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Abstract: In this paper we consider the problemroigents wishing to perform a given computation on common
inputs in a privacy preserving manner, in the sense that even if the entire memory contents of some of them are
exposed, no information is revealed about the state of the computation, and where theaepisatbbound on

the number of inputs. The problem has received ample attention recently in the cordesarof computingnd
Unmanned Aerial Vehicles (UAV) that collaborate in a common mission, and schemes have been proposed that
achieve this notion of privacy for arbitrary computations, at the expense of one round of communication per input
among the agents.

In this work we show how t@void communication altogetheluring the course of the computation, with the
trade-off of computing a smaller class of functions, namely, those carried out by finite state automata. Our scheme,
which is based on a novel combination of secret-sharing techniques and the Krohn-Rhodes decomposition of finite
state automata, achieves the above goal in an information-theoretically secure manner, and, furthermore, does not
require randomness during its execution.
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1 Introduction threshold ¢t < n, and our objective is to ensure
There is great interest in pervasiad hocand ts?;teth(\alvaegggtiofzr?rsutga?:;r:faﬁf tzgvgtri/:c‘?yp;&
‘swarm” computing [18], particularly in swarm-y, o éutomatonA' however, we wish to protect
ing Unmanned Aerial Vehicles (UAV) that coIIab—the secrecy of tl;e state 017 and the inputs’ his-
orate in a common mission (e.g., [4, 10] and rEfe{éry We note thatddv may have external infor-
ences therein). Hiding the Sta’.{e. of the swarm fromat.ion about the computation, such as partial in-
ing 2N cpclating the globat swarm state, clue QP41 O 1engih of the input sequence, sate nfora
possiblyunboundedsequence of inputs is’ an im_tlon, etc. This auxiliary information, togethe_r with

: ' the knowledge of4, may exclude the protection of
portant task (e.g., [4, 6]). In this work we make

rogress in this area, by showing the feasibilit é‘fertain configurations, or even fully determides
brog DY 9 Y Qiate. We stress that this cannot be avoided in any

non-interactive private distributed computation on : . ; )
. Implementation, and we do not consider this an in-

such unbounded input sequences. . .
security. Thus, our goal is to prevent the leakage

Recently, Dolevet al. [4] presented schemesor derivation byAdv of any knowledge from see-

Fhat supp_ort |nf|n|_te . private computauon b3fng the execution traces whichdv did not already
implementing a distributed version of a Sobossess.
calledstrongly obliviousuniversal Turing machine

(TM)L. However, this is done at the expense Tz Our approach
one round of communication per received input )

amongst the participants. In contrast, in this work W& present a scheme that achieves the above
we show how to avoid communication altogethdto@l in an information-theoretically secure man-
during the course of the computation, with thBer (i-., there are no bounds imposed 4w's

trade-off of computing a smaller class of function&omputational power), and does not require ran-
domness during the execution df Our scheme

is based on a novel combination of secret-sharing
- _ o techniques [17] and the Krohn-Rhodes decomposi-
Specifically, we consider a distributed compuion of finite automata [12, 13]. Informally, Krohn-
tation setting in which a party, which we refer tRhodes theory states that any finite state automa-
asthe dealer has a finite state automaton (FSAjon can be emulated by a combinaticcagcade
A which accepts ana(priori unbounded) streamproduct—see Section 2) of permutation automata
of inputs zy, z,,... received from an externalang flip-flop automata. (A permutation automa-
source. We are interested in situations in which thgn js any automaton such that each of its possi-
dealer cannot perform the required computatioje input symbols induces a permutation of the au-
but instead delegates the responsibility to agengmaton’s states.) The computation complexity per
Py, ..., P,. Each of the agents receives all thgach received input symbol, and the storage com-
inputs destined tod during its execution. The plexity required by our scheme are a function only
agents execute their distributed implementation gf (the decomposition ofy, and not of the num-
A (without communication!) and, at a given signaher of symbols processed. A trade-off for this is
from the dealer, terminate the execution, compufgat, depending ont, the number of components
the current state ofl, and return itas output.  of its Krohn-Rhodes decomposition might be ex-
Furthermore, there is an additional entity, calleggonential in its number of states.
the adversaryldv, who is able to adaptively “cor-  we note, however, that for many interesting and
rupt” a subset of the agents (i.e., inspect their ifglevant automata, there is a small Krohn-Rhodes
ternal state) during the execution phase, up togacomposition. Section 4.4 presents an example
of such an automata family with a small Krohn-
1An obliviousTM moves the tape heads through the sa

sequence of cells; strongly obliviousTM is a Turing machinerqQhOdeS representathn_. . . o

in which the movement of tape heads is a function only of the FOI ease of exposition, in this submission we
cell indices that the heads point to. Not every oblivious BM i
strongly oblivious, since the movement of the tape heads may 2We note that more general access structures may be natu-
be a function of time, not only of space. rally employed with our constructions; see Section 2.

1.1 Our setting and goal




concentrate on the case of passive corruptionsekoosing a state for the extra copies in the vec-
i.e., Adv is considered “honest but curious.” Howtor when two or more states become equal. In
ever, since our construction does not require comentrast, in this work we show that it is possible

munication among parties at the time when cote solve the problem of convergence to the same
ruptions are allowed, it can be readily strengthensthte in a deterministic way using Krohn-Rhodes
to handle active corruptions by employing secretecomposition. Furthermore, the scheme in this
sharing schemes (e.gpverifiedsecret sharing [5, work is information-theoretically secure.

