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Abstract

Private information ret rieval (PIR) schemes

enable a user to access k replicated copies of

a database (k z 2), and privately retrieve one

of the n bits of data stored in the databases.

This means that the queries give each individ-

ual database no partial information (in the in-

formation theoretic sense) on the identity of

the item retrieved by the user. Today, the best

two database scheme (k = 2) has communi-

cation complexity O(TZ1/3), while for any con-

stant number, k, the best k database scheme

has communication complexity 0(nl/(2k-lJ).

The motivation for the present work is the

question whether this complexity can be re-

duced if one is willing to achieve computational

privacy, rather than information theoretic pri-

vacy. (This means that privacy is guaranteed

only with respect to databases that are re-

stricted to polynomial time computations. )

We answer this question affirmatively, and
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show that the computational approach leads

to substantial savings. For every ~ > 0,

we present a two database computational PIR

scheme whose communication complexity is

O(n’). This improved efficiency is achieved

by a combination of a novel balancing tech-

nique, together with careful application of

pseudo random generators. Our schemes pre-

serve some desired properties of previous solu-

tions. In particular, all our schemes use only

one round of communication, they are fairly

simple, they are memoryless, and the database

contents is stored in its plain form, without any

encoding.

1 Introduction

Publicly accessible databases are an indispens-

able resource for retrieving up-to-date informa-

tion. However, accessing such databases also

poses a significant risk to the privacy of the

user, since a curious database operator can fol-

low the user’s queries and infer what the user

is after. Recently, it has been shown that if the

data is replicated at k (k z 2) databases, and

these, databases do not communicate, then it

is possible to protect the user’s privacy. The

solutions to this private information retrieval

(PIR) problem enable the user to retrieve a

desired data item, while giving each individual

database no partial information on the query.

The quality of a solution is measured primarily
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by its communication overhead.

To make the private information retrieval

problem more concrete, we view the database

as a string z of length n. Identical copies of this

string are stored in k z 2 sites. The user has

some index i, and is interested in obtaining the

value of the bit xi. In the first work that intro-

duced this model, Chor, Goldreich, Kushilevitz

and Sudan [3] present 1 various schemes that

solve the retrieval problem with significantly

lower communication complexity than the ob-

vious n-bit solution (i.e., asking for a copy of

x). In particular they obtain the following:

●

●

A two-database scheme with communica-

tion complexity 0(rzl/3).

A scheme for a constant number, k, of

databases with communication complex-

ity O(n]/k).

This last result was subsequently improved in

an elegant work by Ambainis [1]. The commu-

nication complexity of his k database protocol

is 0(nl/t2k–lJ) bits.

The PIR schemes mentioned above achieve

information theoretic privacy: The commu-

nication between the user and each database

is identically distributed, regardless of which

data item the user seeks. It is natural to ask

whether cryptographic techniques can be used

in the context of PIR. This implies that infor-

mation theoretic privacy will be replaced by

computational privacy (privacy with respect

to polynomial time computations), and will

require the use of an appropriate intractabil-

ity assumption. However, if one is willing to

make these “compromises”, there is much to

be gained.

We make the mildest acceptable crypto-

graphic assumption - the existence of pseudo

‘Details on related models and techniques can also
be found in [3].

random generators [2, 10]. (This is equivalent

to the existence of one way functions [6, 5]. )

Under this assumption, we develop a family of

computational PIR schemes. All these schemes

are two database schemes with one round of

communication (one query and one response

per database).. For every E > 0, we have a

scheme in this family with (worst case) com-

munication complexity O ( n= ). All the schemes

are fairly simple, and do not require any cod-

ing in storing the database contents. They

are memoryless – neither users nor databases

have to remember any of the communication’s

history.2

The first step in our construction is the de-

sign of a new balancing scheme. Balancing was

introduced in [3] and proved to be a powerful

technique in the PIR context. Starting with a

given one round scheme, balancing modifies it

in a way that changes the ratio of communica-

tion from the user to the communication from

the database. Our balancing scheme by itself

increases, rather than decreases, the total com-

munication complexity. But its structure en-

ables us to incorporate pseudo random gener-

ators in order to cut down the communication

from the user: we replace random strings of the

original scheme by shorter random seeds, that

are subsequently expanded at the database end

using pseudo random generators. These ex-

panded strings are used by the database as

queries of the original scheme. We rigorously

prove that this construction maintains compu-

tational privacy.

