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Abstract. In the problem of private “swarm” computing, n agents wish to se-
curely and distributively perform a computation on common inputs, in such a way
that even if the entire memory contents of some of them are exposed, no informa-
tion is revealed about the state of the computation. Recently, Dolev, Garay, Gilboa
and Kolesnikov [ICS 2011] considered this problem in the setting of information-
theoretic security, showing how to perform such computations on input streams of
unbounded length. The cost of their solution, however, is exponential in the size of
the Finite State Automaton (FSA) computing the function.
In this work we are interested in efficient (i.e., polynomial time) computation in
the above model, at the expense of minimal additional assumptions. Relying on the
existence of one-way functions, we show how to process unbounded inputs (but of
course, polynomial in the security parameter) at a cost linear in m, the number of
FSA states. In particular, our algorithms achieve the following:

In the case of (n, n)-reconstruction (i.e., in which all n agents participate in
the reconstruction of the distributed computation) and at most n−1 agents are
corrupted, the agent storage, the time required to process each input symbol,
and the time complexity for reconstruction are all O(mn).
In the case of (n− t, n)-reconstruction (where only n− t agents take part in
the reconstruction) and at most t agents are corrupted, the agents’ storage and
time required to process each input symbol are O(m

(
n−1
n−t

)
). The complexity

of reconstruction is O(mt).

We achieve the above through a carefully orchestrated use of pseudo-random gener-
ators and secret-sharing, and in particular a novel share re-randomization technique
which might be of independent interest.

? This research has been supported by the Israeli Ministry of Science and Technology (MOST),
the Institute for Future Defense Technologies Research named for the Medvedi, Shwartzman
and Gensler Families, the Israel Internet Association (ISOC-IL), the Lynne and William Frankel
Center for Computer Science at Ben-Gurion University, Rita Altura Trust Chair in Computer
Science, Israel Science Foundation (grant number 428/11), Cabarnit Cyber Security MAGNET
Consortium, MAFAT and Deutsche Telekom Labs at BGU.



2 S. Dolev, J. Garay, N. Gilboa, V. Kolesnikov and Y. Yuditsky

1 Introduction

Distributed computing has become an integral part of a variety of systems, including
cloud computing and “swarm” computing, where n agents perform a computation on
common inputs. In these emerging computing paradigms, security (i.e., privacy and cor-
rectness) of the computation is of a primary concern. Indeed, in swarm computing, often
considered in military contexts (e.g., unmanned aerial vehicle (UAV) operation), security
of the data and program state is of paramount importance; similarly, one persistent chal-
lenge in the field of cloud computing is ensuring the privacy of users’ data, demanded by
government, commercial, and even individual cloud users.

In this work, we revisit the notion of perennial private distributed computation, first
considered by Dolev, Garay, Gilboa and Kolesnikov [8]. In such a computation, an un-
bounded sequence of commands (or inputs) are interpreted by several machines (agents)
in a way that no information about the inputs as well as the state of the computation is
revealed to an adversary who is able to “corrupt” the agents and examine their internal
state, as long as up to a predetermined threshold of the machines are corrupted.

Dolev et al. were able to provide very strong (unconditional, or information-theoretic)
security for computations performed by a finite-state machine (FSA), at the price however
of the computation being efficient only for a small set of functions, as in general the
complexity of the computation is exponential in the size (number of states) of the FSA
computing the function.

In this work, we minimally weaken the original model by additionally assuming the
existence of one-way functions (and hence consider polynomial-time adversaries—in the
security parameter; more details below), and in return achieve very high efficiency in
some cases as a function of the size of the FSA. We stress that we still consider compu-
tation on a priori unbounded number of inputs, and where the online (input-processing)
phase incurs no communication. We now describe the model in more detail.