16]) that are robust against disruptive behavior, As mentioned above, the authors recently pre-
and suitable for our scenario. sented schemes that support the same type of
As noted earlier, swarms and sensor networkgrennialprivate computation considered here by
(e.g., [4, 6]) are areas that can potentially benefihplementing a universal Turing machine pri-
from our scheme. Another area of great curremately, with one round of communication per tran-

interest where user privacy is critical is that of ousition [4]. In this work we show how to avoid
sourcing computation and storage to the “cloudcdommunication completely during the course of
Yet, a big challenge in making the shift in computthe actual execution, at the expense of computing
ing to the cloud infrastructure is finding a way t@ smaller class of functions.

ensure the privacy of the computation. One pos-The type of private computation we consider
sible approach is for the users to run the progras also related to the problem of (information-
distributively on several computing clouds in suctheoretic, or unconditional) secure multi-party
a way that even if some of them collude and exxomputation (MPC) [1, 3]. We perform a detailed
change information they still will not be able tacomparison below.

learn the program and/or the data they use for the

computation. Furthermore, the type of computd-4 Unbounded-input private computation
tion may be of a “never-ending” nature, such as  Vis-a-vis MPC

ongoing sequence of tasks performed by an oper-Recall that in secure multi-party computation,
ating system; the output of a given task or state paurties (“players”), some of which might be cor-
an on-going system can then be revealed by receiupted, are to compute anary (public) function

ing information from all or a sufficient number ofon their inputs, in such a way that no information
cloud suppliers participating in the computation—is revealed about them beyond what is revealed by
very much like a terminal client is used to interfacthe function’s output. At a high level, we similarly
with remote computers. Our work also addresse#n in our context to ensure the correctness and

this scenario. privacy of the distributed computation. However,
as we now argue, our setting is significantly differ-
1.3 Related work ent from that of MPC, and MPC solutions cannot

Reactivek-secret sharing with no communicabe directly applied here.
tion among agents participating in a swarm has Firstly, MPC aims to solve a different problem,
been suggested in [6]. Several solutions thttat of protecting the players’ individual inputs
are able to withstand limited memory corruptionsom Adv, who can corrupt some of them, learn
were presented, some of them based on the ltheir input and observe the communication they re-
earity of secret sharing, supporting addition angkive. In contrast, in our problem the inputs are
multiplication by constants. The last solution isommon to all the players (but natpriori known
based on maintenance of the vector of possilife Adv, or revealed in case of corruption), and the
states by each agent, masking the actual stategofil is to protect the state of, as well as the in-
the swarm (defined to be the one with a majorifguts to the computation. (Therefore, we cannot in
of copies) by redundant states (with fewer copiegarticular treat the common input as public infor-
In general, two states maintained by an agent meation, and the shares received from the dealer as
yield the same next state when a certain input MPC input.)
received, thus redundancy of states may be elimi-Of course, an adequate representation (circuit-
nated over time. Randomization is used in [6] ibased, for example) of the MPC computation
order to cope with such a convergence, randomhyould be able to evaluatd, with respect to a sub-



set of corrupted players, and at least for the bagic Preliminaries, Notation and Back-
MPC setting, where there is a single (tuple of se- ground

cret) input(s) out of which an output (tuple) is pro- In this section we introduce the notation used

Sulced. Bu_tbtlhen (l:)omes c:jur mailan fei“%re’ ?f m'“ilﬁroughout the paper, and present the necessary
Ipi€, possibly unbounded number of Inpu SynBackground material and tools—secret sharing

bols. This is reminiscent of secureactivesys- schemes, finite state automata, and Krohn-Rhodes
tems (e.g., [15]), where the computation is no“'”}heory. LetP,,.... P, be then agents that dis-
ited to “one shot” as above, but instead process?%utively will éxec’ute A

inputs “in blocks” throughout several rounds o '
interaction. However, because all MPC solutions]  Secret sharing
(and definitions) are explicitly tied to the length of We start with an overview of our basic tosk-
the_ Input, b(_alng able to handle_unbounded numb&ret sharing[17], where essentially, a secret piece
of inputs without communication does not see

. . L information is “split” into shares by a distin-
immediate, Thls Is what our Krohn-Rhode's—bas ished player callethe dealeyin such a way that
approach achieves, at the expense of solving a

 to a threshold < n of the players pulling to-

rower problem. gether their shares are not able to learn anything

Looking at the relationship with MPC fromapout it, whilet + 1 are able to reconstruct the se-
another perspective, we note that it is tb@m- cret. In fact, we consider general secret sharing
bination of our requirements of non'interactiVityfor anymonotone access structq@_], a genera|-
during the input-processing phase, informatiofzation of threshold secret sharing. More formally,
theoretic security, and computation on inputs @ access structur®/ is simply a set of subsets of
unbounded length, that precludes the use of knovp?, ..., P, thatisy/ C 2{P1Pn} \We say that
MPC teChniques. That iS, with any of the three €7 is monotondf for everyI € U, we have that
quirements removed, known techniques would &+ ¢ 74 for everyZ’ such thatZ C 7'.
low stronger results to be achieved.