Starting with a scheme with O(nlit) commu-

nication complexity, the new scheme has essen-

tially O(nll(t+l)) communication complexity.

This enables us to apply this process recur-

zDiffeIent ~omputation~ PIR schemes, b~ed ‘n

techniques from oblivious RAM [4, 8] were found by
Itkis [7] and by Ostrovsky and Shoup [9].
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sively, till a desired threshold of 0( n.s ) com-

munication complexity is achieved. The un-

raveling of this recursive procedure is done at

the database end, and requires no additional

communicant ion rounds.

The remainder of this paper is organized as

follows: Section 2 contains definitions and no-

tat ions. Sect ion 3 describes the new balancing

scheme. Section 4 presents our computational

PIR schemes and contains their analysis and

correctness proof.

2 Definitions and Notations

Definition 1: Let P be a one round scheme

for information retrieval, in which the parties

are a user, U, and two databases, Vl%, Df?z.

Each database holds a copy of an n bit binary

string z to which we refer as the content of the

database. The user wishes to retrieve a bit Zi

(1 < i < n). U sends one query Ql(i) to DI?I,

and one query Q2( i) to Df?2 (these queries de-

pend on i and on a source of randomness r that

is local to U). Each database responds with

one answer (which is a function of the query

and of x). These two answers enable U to re-

cover Z;. The scheme is called information the-

oret ically private if for every 1 < il < iz < n,

Ql(il) and Q1(i2) are identically distributed,

and also Q2(il ) and Q2(i2) are identically dis-

tributed. The scheme is called cornputationaliy

private if for every 1< il <22< n, Ql(il) and

Ql(i2) are indistinguishable in poly(n) time,

and also Q2(i1 ) and Q2(i2) are indistinguish-

able in poly(n) time.

Definition 2: A one round, two database

information retrieval scheme P is symmetric if

the following conditions hold:

1. For every 1< i < n, the queries Ql(i) and

Q2(i) are identically distributed.

2. Let Al(q, z) and ~z(q, x) denote the re-

sponses of Dl?l and DL?2 to the query q.

Then for every q, /ll(q, z) = A2(q, z).

Definition 3: An information retrieval

scheme P is polynomial if the user and the

databases execute their respective parts in P

in time that is polynomial in the length of z.

Definition 4: We say that a private infor-

mation retrieval scheme P is a computation-

ally private, one round, polynomial and sym-

metric scheme (abbreviated as COPS scheme)

if the following conditions hold: P is a one

round, polynomial and symmetric scheme for

two databases. For every desired data item i,

the queries Ql(i, x) and Q2(i, z) sent by the

user to each database in P are taken from a

pseudo random distribution (individually, not

jointly). Finally, we require that each database

replies to every query of the right length.

Notice that being a COPS scheme implies

that P is computationally private, but not nec-

essarily information theoretically private.

In [3] a scheme for solving PIR(n) with com-

munication complexity O (nl /3) was presented.

This scheme is the most efficient scheme known

to date (in terms of communication complex-

ity) for two databases. We will refer to it as

f?2 from here on. We end this section with the

following notations: For every n E N we de-

note the set {l, . . ., n} by [n]. Given a set S

and an element a we denote:

5@a =
{

SU{a} ifa@S

S\{a} ifae S

3 A New Balancing Scheme

The importance of balancing schemes in the

private information retrieval context was es-

tablished in [3]. A balancing scheme receives
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as input a scheme 0 that solves Pllt(n), in

which U sends a(n) bits to each database, and

Df?l, Df32 reply with ~(n) bits each. The au-

thors showed two balancing schemes of two dif-

ferent types:

1.

2.