The setting. As in [8], we consider a distributed computation setting in which a party,
whom we refer to as the dealer, has a finite state automaton (FSA) A which accepts
an (a priori unbounded) stream of inputs x1, x2, . . . received from an external source.
The dealer delegates the computation to agents A1, . . . , An, by furnishing them with
an implementation of A. The agents receive, in a synchronized manner, all the inputs
for A during the online input-processing phase, where no communication whatsoever is
allowed. Finally, given a signal from the dealer, the agents terminate the execution, submit
their internal state to the dealer, who computes the state of A and returns it as output.

We consider an attack model where an entity, called the adversary, Adv, is able to
adaptively “corrupt” agents (i.e., inspect their internal state) during the online execution
phase, up to a threshold5 t < n. We do not aim at maintaining the privacy of the automa-
ton A; however, we wish to protect the secrecy of the state of A and the inputs’ history.
We note that Adv may have external information about the computation, such as partial
inputs or length of the input sequence, state information, etc. This auxiliary information,
together with the knowledge of A, may exclude the protection of certain configurations,
or even fully determineA’s state. We stress that this cannot be avoided in any implemen-
tation; thus, our goal is to prevent the leakage or derivation by Adv of any knowledge
from seeing the execution traces that Adv did not already possess.

As mentioned above, our constructions relying on one-way functions dictates that the
computational power of entities (adversary, agents), be polynomially bounded (in κ, the

5 We note that more general access structures may be naturally employed with our constructions.



Efficient Private Distributed Computation on Unbounded Input Streams 3

security parameter). Similarly, our protocols run on input streams of polynomial length.
At the same time, we do not impose an a priori bound on its length; moreover, the size
of the agents’ state is independent of it. This allows to use agents of the same (small)
complexity (storage and computational power) in all situations.
Our contributions. Our work is the first significant extension of the work of [8]. Towards
the goal of making never-ending and private distributed computation practical, we intro-
duce an additional (minimal) assumption of existence of one-way functions (and hence
pseudo-random number generators [PRGs]), and propose the following constructions:

A scheme with (n, n) reconstruction (where all n agents participate in reconstruc-
tion), where the storage and processing time per input symbol is O(mn) for each
agent. The reconstruction complexity is O(mn).
A scheme with (n − t, n) reconstruction (where t corrupted agents do not take part
in the reconstruction), where the above costs are O(m

(
n−1
n−t
)
).6

Regarding tools and techniques, the carefully orchestrated use of PRGs and secret-sharing
techniques [17] allows our protocols to hide the state of the computation against an
adaptive adversary by using share re-randomization. Typically, in the context of secret
sharing, this is simply done by the addition of a suitable (i.e., passing through the ori-
gin) random polynomial. However, due to the no-communication requirement, share re-
randomization is more challenging in our setting, particularly so in the more general case
of the (n − t, n)-reconstruction protocol. We achieve share re-randomization by sharing
PRG seeds among the players in a manner which allows players to achieve sufficient
synchronization of their randomness, which is resilient to t corruptions.
Related work. Reflecting a well-known phenomenon in distributed computing, where a
single point of failure needs to be avoided, a team of agents (e.g., UAVs) that collaborate
in a mission is more robust than a single agent trying to complete a mission by itself (e.g.,
[1, 3]). Several techniques have been suggested for this purpose; another related line of
work is that of automaton splitting and replication, yielding designs that can tolerate faults
and as well as provide some form of privacy of the computation (see, e.g., [6–8, 10, 11]).
As mentioned above, only [8] addresses the unbounded-input-stream scenario.

Recall that in secure multi-party computation [2, 4, 13], n parties, some of which
might be corrupted, are to compute an n-ary (public) function on their inputs, in such a
way that no information is revealed about them beyond what is revealed by the function’s
output. At a high level, we similarly aim in our context to ensure the correctness and
privacy of the distributed computation. However, as explained in [8], our setting is signif-
icantly different from that of MPC, and MPC definitions and solutions cannot be directly
applied here. The reason is two-fold: MPC protects players individual inputs, whereas in
our setting the inputs are common to all players. Secondly, and more importantly, MPC
operates on inputs of fixed length, which would require an a priori estimate on the maxi-
mum input size smax and agents’ storage linear in smax. While unbounded inputs could
be processed, by for example processing them “in blocks,” this would require communi-
cation during the online phase, which is not allowed in our setting. Refer to [8] for a more
detailed discussion on the unbounded inputs setting vis-à-vis MPC’s.