Indeed, we have discussed above the possitefinition 2.1 We say that a secret-sharing
ity of solutions in the setting where the inputs aréchemes has anaccess structurd, if any set of
bounded. Alternatively, if we only required comShares held by players of any see ¢/ allows the
putational secrecy, then the players could use fuﬂ?constructlon of the secret, while shares held by
homomorphic encryption [9] to maintain under erPlayersZ’ ¢ U yields no information on the se-
cryption the current state of the computation on uffet: Additionally, we say tha$ has a monotone
bounded inputs (and carry shares of the schemB& eSS structure, iif is monotone.

private key). Further, if am priori bound on For simplicity, sometimes in our discussion we

the input length existed, players could simply el oncentrate on(t,n) threshold secret sharing,

crypt their inp_uts With. any public-key encryptior_\Nhereu is the set of all subsets of the play-
scheme, again keeping shares of the decryptlgg of size greater than Further, the presenta-

key. Flnally, allowing mteracthn dunr_wg the N“ion above is only concerned with the privacy of
put processing phase can effectively bring us to tlﬂ;?

bounded-inbut setti . int . 4 th e secret. Correctness in our scenario can also be
ounded-input setling, Since Interaction—an taranteed against actively disruptive behavior by
share updates using MPC—could occur after a c

- : f mostt parties by employing so-calladhverified
tain fixed number of inputs has been IorocesseOI‘secret sharing schemes [5, 16] (“unverified” relates

to the fact that the dealer is honest), and adjusting
1.5 Organization of the paper, the threshold (resp., access structure) o 5.
Section 2 presents the necessary backgroundfof  SO0me automata theory notions
this paper. Section 3 defines our notion of secureA finite-state automatofFSA).4 has a finite set
computation in a swarm and Section 4 describes statesST', a finite set of input symbols, and
our construction in detail. For the purpose of read-transition function: : S7 x I' — ST. We do
ability, proofs are presented in an appendix. not assume an initial state or a terminal state; the



automaton may begin its execution from any staggoduct emulates the four; checker because the
and does not necessarily stog’ = (ST’,T'y’) flip flop is in states; if, and only if, the four,

is asub-automatorof A if ST C ST, IV C I' checker is in state, while the flip flop is in state
and ./ is the reduction ofu to ST’ x I and sg; thus the permutation automaton is in the same
w(s',v") € ST, for any s’ € ST’ and any state as the fouy; checker.

~' € I'. For every input symbol € I' and ev-
ery s € ST, we denote by, : ST — ST the
function i, (s) = u(s,~). Further, we denote the
state of A when executed with initial state;,,;;
and inputy; ..., vk by A(Sinit, 71 - - - s Vi)

Figure 3: Foury; checker

2.3 Krohn-Rhodes theory

At a high level, the hierarchical algebraic de-
composition of finite state automata, known as
Krohn-Rhodes theory [12, 13], shows how to

Definition 2.3 Aflip-flop automatoris a finite au- €Mulate a finite automaton by a combination

tomaton with two state§T = {so, s;} and three (product—see below) of permutation and flip-flop

inputs T = {70,71,72}, such thatu., is the automata. We now present the background on
- ) 9 ’ Yo

identity function, ., is defined by, (so) Krohn-Rhodes theory thaF is necessary fqrthe cur-
11y, (1) = s0, and i, is defined by, (so) = rent WO!’k. Qur presentation follows the interpre-
_ tation given in [7], which greatly expands on the
finy (81) = 51. L
short summary we present, and by Margolis in

Figure 1 shows an example oparmutation au- [14]-
tomaton Figure 2 shows a flip-flop automaton. .
Definition 2.4 Let A = (ST,T,p) and A" =

(ST, T, ') be two automata. A pailr =
Figure 1: A permutation automaton (¥4, ¥5) of surjective mappingd, : ST —
ST and ¥, : T' — T" is a homomorphisnof
A onto A’ if for everys € ST,~v € T we have

U1 (u(s,y)) = 1/ (Pi(s), ¥2(v)).

_ If A has a sub-automaton which can be mapped
A cascade produatf automata is a sequence ohomomorphically by onto.4’, then we say that
automata such that the input to theh automaton 4 homomorphically representd’. An important
is a function of a glObal inpUt and of the Statgs Cﬁroperty of such homomorphism is thdtcan be
automatal, 2,...,7 — 1. As an example considerexecuted instead of’ in the following sense. Sup-
the automaton in Figure 3, that starting at state pose 4’ begins execution at staté, receives a
reaches state, if and only if four~, symbols ap- stream of input symbols;, . . . , v;, and terminates
pear in its input. This Fouy checker can be em-jn statet’. Then, if A begins execution in state
ulated by a sequence of two automata: the permy-sych that¥,; (s) = s’ and receives a stream of
tation automaton in Figure 1 and the flip flop ofnput symbolsy,, ... ,~, such thaty, = Uy ()
Figure 2. for everyi then A terminates in state such that
Let the permutation automaton and the flig, (¢) = ¢’
flop begin execution fronso. The input of the  There are several different ways to arrange a
permutation automaton is the same input as thsquence of automatal, = (ST1, T, p11), - -
of the four~, checker. The input of the flip-flop 4,, = (ST, T, i ), to define a singl@roduct

is determined by a functiol that maps a state ofagutomaton. We are interested in the following type
the permutation automaton and an input symbgf product.

of the four~; checker to an input symbol of the
flip-flop. ¥(s3,7v0) = 72, and for any other input Definition 2.5 A finite automatomd = (ST, T, p)
pair (s, ), we definel(s,y) = . This cascade is called acascade producf.4; = (ST1,T'1, p1),

Definition 2.2 A permutation automatas a finite
automaton such that for everye I', the function
{1t~ is a permutation ordT".