3.1

A database dominated scheme-in this type

of scheme there is an increase in the num-

ber of bits sent by each database to the

user, and a decrease in the number of bits

sent by the user.

A user dominated scheme- in this type of

scheme there is an increase in the number

of bits sent by the user to each database,

and a decrease in the number of bits sent

by the databases.

A Generic User Dominated Bal-

ancing Scheme

In this subsection we present a novel user

dominated balancing scheme for two databases

which can take as input any one round PIR(n)

scheme, 0.

Our scheme has essentially the same com-

munication complexity of the user-dominated

scheme that [3] provided for two databases.

The difference between the two ideas is in the

larger class of PIR schemes that can be bal-

anced using the protocol we present below. In

particular, the scheme from [3] can not be ap-

plied to l?2 or any other scheme in which the

user’s computation on the messages it received

from the databases is dependent on the bit be-

ing retrieved.

Theorem 1: Let 0 be a scheme that solves

PIR(n), in which the user sends each database

cr(n) bits and receives in return ~(n) bits from

each one. For every m E [n] there exists a

scheme N that solves PIR(n), in which the

user sends each database rn.(a( n/m) + 1) bits

and each database replies with 2~(n/m) bits.

Proof: We may assume that the param-

eter m is a divisor of n and that the scheme

0, is symmetric. Both requirements can be

dispensed with at low communication cost (at

most, a multiplicative constant of 2), and

therefore we assume w.1.o.g that they are sat-

isfied.

The string z is viewed as a matrix of m rows

by ~n/rrtl columns. Let the bit that 24 wishes

to retrieve be the i-th bit in the j-th row.

The scheme N

1. L/ chooses uniformly a subset S ~ [m]. U

sends S to Df?l and S @j to DB2.

2. U chooses m + 1 messages VI,. . .,vj_l ,v~ ,w~,

Vj+l,. . .,v~ in the following manner: for each

of the m rows U chooses an address of a bit

in the range 1, ..., [n/ml. The address chosen

for the j-th row is i, and the address for any

other row is 1. Assume that the address chosen

for the q-th row is i’. The user executes the

scheme 0 in order to retrieve the i’-th bit out

of [n/ml bits. The scheme is executed only

up to the point at which U decides on the two

messages– Wl(i’), tv2(i’) that are to be sent to

the databases. If q = j define v; ~ Wl(i) and

v; S w2(i). Otherwise choose b E {1,2} at

random and define v~ 5 w~(i’). U intends to

send the databases one message for each of the

m rows of the database contents. ?./ sends the

messages VI, . . . 1
>~j-l>~j>~j+l>...l ?Jm to Dl?l,

and the messages VI, . . .j~j-l,~~,~j+l,. . .,vm

to Df?2.

3. Each database executes the scheme O in

parallel m times. In each execution the con-

tent of the database is considered to be of

length [n/ml. Let Vl, . . . . Vm denote the m

messages a database received ( tij equals v;

for Df?l, and equals v; for DB2). In the g-
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th execution of 0 each database considers rq

as the query, and the q-t h row of the matrix

as the database contents. The database VBb

(b E {1, 2}), produces an output a! which is

the answer it would have returned to U as part

of the scheme 0. Since 0 is symmetric, for
l=a2

any q + j, aq ~. Each output is of size

~(n/m) by assumption. Each database now

computes two sums(bitwise XOR): ZJf?l com-

qcs qE3

9G’5@j qES@j

The 4 elements Al, B1, A2, B2 are all sent to

Z/i.

4. U obtains a; and a; using the four elements

it received. If j s S then Al – A2 = a; and

B2 – B1 = a;. Otherwise, j ~ S, we have

A2 – Al = a:, and Bl – B2 = a$. In the

PIR scheme 0 the messages a; and a; are sent

by DBI and Dt32 respectively to U when they

receive the inputs v; and v;. Our choice of v;

and v? was such that U can now obtain the

value of the i-th bit in the j-th row, using the

same computation on a:, a; as in the scheme

0.