We note that using recently proposed fully-homomorphic encryption (FHE— [12]
and follow-ups) trivially solves the problem we pose, as under FHE the agents can simply

6 For some values of t, e.g., t = O(n), this quantity would be exponential in n. This however does
not contradict our assumption on the computational power of the participants; rather, it simply
means that, given κ, for some values of n and t this protocol cannot be executed in the allowed
time.
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compute arbitrary functions. In fact, plain additively homomorphic encryption (e.g., [15])
can be used to encrypt the current state of the FSA and non-interactively update it as
computation progresses, in a manner similar to what is described in our constructions
(see the high-level intuition in Section 3). We note that, firstly, public-key encryption
and, dramatically so, FHE, suffer from orders-of-magnitude computational overhead, as
compared to the symmetric-key operations that we rely on. Perhaps more importantly, in
this work we aim at minimizing the assumptions needed for efficient unbounded private
distributed computation.

Finally, and as mentioned above, the problem of share re-randomization and conver-
sion has been considered in the literature. Related to our setting, Cramer, Damgård and
Ishai [5] for example consider the problem of locally converting a secret sharing of a
value into another secret sharing of the same value.

Organization of the paper. The remainder of the paper is organized as follows. In Sec-
tion 2 we present in more detail the model, definitions and building blocks that we use
throughout the paper. We dedicate Section 3 to a high-level description of our construc-
tions, while in Section 4 we present them in detail. The full privacy analysis is presented
in the full version of the paper [9].

2 Model and Definitions

A finite-state automaton (FSA) A has a finite set of states ST , a finite alphabet Σ, and a
transition function µ : ST × Σ −→ ST . In this work we do not assume an initial state
or a terminal state for the automaton, i.e., it may begin its execution from any state and
does not necessarily stop.

We already described in the previous section the distributed computation setting—
dealer, agents, adversary, and unbounded input stream—under which the FSA is to be
executed. In more detail, we assume a global clock to which all agents are synchronized.
We will assume that no more than one input symbol arrives during any clock tick. By
input stream, we mean a sequence of input symbols arriving at a certain schedule of clock
ticks. Abusing notation, we will sometimes refer to the input without explicit reference
to the schedule. (We note that the global clock requirement can in principle be removed
if we allow the input schedule to be leaked to Adv.)

We also mentioned that Adv is allowed to corrupt agents as the execution of the
protocol proceeds. We consider the so-called passive or semi-honest adversary model,
where corrupted agents can combine their views in order to learn protected information,
but are not allowed to deviate from the protocol. Furthermore, each agent can be corrupted
only once during an execution. When it does, Adv can view the entire contents of a
corrupted agent’s memory, but does not obtain any of the global inputs.

Incidentally, we consider event processing by an agent as an atomic operation. That is,
agents cannot be corrupted during an execution of state update. This is a natural and easily
achievable assumption, which allows us to not worry about some tedious details. The
computation is then considered to be secure, if any two executions (possibly on different
inputs and initial states—defined more formally below) are “similarly” distributed.

This model of security for distributed computation on unbounded input streams was
introduced by Dolev et al. [8] as the progressive corruption model (PCM), allowing Adv
to be computationally unbounded, and in particular requiring that the distributions of the
two executions (again, more formally defined below) be identical.
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In this work we use a variant of PCM, applying the following two weakenings to the
PCM definition:
1. Rather than requiring that the distributions of executions be identical, we require

them to be computationally indistinguishable. This means that we guarantee secu-
rity only against polynomial-time-bounded adversaries.

2. We require indistinguishability of executions for the same corruption timeline (and,
of course, different input streams). This means that, for example, agent IDs are now
allowed to be included in the agents’ views. (We use agent IDs in one of our con-
structions.) We stress that this is not a significant security weakening, as essentially
we only allow the adversary to differentiate among the agents’ identities; the inputs
and current state of the computation remain computationally hidden.

