree

Figure 5 shows the flip-flops and the current
states of a decomposition for the decision tree in
Figure 4. For each of the firstd − 1 = 2 levels
of the tree there are1 + log k = 2 flip-flops, thus
four automata in this decomposition. The state of
the first automaton in each level shows whether the
current state is in that level or in one of the next
levels. Since the first automaton is in states1, and
the third automaton is in states4, we see that the
state is in the second level. The state of the sec-
ond automaton in each level represents the correct
branch. The second automaton is in states3, which
means that the current state is in the right branch
of the root. The input of the first flip-flop is identi-
cal to the input of the decision tree, but the input of
all the other flip-flops is a function of the original
input and the previous states.

We have so far shown that a generalized deci-

sion tree has a Krohn-Rhodes decomposition with
(d−1)(1+log k) flip-flops. Our method to produce
a tree of automata that can be privately computed
requires2d−12k nodes. For a balanced decision,
with d = log n, our solution requiresO(nk) nodes

5 Conclusions

In this work we tackle a new problem, that of se-
curing a distributed computation on inputs ofun-
boundedlength. Combined with the requirement
of non-interactivityof the execution phase, this
presents a setting where the large body of work on
secure multi-party computation does not seem to
be applicable. We define security in this setting,
and show how to achieve it for a useful class of
functions.

Our algorithms show the feasibility of a solu-
tion, and lay the foundations for future research in
swarm computing, which may find applications in
areas such as design of UAVs—unmanned aerial
vehicles that collaborate in a common mission—
as well as in cloud computing. Last but not least,
our work puts forth an interesting application of
the fundamental Krohn-Rhodes theory of automata
decomposition.

Acknowledgments. It is a great pleasure to
thank Azaria Paz and Stuart Margolis for useful
discussions. We also thank the anonymous review-
ers forICS 2011for their helpful comments.

References

[1] M. Ben-OR, S. Goldwasser, and A. Wigder-
son. Completeness theorems for non-
cryptographic fault-tolerant distributed com-
putation. InSTOC, pages 1–10, 1988.

[2] R. Canetti, U. Feige, O. Goldreich, and M.
Naor. Adaptively Secure Multi-Party Com-
putation. InSTOC, pages 639–648, 1996.

[3] D. Chaum, C. Crépeau, and I. Damgård.
Multiparty unconditionally secure proto-
cols(extended abstract). InSTOC, pages 11–
19, 1988.

[4] S. Dolev, J. Garay, N. Gilboa, and
V. Kolesnikov. Swarming secrets. In47th
Annual Allerton Conference on Communica-
tion, Control, and Computing, 2009.

11

[5] D. Dolev, C. Dwork, O. Waarts, and M.
Yung. Perfectly secure message transmis-
sion. J. ACM, 40:1, pages 17–47, 1993.

[6] S. Dolev, L. Lahiani, and M. Yung. Secret
swarm unit reactive k-secret sharing. InIN-
DOCRYPT, pages 123–137, 2007.

[7] P. Domosi and C.L. Nehaniv. Algebraic
Theory of Automata Networks (SIAM Mono-
graphs on Discrete Mathematics and Appli-
cations, 11). Society for Industrial and Ap-
plied Mathematics, Philadelphia, PA, USA,
2004.

[8] S. Eilenberg.Automata, Languages, and Ma-
chines, Vol. B. Academic Press, London,
New York, NY, USA, 1976.

[9] C. Gentry. Fully Homomorphic Encryption
Using Ideal Lattices. In41st ACM Sympo-
sium on Theory of Computing (STOC), pages
169-178, 2009.

[10] F. Higgins, A. Tomlinson and K. Martin.
Survey on Security Challenges for Swarm
Robotics.ICAS 2009, pages 307–312.

[11] M. Ito, A. Saito, and T. Nishizeki. Se-
cret sharing scheme realizing general access
structure. InIEEE Globecom, pages 99–102,
1987.

[12] K.R. Krohn and J. L. Rhodes. Algebraic the-
ory of machines, 1962.

[13] K.R. Krohn and J. L. Rhodes. Algebraic the-
ory of machines i: prime decomposition the-
orems for finite semigroups and machines.
Transactions of the American Mathematical
Society, 116:450–464, 1965.

[14] S. Margolis Complexity of holonomy de-
composition. Private communication, Febru-
ary, 2010.

[15] B. Pfitzmann and M. Waidner. Composition
and integrity preservation of secure reactive
systems. InCCS ’00: Proceedings of the 7th
ACM conference on Computer and Commu-
nications Security, pages 245–254, 2000.

[16] T. Rabin and M. Ben-Or. Verifiable secret
sharing and multiparty protocols with honest
majority. InSTOC, pages 73–85, 1989.