Privacy: It is enough to show that DBI

can gain no information about the bit being

ret rieved, since the same arguments will prove

the privacy in regard to DB2. Dl?l receives

as input S,vl,. . .,vj_@;,vj+l>. . .,’v?n. 5 is dis-

tributed uniformly regardless of the bit being

retrieved. Each of the Vq’s is drawn out of

the same distribution whichever bit is being

retrieved, since 0 is information theoretically

private. Therefore the distribution of the mes-

sages that Df?l receives is the same for every

bit U wishes to retrieve, and consequently the

scheme N maintains information-theoretic pri-

vacy.

Communication complexity: The user

sends each database one subset of [m] (m bits),

and m messages of size 0(72/772). Thus exactly

rn(a(n/m) + 1) bits are sent to each database.

In the other direction, Dl?l and Dl?2 each send

2fl(n/rn) bits.

4 A computationally private

scheme

Proposition 2: Suppose that ?ZT71(n) can be

solved by a COPS scheme, 0, in which the user

sends o(n) bits to each database and receives

,O(n) bits in return. Furthermore, suppose that

there is a pseudo random generator G which

expands random seeds of length s(n) to strings

of length n, such that the expanded strings

are pseudo random with respect to poly(n )-

distinguishers. Then for every m, m < n3i4,

PZQ(n) can be solved by a COPS scheme, .V,

in which the user sends 2a(n/m)+m. (l+s(n))

bits to each database, and receives 2~(n/m)

bits in return.

Proof: Starting with the original scheme,

0, the high level idea is to apply the bal-

ancing scheme of Theorem 1. However, the

user in that scheme sends m . (1 + a(n/m))

bits to each database, instead of the desired

2a(n/m) + m . (1 + s(n)) bits. To overcome

this gap, the user will send shorter messages

that will be expanded by each database and

then “interpreted” as queries for the original

scheme (after balancing). The data z < {O, 1}”

is viewed as an m x [n/ml binary matrix.

Suppose the desired item is the i-th item of

the j-th row, then Df?l should, after interpre-

tation, have queries V1,. . .,vj_l,w~,vj+l,. v..7 m.

After interpretation, ‘DB2 should have queries

‘Vi,. . .,Vj–1 ,V;,vj+l, . . .,vm. The crucial obser-

vation is that the ?Jk can in fact be taken from

a much smaller query space than the space of
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all strings of length cr( n/m), as long as two

conditions hold: For k # j. the k-th inter-

preted messages for both databases are the

same. while for k = j, the queries v; and v;

are queries in the original scheme 0 (for the

i-th item in a database with [n/ml bits). Of

course, these conditions alone do not guarantee

privacy, which has to be argued separately.

To reduce m . a( rz/rn ) communication down

to m . s(n), the user generates m + 1 random

independent seeds S1,. . .,sj_l ,s~ ,s$~sj+l ~. . .,sm

of length s(n) each. The seeds S1,. . .,sj_l ,s~,

Sj+] ,. . .,sm are sent to Dl?l, and Sl,. . .,sj_l,

‘;, sJ+h. . .,sm are sent to DB2. Each database

applies the generator G to the m seeds it re-

ceived , and expands each of them to a string

of the “right” length, a(n/m) (the seeds could

in fact be expanded to n bit strings, but this

will not be useful in our context). For ev-

ery k # j, G(sk ) can potentially be used as

the k-th query by both databases. However,

for k = j the pair G(s~) and G(s~) is typi-

cally not a proper pair of queries for retriev-

ing the i-th item, and can not be used as the

J -th pair of queries. To overcome this last dif-

ficulty, suppose v; and v; form a proper pair

(chosen according to the pseudo random distri-

bution induced by the original scheme, where

both strings are of length a(n/m)). In addi-

tion to the m seeds, each database will also

receive two strings of length a(n/rn): One is

v; + G(s; ), the other is v; + G(s~) (addition

is over 22, namely bitwise XOR, or over any

other fixed finite field). Each database in ef-

fect receives t?; and v?, “masked” by G(s; ) and

G(s; ) respectively. Df?l, holding s;, can re-

move the mask and recover o;. Similarly, 21f32,

holding s;, can remove the mask and recover

v?. Not having the other seed, the database

cannot unmask the other ~j. We now describe

in detail the mechanism which guarantees that

this unmasking procedure creates m queries of

the desired form (VI,. . ., Vj__l, ZJj,Vj+l,. . ..vm for

l?l?l and ~l,. . .,~j_l,~~,~j+l,. . .,u~ for Dl?2).