Figure 2: A flip-flop automaton



e A = (ST, T, i), denoted byA,, ..., permutations and resets; a reset transition is sim-
An(@, 01, ..y om), if ST = STy x ... x ST,,, plythe constant function from all the states to one

there exist functionsyy,...,¢,, such that single state. Specifically, each componghtn a
w; STy x...x ST,y xI' — T';, for everyi = holonomy decomposition includes a permutation
1,...,m,anduis defined byi((s1,...,sm),7) = automator{ and all resets oft.

(11 (51, 01(7))se - osbtan (Smms P (515 -+ -y Sm—1,7))- y
Theorem 2.8 (Holonomy decomposition [8])A

Thus, in a cascade product, the input to e finjite automatonA with m states can be homo-
component automaton (“child” automaton) is gorphically represented by a cascade product of

function of the global input) and the: — 1 states componentd{, ..., H, such that: < m and the
of the previous —1 cascade components (“parenthymber of states ifi;, i = 1,...,m, is at most
automata). m—i+1.

Let A = (ST.T, ) be an automaton and de-
note by u,, a function on the states defined by In our scheme, we will require a decomposition
fw(s) = p(s,w) for everyw € I'* (that is, into permutation automata and flip-flops (which
words defined overl’). The characteristic semi- have resets on two states). Transforming-atate
groupof A is S(A) 2 {1 : w € TT} with com- component into a cascade product of permuta-
position of functions as the semigroup’s binary opion automata and flip-flops is easy by usitigand
erator. S(A) together withuy (where ) is the log, i flip-flops to represent all the resets &
empty word) forms the characteristic monoid. If
this monoid is a group, theod is a permuta- 3 private Distributed Computation
tion automaton. S(A) is atransformation semi- on Global Inputs
group, i.e., it includes functions of5T into it-

self. We denote this transformation semi-group by /" this section we define the exact notion of pri-
(ST, S(A)). vate distributed computation in our context. Re-

call that our goal is for agents,, . . ., P, to jointly

Definition 2.6 (ST, S(A)) divides (ST”,S(.A))’ compute a state of a given finite automatdron
if for some subseY C ST”, and sub-semigroup the @ priori unbounded) global input streafre-
T of S(A))’ that mapsY into itself, there exists ceived by each agent, in such a waytd them re-
an onto functiord, : Y — ST and a surjective veal any information about it. The agents’ compu-
semigroup homomorphisth : T — S(A)) sat- tation is divided into three phases: sharing phase,
isfying02(t(y)) = 61(¢)(02(y)) forall y € Y, ¢ € online (computation) phase, and reconstruction. In
T. the sharing phase, the dealer initializes the agents

o based on his random tape, the automadpand its
Theorem 2.7 (Krohn-Rhodes) A finite automa- itia| states;,.;;. In the online phase, the agents
ton A can be homomorphically representedocess the inputs and update their state accord-
by a cascade product of components frofRqy- in this phase, no communication takes place,
{Ar, Ac,, .-, Ag, }, whereAp is aflip-flop au- 44 'the agents may be corruptedAwo. Finally,
tomaton andAg,, ..., Ag, are permutation au- i, the reconstruction phase, the agents collaborate
tomgta. Furthermore, if(A) is the characteristic {4 reconstruct the state of. We stress that it is
semi-group ofd and Gy, ..., G, are the charac- 555umed thatidw is not able to interfere with or
teristic groups o, , ..., Ag,, thenGi, ..., Gv - ghserve the sharing and reconstruction phases.
can be chosen as all the simple groups that divide og noted above, in the online phase, up to

S(A). a thresholdt of the agents may be corrupted

To be concrete, we will be interested in the mo&Y the adversaryldv, who then learns their in-
efficient method of constructing a Krohn-Rhoded€mMal states. We require that the agents carry
type cascade product, namely, Eilenbetyson- qut the compu_tqt!on without leaking any |nfo.rma—
omy decompositiof8, 19]. In holonomy decom- tion, such as initial and current states and inputs
position, an automaton is decomposed intdo COMPO-3oyr protocols and definitions can be readily extended to
nent automata that have two kinds of transitiongeneral access structures.




seen. For simplicity, we considsemi-honegfalso protocollIl on inputX starting onA4'’s initial state
called “honest-but-curious”) adversaries; that is,

each participant (even when corrupted) continues

to execute the protocol as required. Note, hoefinition 3.1 (Correctness) We say that proto-
ever, that since the online phase does not involoel I evaluatesautomaton.A with respect to
any communication, an actively malicious behavhresholdt if for any natural number: and any
ior would be of no consequence and only amoutftput streamy; ..., vy as above, (only) the mem-
to inspection of the states of corrupted playergers of any subsef C {Pi, ..., P}, |S| > t, cor-
During the reconstruction, disruptive behavior ang@ctly outputA(s;nit, 71 - - -, k) in its reconstruc-
“cheating” can be overcome simply by using secréion phase.

sharing with stronger reconstruction (lower thresh-

old) properties. Informally, we say that the disPefinition 3.2 (Privacy in the SCM) We say that
tributed computation performed by the agents 4kis private in the Simultaneous Corruption Model
described above isecureif it is correct, and the (SCM) if for every two states;;,s, € ST, in-
combined state of up to the threshold of corruptdit streamsX;, X, € I'*, and sets of agents
parties gives no information about the state of tHe L2, [T = 2| < ¢, Viewgl (X1,81) =
computation or on the history of inputs. v1ew§2 (X3, s2).