[17] A. Shamir. How to share a secret.Communi-
cations of the ACM, 22:612–613, 1979.

[18] M. Weiser. The Computer for the 21th Cen-
tury. Scientific American, September, 1991.

[19] H.P. Zeiger. Cascade synthesis of finite state

machines.Information and Control, 10:419–
433, 1967. Erratum: Information and Control
11(4): 471 (1967).

A Proofs
We repeat the statements here for convenience.

Proposition 4.1. LetA = (ST,Γ, µ) be the au-
tomaton held by the dealer, andsinit an initial
state. Fix a natural numberk, and a sequence ofk
input symbols(γ1, . . . , γk), γj ∈ Γ, j = 1, . . . , k.
Assume that executingA on (γ1, . . . , γk) from
statesinit terminates in statesterm. Then per-
forming the initialization procedure described in
Section 4.2, and all agentsP1, . . . , Pn executing
Algorithm 1 on everyγj and Algorithm 2 afterγk

is processed, returns the statesterm.

Proof: We prove the proposition by induc-
tion on k. The base case,k = 0, requires prov-
ing that immediately after initialization, executing
Algorithm 2 returnssinit. By choice of the ho-
momorphismΨ = (Ψ1,Ψ2), there exists a tuple
(s1, . . . , sm) s.t. Ψ1(s1, . . . , sm) = sinit. The
construction of Section 4.2 ensures that lines 2–9
of Algorithm 2 correctly determine(s1, . . . , sm).
Since the dealer shares the secretΨ(s1, . . . , sm)
during initialization, Algorithm 2 returnssinit.

For the inductive step, assume that after all play-
ers receive the same input stream(γ1, . . . , γj), ex-
ecute Alg. 1 on each input symbol, and run Alg. 2
such that the output is the current state ofA which
we denote byscurr. Assume that if the next in-
put symbol isγj+1, then the next state ofA is
snext = µ(scurr, γ

j+1). We prove that running
Alg. 1 on inputγj+1 and then running Alg. 2 re-
turnssnext.

By definition of the homomorphic represen-
tation we have a tuple(sc1, . . . , s

c
m) such that

Ψ1(s
c
1, . . . , s

c
m) = scurr. For allγ ∈ Γ we have

Ψ1(µ1(s
c
1, ϕ1(Ψ

−1
2 (γj+1)), . . . , µm(scm, ϕm(sc1,

. . . , scm,Ψ−1
2 (γj+1)))) = µ(scurr, γ

j+1) =
snext.

Since by induction, executing reconstruction by
Algorithm 2 returnsscurr, there is a path of nodes
N1, . . . , Nm beginning at the root such that the se-
cret value on the edge betweenNi andNi+1 is 1,
and for any other edge fromNi to level i + 1 the

12

secret value is0. Furthermore, ifNi is a permu-
tation automaton then the edge fromNi to Ni+1

is marked withsci , and otherwise (Ni is two flip-
flops), the edge fromNi to Ni+1 is marked with a
flip-flop FF and the current state ofFF is sci .

In the online phase, Algorithm 1 goes over
each node inT , including N1,. . .,Nm. For
every i = 1, . . . ,m, if Ai is a permutation
automaton then in line12 the state mark-
ing the edge betweenNi and Ni+1 changes
from sci to µi(s, ϕi(s1, . . . , si−1,Ψ

−1
2 (γ))).

Since the share marking this edge does not
change, the reconstruction algorithm collects
µi(s, ϕi(s1, . . . , si−1,Ψ

−1
2 (γ))) for i = 1, . . . ,m

in lines 2–9 and, thus, its output in line10 is
exactlysnext.

Proposition 4.2.The construction of Section 4.2—
initialization procedure, and Algorithms 1 and 2—
guarantees privacy in the progressive corruption
model, according to Definition 3.3.

Proof sketch: The privacy of our construc-
tion follows from the properties of secret sharing
(cf. Definition 2.1) that we employ. It suffices
to show that the adversary’s viewViewΠ

ρ (X, s) is
distributed independently fromρ,X, ands, for a
fixed length ofρ , say,ℓ ≤ t. In particular, the
view of each execution is identical to the execu-
tion of A where agentsPi1 , ..., Piℓ are corrupted
simultaneously at the beginning of the execution.
The latter claim is also easy to verify, as follows.

Firstly, we assume that the shares generated
by different executions of secret-sharing are dis-
tributed identically. This easily achieved property
is necessary, so thatAdv would not be able to track
the movement of shares in the progressive corrup-
tion model. Then the claim follows from the ob-
servation that each share of each state of each au-
tomaton in the tree is distributed identically at the
time of the agent’s corruption (givent or fewer cor-
ruptions). Further, all the labels of the children of
each automaton node are a random permutation on
the set of states of that node, and thus also do not
carry any information about the state.

13