The Scheme N

1. U chooses uniformly a subset S ~

[m]. The user also chooses uniformly and

independently m + 1 random independent

seeds S1,. 12
. .>Sj —l tsj >s~ >Sj+l ! . . .,S* of length

S(n) each. U applies the pseudo random gener-

ator G and expands both s; and s? to strings of

length a(n/m), denoted by G(s~) and G(s~).

The user now begins to execute the original

scheme O for the retrieval of the i-th bit out of

[n/ml bits. The execution is carried on up to

the point at which U decides on the two queries

v;, v? it wishes to send to Df31 and D132 re-

spectively. Both queries are of length a(n/m).

Finally, the user computes two “masked mes-

sages”

2. The user U sends the following:

● The set S to 211?1.

● The set S@j to Df32.

● The masked messages

databases.

Ml, M2 to both

● The seeds S1,. . .,sj–l ,s~lsj+l,. . .,sm to

zll?~ .

● The seeds S1,.. .,sj_l ,s~, sj+l ,.. .,sm to

Df?2.

(Every database receives m(l + s(n)) +

2a(n/m) bits.)
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3. Each database expands the seeds S1,. . .,sm

it received to a(n/m) long strings, by apply-

ing the pseudo-random generator G, and ob-

tains G(sl),. . ..G(.s~ ) (sj equals S$ for ‘Df?l,

and equals S$ for DB2 ). Each database now ex-

ecutes the original scheme in parallel m times.

In the k-th execution (k = 1,..., m) the [n/ml

bits in the k-th row of x are regarded as the

database contents by both databases. Denote

by T the set received by the database (T equals

S for Df?l and S @j for D132). Each database

sets his “interpreted query” Vk as follows:

Consider some row k that is different from j.

Since k # j, either k E T for both databases,

or k @ T for both databases. We get

We see that both databases produce the same

“interpreted query” ?)k for this row k (k # j).

For the j-th row (k = j), the two databases

produce different “interpreted queries”. The

query Vj produced by Df?l equals

{

Ml – G(sj) ifj < S
Vj =

Mz–G(sj) ifj $! S

Which in both cases equals v; ,the query in

the original scheme. A similar argument shows

that the j-th interpreted query of DB2 equals

v;.

To summarize, the n-t interpreted queries of

DLII equal

?+,vz,. . . V1 Vj+l, . . ..vm .)~j —1> j)

The m interpreted queries of Dt?2 equal

V1, ?J2, ..., Vj–l>V~,Vj+l) . . . ,Vm.

JTe are therefore in the required situation for

applying the balanced scheme.

Since O is a COPS scheme. and all vk’s

are of length a(n/m), it is guaranteed that

each database can produce an answer to each

query. For k # j, the k-th query to DL?I and

to Df?2 are the same. As 0 is a symmet-

ric scheme, the answers to these queries must

also be the same. Denote these answers by

al,az,. . .~aj—l~a~+l,. . .,arn. For k = j, denote

the answer to query v; by a;, and the answer

to query v; by af. By the balancing scheme,

each database computes two sums: One is the

sum of all answers with indices in the set T, the

other with indices in the complement of T. The

two answers sent by Z?f?l are .41 k ~ Gk, and

and B2 k ~ ak. (Each database sends

kES@j

2@(n/77-L) bits.) Depending on whether j c S

4. U can now compute the desired replies from

the scheme C?, a; and a:: If j c S then a; =

A1– A2anda~= B2– Bl. Ifj@S, thenaj=

B1 – B2 while a; = A2 – Al. From these two

replies, U can recover the desired data item.