We now present our amended PCM definition. We first formalize the notion of cor-
ruption timeline and the view of the adversary.

Definition 1. A corruption timeline ρ is a sequence ρ = ((A1, τ1), . . . , (Ak, τk)), where
A1, . . . , Ak are the corrupted agents and τ1, . . . , τk (τ1 ≤ . . . ≤ τk) denote the time
when the corresponding corruption took place. The length of a corruption timeline is
|ρ| = k.

We denote by VIEWΠ
ρ (X, s) the probability distribution of the aggregated internal

states of corrupted agents at the time of corruption, when executed on input X and initial
state s.

Definition 2 (Computational Privacy in the Progressive Corruption Model). We say
that a distributed computation scheme Π is t-private in the Progressive Corruption Model
(PCM) if for every two states s1, s2 ∈ ST , polynomial-length input streams X1, X2, and
any corruption timeline ρ, |ρ| ≤ t,

VIEWΠ
ρ (X1, s1)

c
≈ VIEWΠ

ρ (X2, s2).

Here, ‘
c
≈’ denotes the computational indistinguishability of two distributions.

Tools and building blocks. A pseudo-random generator (PRG) is a function of the form
G : X → Y , where X and Y are typically of the form {0, 1}k and {0, 1}k+l, respec-
tively, for some positive integers k, l. Recall that PRGs are known to exist based on the
existence of one-way functions, and that the security property of a PRG guarantees that
it is computationally infeasible to distinguish its output on a value chosen uniformly at
random from X from a value chosen uniformly at random from Y (see, e.g., [14]). In our
setting, we will further assume that the old values of the PRG seeds are securely erased
by the agents upon use and hence are not included in the view of the adversary.

The other basic tool that our protocols make use of is (n, t)-secret sharing [17],
where, essentially, a secret piece of information is “split” into shares and handed out
to a set of n players by a distinguished player called the dealer, in such a way that up
to a threshold t < n of the players pulling together their shares are not able to learn
anything about it, while t + 1 are able to reconstruct the secret. We present the specific
instantiations of secret sharing as needed in the corresponding sections.
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3 Overview of Our Approach

Let A be a publicly known automaton with m states. We assume that we have some
ordering of the states ofA, which are denoted by corresponding labels. Every agent stores
the description of the automaton. In addition, during the computation, for every state sj
of A, every agent Ai computes and stores its current label `ij . As mentioned above, all
agents receive a global input stream Γ = γ1, γ2, ...γi, ... and perform computation in
synchronized time steps.

At a high level, the main idea behind our constructions is that the state labels will be
shares (à la secret sharing [17]) of a secret which identifies the currently active state of
A. More specifically, for each of the m automaton states, the n state labels (held by the n
agents) will be shares of value 1 if the state is currently active, and shares of 0 otherwise.
We will show how the players’ local computation on their shares will ensure that this
property is maintained throughout the computation on the entire input stream Γ . When
the input stream Γ is fully processed (or a stop signal is issued), the agents recover the
current state by reconstructing the secrets corresponding to each automaton state. At the
same time, shares of the secrets (when not taken all together) reveal no information on
the current state of A.

We now present additional high-level details on two variants of the approach above.
Recall that we consider the semi-honest adversary model, where corrupted players are not
allowed to deviate from the protocol, but combine their views in order to learn protected
information.

(n,n)-reconstruction. In this scenario, we require that all n agents participate in the re-
construction of the secret (corrupted players are considered semi-honest and hence hon-
estly provide their computed shares).

At the onset of computation, the shares are initialized using an (n, n) additive secret-
sharing scheme, such that the initial state labels are the sharing of 1, and labels of each
of the other states are shares of 0. When processing a global input symbol γ, each agent
computes a new label for a state s by summing the previous labels of all states s′ such
that µ(s′, γ) = s. It is easy to see that, due to the fact that we use additive secret sharing,
the newly computed shares will maintain the desired secret-sharing property. Indeed, say
that on input symbol γ, u states transition into state s. If all of them were inactive and
their labels were shares of 0’s, then the newly computed shares will encode a 0 (as the
sum of u 0’s). Similarly, if one of the u predecessor states was active and its label shared
a 1, then the new active state s will also correspond to a share of 1.