We define two notions of security in this work.
Security in a weaker setting, which we call thie X i
multaneous corruptiomodel, relates to the adverion 3-2. The simultaneous corruption model ad-
sary who is only allowed to corrupt up toparties dresses the case whetelv takes a “snapshot” of
simultaneously. Although weaker than the next[l:le states of corrupted players at an arbitrary point

this is perhaps a more intuitive model, which iduring the online phase. Our requirement of iden-
also practical and interesting in its own right. wiical distribution of views means that the combined

then consider the strongprogressive corruption Memories of the corrupted players are independent
model, where the adversary is allowed to corruff the so-far processed inputs, initial states, and
players as the execution of the protocol procéed§Ven of the IDs of the corrupted players (note that
Our protocols are secure in the stronger progrd3€y are notincluded in the view). As an instruc-
sive corruption model. tive example, let us verify that the definition guar-

As mentioned before, we allow the adversar?lnteeli:jhatdthe current ;ta:\t/av:éfls r:(?(aggvfror:
to have unbounded computational power, and v- Indee ,syaposetg € b set, t?1 i te/(t:)?f
thus interested in protocols that are informatioffcOVEr SOMe information about the sta

theoretically secure. Our definitions follow thé certain input sequence Is executed. Thédy

standard paradigm in cryptography of indistinc_:ould distinguish this view from, for example, the

guishability/simulatability of views of the adver-/'€W resulting from the execution on an empty in-
sary.
Let A = (ST,T,u) be an FSA with initial

states € ST. Let X = (y1,72,...) € I'* be

We now give some intuition behind Defini-

put on a random initial state, which is prohibited
by the definition.

Next, we introduce a stronger notion of security,
the (global) input given to all agents. L&t — which allows Adw to corrupt the agents as the ex-

(P P.}, { < t, be a subset of agents Wecution progresses. First, we definearuption
i1y Lig S — ’

denote byView! (X, s) the probability distribu- Timeline as the vectop = ((n1, Py ), (n2, Piy),

tion of the view of Adv, which is the aggregated: ™ (7 ie)), Wheren; € N, 1 < j < £, Is the

memory contents of all)l, arties ihas theggexgcute number of symbols that are received befdig is
y P y corrupted, and < t. For clarity, we state that

4We note that our two allowed corruption models resembllé_)if 7 B, f9r i # ki le., a pllayenr cannot be
the secure multi-party computation (MPC) notionstaicand corrupted twice. We denote byiew, (X, s) the
adaptivesecurity, respectively [2]. However, since in our setprobability distribution of the aggregated internal

ting the adversary is not allowed to corrupt agents at theton§tateS of corrupted agents at the time of corruption
of the computation, as well as to continue to monitor theiestat !

after corruption, as is the case in MPC, we use different nam\éfpen executed on INput < I' and initial states.
to avoid confusion.




Definition 3.3 (Privacy in the PCM) We say that An (independent) permutation automatdnis

IT is private in the Progressive Corruption Modethared simply by secret-sharing among the agents

(PCM) if for every two states,s; € ST, in- al for the active state, and(efor each other state.

put streamsXy, Xo € I'*, and corruption time- Thus, for an automaton witty states, each partici-

lines p1,p2, |p1l = |p2], View}}1 (X1,s1) = pantwill havem shares, one share associated with

View,er (Xa, 52). each state afd. Upon inputy € T', the player will

simply reassign each share accordingtdhat is,

This definition follows the Splrlt of Definition for each Statei, the share associated WlfhW”I

3.2, with the notable addition of the pOWGrAﬂU be assigned to Staﬁf{’}/, 51) Itis easy to see, from

to corrupt agents at different stages of executigRe properties of secret sharing, that such sharing

of the online phase, perhaps more natural in SORd input processing maintains the privacy of cur-

scenarios than taking a simultaneous “snapshot”@nt states and the correctness of state reconstruc-

the agents’ internal states. Yet, by not allowinggn.

the adversary in this corruption model to see theAn (independent) flip-flop automatopd is

subsequent inputs of a corrupted agent, we are abrl%red and processed as follows. Asonsists of

to impose a stronger security requirement, name? ) . .
P g yrea 3’r’1ly two states, we simply create a “mirror” flip-

the indistinguishability of the views generated b}i , . .
two different input streams op A’, which, on any sequence of inputs, always

' remains in the state opposite to that.4f Then,
Remark 3.4 In our definitions, we require that thethe dealer sends each player the two automata in a
views of adversary based on any two executions tggdom order, and a share of a pointer to the “cor-
distributed identically. Clearly, this implies thatrect” one. Upon inputy € T', the agents simply
it is possible to simulate the views without knowapply the input to each of the two automata they
ing the dealer’s shares, inputs, and even the lendtiave. Clearly, the secrecy of the current state is
of the input stream. The simulation is simply pepreserved, further, correctness of reconstruction is
formed by executing the protocol on any (e.g., ra@ssured since the quorum of agents can reconstruct
domly chosen) input. Further, the complexity dhe pointer to the correct automaton, and obtain the
the simulator is exactly equal to that of an honesurrent state.

player executing the potocol. However, recall that we are interested in the
cascade product representation, where the the in-

4  Privately Computing an Automaton put for each component automaton depends on
State the states of its “parent” automata in the cascade

In this section we present our automata-basg?ee Definition 2.5 and the following paragraph).