This proves the correctness of the scheme

~. Its claimed communication complexity was
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verified in the construction. It remains to

show that J~’ is a COPS scheme. which implies

in particular that it is cornputationally pri-

vate. By construction, .Ar is a one round, two

database scheme. The computational require-

ments (from the user and from the databases)

are polynomial in n, plus the requirements of

0. Since 0 is a polynomial scheme, so is M“.

By construction. and since 0 is a symmetric

scheme, the same applies to h’. What remains

to show is that for any desired data item, the

queries sent by U to each database are pseudo

random.

Suppose the desired item is x~, where 1 <

q s n. We denote the two queries to the

databases, when the desired item is Xg by u(q)

and w(q) respect ively. We will now prove that

u(q) is pseudo random (this implies the pseudo

randomness of u’(q) since the scheme is sym-

metric and both queries are identically dis-

tributed).

In the scheme N the n bits of x are organized

in a matrix. The q-th bit (1 < q ~ n) in x is

the (j, i)-th bit in the matrix (1 < j < m, 1<

i < [n/m] ). The query u(q) is the concatena-

tion of S, M1, M21S1,. . .. sj_l ,s~ ,Sj+l,. . .,s~. In

order to be specific with respect to Ml and

M2, we will assume that j ~ S (the argu-

ment for j @ S is identical). In this case,

Ml = v; + G(s~) and M2 = u; + G(s~). z)}

is the Df?l query for the i-th bit (out of [n/ml

bits) in the scheme 0, and $ is the Dl?2 query

for the i-th bit in the scheme 0.

Suppose, towards a contradiction, that u(q)

is not pseudo random. Define the ensemble

h(q) to be identical to u(q), except replacing

J1lZ = v: + G(.s~) by v; + r2, where T2 is a

random independent string of length ~(n/rn).

Since s; is random and independent of all other

entries in u(q), and G is a pseudo random gen-

erator, the two ensembles u(q) and h,(q) are

indistinguishable in poly( n ) time. Therefore

h(q) is not pseudo random. Consider now the

ensemble g(q) which is identical to h(q), except

replacing v? + r2 by r2. XORing a string of an

arbitrary source with a random independent

string results in a random independent string.

Therefore h(q) and g(q) are distributed identi-

cally, and so the latter is not pseudo random

either. It is not possible to replace G(s; ) (in

g(q)) by another random string rl and apply

the previous argument with respect to g(q),

because s;, the seed to the generator G, is an

explicit part of g(q). Instead, we use the fact

that g(q) is not pseudo random in order to dis-

tinguish, in polynomial time, between t?] and

a random string of the same length. Given n,

i, and a string rl of length ~(n/m), we con-

struct the string d which is the concatenation

of S,rl + G(sj),rz,sl,. . .. Sj–l,S~>3j+l,. . S., m,

where S,r2,s1,. . . . sj_l .s~.sj+l,. . .,sm are in-

dependent random strings of the appropriate

lengths, and all are independent of rl. In

case rl is a random string, d is uniformly dis-

tributed. On the other hand, if rl is taken from

the V; distribution, d is distributed accord-

ing to g(q), and is therefore polynomial time

distinguishable from a uniformly distributed

string. Thus v; is not pseudo random – con-

tradicting the fact that 0 is a COPS scheme.

This completes the proof of Proposition 2. •l

In the proof of proposition 2 we showed how

to construct a COPS scheme out of a differ-

ent COPS scheme, and thereby obtain a re-

duction in communication complexity. In the

next theorem we take the same idea one step

further, and repeat recursively the construc-

tion of proposition 2.

The pseudo-random generator G is central

to our discussion. We first deal with the gen-

eral case, in which G expands strings of length

s(n) to strings of length n. We assume that
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the databases are limited to polynomial time

computations, and therefore they are unable to

distinguish between the pseudo-random strings

and random strings of length n. The user

sends seeds which contain s(n) bits, and the

databases expand them to strings of length n.