construction, which allows us to achieve the notio r(;artlyh,thetatgenté rr:ustl rliotnkinciw r?1n)i/n?fi:1hr?1 ar?—
of distributed private computation formulated irﬁO aton's states. Lur solution Is to mainta any

Section 3; the construction is based on the KrohW—Stances of each child automaton (one for each

Rhodes decomposition. We first present a higﬁ"[ﬁeaco?f'gt%r:t't?gnoft%irefmnigg)nmg;a)é dTgint\rI]v:
level intuition of how it works. pply Sit unctl S

state associated with each particular instance. Of
4.1 The construction at a high level course, as inputs are processed and the parent state

Assume we are given a cascade product of pgp_nfigurat?on changes, we need to reassign these
mutation and flip-flop automata. We show how t6onfigurations to the child instances.
secret-share the composed automaton and its cur©One natural way to do the above is by represent-
rent state, and how to update the shares as a remdt the automaton composition as a tree, rooted
of the agents receiving (an unbounded number afjth the upper level automatod;. In the tree,
input symbols. each parent permutation automatet)y has m;

At any time, a quorum of secret-sharing agenthildren (one for each of its states). A parent flip-
can reconstruct the state of the automaton. Redédlp automaton4; has two child automata. Each
that the automaton itself is public, and need not lod the children is labeled (via the tree edge) with
protected. the state ofA; it is associated with. Thus, a la-



beling of the path to the root represents the entiof the two flip-flops in the node. Each edge be-
parent configuration, and allows the players to apween parent and child has a value that marks, or
ply the transition function to each (share of thdabels it. If A; is a permutation automaton, then
automaton in the tree. the label is the state with which the edge is asso-

Finally, as the input is processed, we maintatiated. This label may change after each transition
the correct associations between child instancakthe automaton. 1f4; is a flip-flop, then the label
and parent states by reassigning the edge labelindicates which of the two flip-flops is associated
according to the parent state transition. That is, faith this edge. This label does not change during
each state transitios; — p(v, s;) in the parent execution of the automaton.
automaton, each edgeis relabeled withu(~y, s;).
This ensures that the child, which has a state that
depends on the state of its immediate parent, con-
tinues to properly “follow” the parent’s state. Be-
cause the parent’s labels are also adjusted, eacfihe dealer distributes to every player the func-
child automaton consistently “follows” its parentions ¢, ..., ¢, to compute transitions based on
configuration. input symbols for each component of the cascade.

State reconstruction for this scheme is also nat-
ural. Given the quorum, we start by reconstructing
the parent state, and then proceed with the recon-
struction down the appropriate path.

o _ Since Ay, ..., An(T,¢1,...,9m) homomor-

4.2 The construction in detail phically represents4, there exists a homomor-
Initialization phase. The dealer begins thisphism ¥ = (¥, ¥,) that maps ann-tuple of
phase by computing a cascade product sfatesinAd, ..., A,, to a state ind. Let the state
permutation automata and flip-flopsd,, ..., set of A; be ST; for everyi = 1,...,m. Then,
Am (T, 01,...,pm) that homomorphically repre-the dealer secretly shardsamong then players
sents.A. Krohn-Rhodes theory (cf. Section 2py sharing the value 0¥ (s, ..., s, ) for every
states that such a cascade exists, and holonomytdg@le of stategss, ..., sm), s; € ST;.
composition is a way to construct it.

The dealer constructs a rooted trée,based on
this cascade. The tree consistsiof 1 levels, level
1 for the root and levein + 1 for the leaves. Each
node in levelsl, 2, ..., m contains an automaton, The dealer completes the initialization stage by
while all the nodes in leveh + 1 are empty. If4; sharing secrets. Letbe the secret initial state of
is a permutation automaton, then all levelodes .A. Since the cascadé, ..., A, (T, ¢1, ..., om)
contain 4;. If A; is a flip-flop automaton, thenhomomorphically represeni$ there is a sequence
every node at level contains two flip-flops. of states(sy,...,sm) € A1 X ... A, such that

In each node that holds two flip-flops, there ithe homomorphism magss, ..., s,,) to s. Thus,
one flip-flop such that the initial state ig, 7o is the dealer regards as the initial state ofl;. If A;
the identity function;y; resets tosg and~, resets is a permutation automaton then the dealer shares
to s;. In the other flip-flop, the initial state is;, valuel for s; and0 for any other state id;. A
and the reset edges are switchegd:resets tas; player denotes its share of the value for a stdig
and-~s resets tosy. This arrangement ensures thaBharés) and uses it to label the edge markedsby
if both flip-flops receive the same input they willf A4; is a flip-flop then the dealer shares valuer
always be in opposite states. the correct flip-flop and sharésfor the opposite

A node in leveli, 1 < i < m, has several chil- flip-flop. A player denotes its share of the value for
dreninleveli + 1. If A; = (ST;,T;, ;) is a per- a flip-flop F'F' by SharéF'F') and uses it to label
mutation automaton then the node h&g;| chil- the edge marked b§' F. Each player attaches all
dren, a child for each state of;. If A; is a flip- the shares associated with to every node in level
flop, then the node has two children, one for eaclof 7.