Since, typically, not all n bits are needed in the

scheme of proposition 2, the databases simply

choose the prefix of the expanded string, which

has the required length.

The most common assumption about

pseudo-random generators is that s(n) = ns,

where 6 > 0 is any constant. The pseudo-

random distribution is assumed to be indis-

tinguishable from the uniform distribution on

n bit strings, if the distinguishing algorithm

is polynomial in n. We state an explicit up-

per bound on the communication complexity

of COPS schemes which use this type of gen-

erator.

Theorem 3: Let G be a pseudo-random gen-

erator, which expands strings of length s(n) to

strings of length n. For any k ~ O, there exists

a COPS scheme with communication complex-

ity 0(3kn As(rz)~).

Proof: We inductively construct a family

of information retrieval schemes PO, PI, P2, . . .

such that for any k, O < k, pk is a COPS

scheme.

As the scheme P. we choose the most effi-

cient known PIR scheme for two databases, f?2,

which has communication complexity O ( nl /3).

Recall that f?2 is a one round, information the-

oretically private scheme. Since queries in f?2,

are just random strings of length 0(n1i3), ,132

is a COPS scheme.

For every k ~ 1, ~k is derived from ~&.~ by

using the construct ion of proposition 2. P&l

is viewed as the scheme 0 in the proof of the

proposition, and ~k is A’. The construction

ensures that if ‘Pk-l is a COPS scheme, then

so is pk. Together with the statement that P.

is COPS, we have that for any k ~ O, pk is a

COPS scheme.

Communication Complexity: We use

the following not at ions for the scheme pk:

●

●

●

We

mk denotes the parameter of the scheme

(the number of rows in the matrix). The

notation in proposition 2 was simply m,

because only a single scheme was con-

structed.

ak(n) denotes the user>s communication

complexity, where n is the length of the

database contents.

@k(n) denotes a database’s communica-

tion complexity.

now prove by induction that by a care-

ful choice of the parameters mk, we can

ensure that for any k ~ O: ~k(n) =

0(3knfis(n)~), and ~k(n) < ~k(n). For

k = O this claim is true because in T’. all the

parties- U, DBI and Df32 send O(nlj3) bits.

Suppose that the hypothesis of the induc-

tion is true for k – 1. Proposition 2 states

that ak(n) = (S(71) + l)~k + h&~(~/~k),

and ~k(n) = 2@k_l(n/~k). Together with the

induction hypothesis ~k_l(n) < ak_l(n), this

implies ~k(n) < ak(n). In order to prove the

statement for ak (n), an optimal Value for mk

would be one which minimizes the expression

(S(?l) + l)~k+2~k_, (~/~k)+2~k_~(~/~k) .

For the sake of brevity we choose a value which

is slightly less than optimal, but is still good

enough to get the desired results. We set

~k to satisfy the equation: (s(n) + I)mk =

(~/~k)*(S(n) i- 1)=. In essence this con-

straint minimizes an expression similar to the

one required, in which several factors are dis-

regarded.
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It follows that mk = rz~(s(n) + l)=. As-

suming that the hypothesis of the induction is

true for k – 1, we get

(Ik(~) = o (( S(72)+ I)mk+

)2(n/@*(@ + 1)~3k-1

By substituting for mk, we have:

~k(~) = O (Tl*(S(71) + 1)*+

)2nI&(5(n) + q*3~-1 .

Hence,

)a~(n) = o (3%&(n)& . •1

Corollary 4 If one way functions exist, then

for any constant E >0, there exists a COPS

scheme for two databases wit h communicant ion

complexity O(ne).

Proof: The existence of one way functions

implies the existence of pseudo random gen-

erators with s(n) = n6 for any constant 6 >0

[2, 5,6, 10]. We wish to show a scheme ‘P, with

communication complexity O ( nc ). Set t to be

the first integer larger than 2/s – 3, and set

6 = I/t. s is a constant, and therefore so are t

and 6. Substituting for the different variables

we obtain:

q(n) = o (n*s(n)*)

= 0 (n&)
= 0(72’). •1
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