Algorithm 1 Online Phaséy) Algorithm 2 Reconstruction of current state
1: Go over every node iff” beginning at the root 1: SetN to be the root off .
in order of Depth First Search. 2: for i = 1tom do
2: Let N be a node at level of the tree and let 3: if N holds a permutation automato; =
Ny, ..., N;_; be the sequence of nodes from (ST;, T, p;) then

the root toN. 4: for all edges fromV to its childrendo
3 forj=1toi—1do 5: Let the subset of players reconstruct
4:  if A; is a permutation automatahen the secrets marking those edges.
5: Sets; to be the state marking the edges6: Set a variables; « s, wheres is the
from NV; to Njy. only edge marked with the secret value
6. else 1.
7: Sets; to be the current state of the flip- 7 else
flop marking the edge fromV; to N, ;. 8: Let the subset of players reconstruct the
8: Computeyy <+ @i(s1,...,81, V5 (7)) secrets marking the two edges frawto
and storeyy in N. its children.
9: for all nodesN do 9: Set a variable; to be the current state of
10: if N holds a permutation automaton, say, FF,whereF'F is the flip-flop associated
A; = (ST;, Ty, ;) then with the only edge marked with a secret
11: for all edges fromV to its childrendo valuel.
12: Change the state marking this edgeo: The subset of players returls (si, ..., sy)

from s to u;(s,yn), but do not change  as the current state of.
the secret share.
13:  else 4.3 Analysis of the construction

14: Change the current state of the first flip- first show th . i f
flop from s to u(s, 7). We first show that our construction satisfies Def-

15 Change the current state of the secoﬁ ition 31 i.e., using the i_nitializa_tion procc_edure
flip-flop from s’ t0 12;(s, ). of Section 4.2 together with running Algorithms
1 and 2 ensures that the playdps, ..., P, cor-
rectly compute a state of . For simplicity, we
state and prove the result for passive (“honest-but-
curious”) corruptions; in the case of active corrup-
Online phase. We now describe the online Com-tionS, “all agents” would be rep|aced by “all uncor-
putation that each player performs. The basic idggpted agents,” and setting the threshold of allowed
is to view each path from root to leaf i as a corruptions accordingly. Next, in Proposition 4.2
cascade product of automata. Given an input syije show the privacy of the construction; we di-
bol for 7', each such cascade executes a step.réttly address the stronger notion of security.
step of a permutation automaton is represented by
moving the marks on each edge according to thﬁoposition 41Let A = (ST,T,pu) be the au-
transition of automaton states. A step of a flip-flogy maton held by the dealer, and,.;; an initial

is represented by moving the state of each of thesie Fix a natural numbek, and a sequence &f
two flip-flops in a node. Algorithm 1 shows thel‘nput symbolgy?,....7%), 4 €T, j=1,...,k.

processing performed by an agent upon receivings,me that executingl on (7, ...,7*) from

an input symbot. state s;,,;; terminates in stat;.,,,. Then per-
forming the initialization procedure described in
Section 4.2, and all agentBy, ..., P, executing

Reconstruction phase. After the online phase, Algorithm 1 on everyy’ and Algorithm 2 after/*
executing Algorithm 1 on a (possibly unbounded} processed, returns the statg, .

number of input symbols, a subset of agents in the

access structure run Algorithm 2 to reconstruct ti&roposition 4.2 The construction of Section 4.2—
current state ofd from 7 and their shares. initialization procedure, and Algorithms 1 and 2—



guarantees privacy in the progressive corruptioat the root and traversing a path to a leaf which
model, according to Definition 3.3. stores some decision. At each node the choice of
which child to choose next depends on an input
Regarding the complexity of our constructionyhich defines the next edge, and thus the “right”
we consider two measures: the space complexighild. Such trees are commonly used in various
which is dominated by the number of states in thsranches of artificial intelligence, natural language
tree 7, and the computational complexity, givemprocessing and other disciplines.
by the number of steps we performJnfor each  Consider a generalization of such a decision
transition of.4; this second measure is identical tgee, given by adding to each nodéa loop edge
the number of separate automat&/in back toN. In every internal node, such a loop de-
Given a cascade produdt;, . . .. A, (I, ¢1,. .., termines the action to take when the input is not
%m ), our scheme constructs a tree of deptisuch one of the characters marking an edge to a child
that the number of children for each node of deptf v. In every leaf, this loop is marked by every
iis [ST;|. Thus, the number of states in the leavasharacter in the input alphabet. This construction
of our tree is exactly the number of states in thgelds an automaton that emulates a decision tree
cascade product, that i§[;", |ST;|. Since each that can wait as long as required for the right input
inner node in the tree has at least two children, the reach decisions. Figure 4 shows an example of
total number of states is at most twice the numbgiich a generalized tree, that has depth 3, fan-
of leaves. The number of different automata in thgut : = 2, accepts as input the Sgt, 2,3, 4} and
leaves i [ " [ST;]. is currently in the right node of the second level.
The remaining question is relating the size of a
cascade product to the origindl. As stated pre-
viously, holonomy decomposition is the best gen- Figure 4: Generalized decision tree
eral construction method known. If the number of
states inA is |ST| = m, then the total number We next prove that such a generalized deci-
of states resulting from the decomposition is thgion tree has a Krohn-Rhodes decomposition with
product of the number of states of each compéd—1)(1+log k) flip-flops. As afirst step we trans-
nent, and is thus:!. The total number of states inform the generalized decision tree into a cascade
T is therefore at mostm!, and the total numberproduct ofd — 1 automata, where each automaton
of automata is at mogt(m — 1)!. represents one internal level of the decision tree.
In some cases, holonomy decomposition givésich such automaton hast 1 nodes. The first
exponentially more states than the optimum. Awpdes represent the (at moatEhildren of a node
an example, consider an automaténhat enters a at the current level, while the last node, number
sink states if and only if it is given a sequence ofk + 1 represents the current level.
n consecutive symbols. Decomposing that au- Each node in the generalized decision tree is
tomaton is possible with one permutation automasapped to a product af — 1 nodes in the cas-
ton and one flip-flop. However, holonomy deconmsade product. A node in the decision tree that is
position would decompose it inta flip-flops. In reached from the root by a path, ..., s;, where
the first case7 is of sizeO(m), while in the lat- j < d is represented by the tuple, ..., s;, k +
ter it is of sizeO(2™). Not to despair, in the nextl,...,k + 1) in the cascade product.
section we present a natural automata family ad-The automaton representing the root accepts ev-
mitting a small Krohn-Rhodes decomposition. ery input that the decision tree accepts. The first
- k nodes of this automaton loop to the same node
4.4 KR decomposition example for every input (in other words, once the state of
Consider a decision tree of depftand fan-out the decision tree moves from the root to one of its
at mostk. Each edge in the tree is marked witlehildren, it will never move to a different child).
a character in a finite alphabet that denotes sofMMedek + 1 has an edge to node: = 1,...,k
external input. The edges connecting a nddé marked with any input that sends the root to the
its children are all marked by different characters:th child in the decision tree. For any other input
In such a tree, one reaches a decision by beginnimgdek + 1 loops back into itself.
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In the automaton representing leyell < j < sion tree has a Krohn-Rhodes decomposition with
d, there aré+1 possible inputsy, ..., yx+1. The (d—1)(1+log k) flip-flops. Our method to produce
first K nodes loop to the same node for every inpud. tree of automata that can be privately computed
Nodek + 1 has an edge markeg to nodei for requires2?~12k nodes. For a balanced decision,
everyi = 1,...,k and loops back into node+ 1 with d = logn, our solution require®(nk) nodes
with input v,1. Thus inputy; fori = 1,....k
means that the current state of the decision tree )
moves to thei-th child, while inputy,.; means © Conclusions

that the state does not change. In this work we tackle a new problem, that of se-
Computing an input for an automaton in i cyring a distributed computation on inputs wof-
level of the cascade product is done in the ”atUWéundedIength. Combined with the requirement
way: given that the firs§; automata are in statesf non-interactivity of the execution phase, this
s1,...,s;j—1 and that the input to the cascade progyresents a setting where the large body of work on
uct isd we emulate the decision tree when its Sta@cure mu|ti_party Computation does not seem to
is reached by a patfsy,...,s;—1 from the root pe applicable. We define security in this setting,

and its input isd. If the decision tree moves tognd show how to achieve it for a useful class of
child 4, the input to thej-th automaton isy; and if fynctions.

the state of the decision tree does not change on ing,, algorithms show the feasibility of a solu-

putd then the input to thg-th automaton isyx 1. tjon, and lay the foundations for future research in
Each of the automata in the cascade produgarm computing, which may find applications in
havek + 1 nodes and can be represented by a cgfeas such as design of UAVs—unmanned aerial
cade product of + log k flip-flops. The first flip- vehicles that collaborate in a common mission—
flop in the product determines whether the automgs well as in cloud computing. Last but not least,
ton is in statek + 1 or in one of the othek states. oyr work puts forth an interesting application of

This flip-flop has the identity transition and a resghe fundamental Krohn-Rhodes theory of automata
to the state representing thechildren. The other gecomposition.

log k flip-flops represent which child is chosen.
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secret value i$). Furthermore, ifN; is a permu-
tation automaton then the edge fraW) to N;
is marked withs¢, and otherwise{; is two flip-
flops), the edge fron¥; to N, is marked with a
flip-flop F'F and the current state ¢fF' is s{.

In the online phase, Algorithm 1 goes over
each node in7, including MNy,...,N,,. For
everyi: = 1,...,m, if A; is a permutation
automaton then in linel2 the state mark-
ing the edge betweenV; and N,,; changes
from s¢ t0 (s, 0i(s1,-- 05821, %51 (7))).
Since the share marking this edge does not
change, the reconstruction algorithm collects
wi(s,0i(s1, ..., 81,05 (y)) fori =1,...,m
in lines 2-9 and, thus, its output in linB) is
exactlys,ezt- ]

Proposition 4.2. The construction of Section 4.2—
initialization procedure, and Algorithms 1 and 2—
guarantees privacy in the progressive corruption
model, according to Definition 3.3.

Proof sketch:  The privacy of our construc-
tion follows from the properties of secret sharing
(cf. Definition 2.1) that we employ. It suffices
to show that the adversary’s vierewE(X ,s)is
distributed independently from, X, ands, for a
fixed length ofp , say,/ < t¢. In particular, the
view of each execution is identical to the execu-
tion of A where agents’;,, ..., P;, are corrupted
simultaneously at the beginning of the execution.
The latter claim is also easy to verify, as follows.
Firstly, we assume that the shares generated
by different executions of secret-sharing are dis-
tributed identically. This easily achieved property
is necessary, so thdtdv would not be able to track
the movement of shares in the progressive corrup-
tion model. Then the claim follows from the ob-
servation that each share of each state of each au-
tomaton in the tree is distributed identically at the
time of the agent’s corruption (giveror fewer cor-
ruptions). Further, all the labels of the children of
each automaton node are a random permutation on
the set of states of that node, and thus also do not
carry any information about the state. Ll
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