A technical problem arises in the case of “empty” states, i.e., those that do not have
incoming transitions for symbol γ, and hence their labels are undefined. Indeed, to hide
the state of the automaton from the adversary who corrupts agent(s), we need to ensure
that each label is a random share of the appropriate secret. Hence, we need to generate a
random 0-share for each empty state without communication among the agents.

In the (n, n) sharing and reconstruction scenario, we will non-interactively generate
these labels pseudo-randomly as follows. Each pair of agents (Ai, Aj) will be assigned
a random PRG seed seed ij Then, at each event (e.g., processing input symbol γ), each
agent Ai will pseudo-randomly generate a string rj using each of the seeds seed ij , and
set the label of the empty state to be the sum of all strings rj . This is done for each
empty state independently. The PRG seeds are then (deterministically) “evolved” thereby
erasing from the agent’s view the knowledge of the labels’ provenance, and making them
all indistinguishable from random. As all agents are synchronized with respect to the
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input and the shared seeds, it is easy to see that the shares generated this way reconstruct
a 0, since each string rj will be included twice in the total sum, and hence will cancel
out (we will use an appropriate [e.g., XOR-based] secret-sharing scheme such that this is
ensured.).

Finally, and intuitively, we observe that PCM security will hold since the view of
each corrupted agent only includes pseudo-randomly generated labels for each state and
the current PRG seed value. As noted above, even when combined with the views of other
corrupted players, the labels are still indistinguishable from random.

(n− t,n)-reconstruction. In this scenario, up to t corrupted agents do not take part in
the reconstruction (this is motivated by the possibility of agents (UAVs) being captured
or destroyed by the adversary). Agents who submit their inputs are doing so correctly.
Thus, here we require n > 2t.

We will take our (n, n)-reconstruction solution as the basis, and adapt and expand it
as follows. First, in order to enable reconstruction with n − t (= t + 1) agents, we will
use (n, t) additive secret-sharing (such as Shamir’s [17]). Second, as before, we will use
a PRG to generate labels, but now we will have a separate seed for each subset of agents
of size n − t + 1. Then, at each event (e.g., processing of an input symbol), each agent
Ai, for each of the groups he belongs to, will update its shares by generating a random
(n, t)-secret sharing of a 0 using the randomness generated by applying G to the group’s
seed. Then, agent Ai will use the share thus generated for the i-th agent as its own, and
set the label of the empty state to be the sum of all such shares.

Here we note that, since agents are excluded from some of the groups, and that in
this scenario up to t agents might not return their state during reconstruction, special care
must be taken in the generation of the re-randomizing polynomials so that all agents have
invariantly consistent shares, even for groups they do not belong to, and that any set of
agents of size t+ 1 enable the reconstruction of the secrets. (See Section 4.2 for details.)
The above is done for each empty state independently. As before, the PRG seeds are then
(deterministically) “evolved,” making them all indistinguishable from random.

Algorithm 1: Template algorithm for agent Ai, 1 ≤ i ≤ n, for label and state
update.

Input: An input symbol γ.
Output: New labels for every state.
1: if γ is initialized then
2: `ij :=

∑
k,µ(sk,γ)=sj

`ik (the sum is calculated over some field F, depending on the
scheme).

3: end if
4: for every T ∈ T s.t. Ai ∈ T do
5: Compute BTST ← G(seedTr ), where BT = bT1 b

T
2 ...b

T
m, and bTj ∈ F, 1 ≤ j ≤ m.

6: seedTr+1 := ST .
7: for j = 1 to m do
8: `ij := `ij +Rj , where Rj is a scheme-specific pseudo-random quantity.
9: end for

10: end for



8 S. Dolev, J. Garay, N. Gilboa, V. Kolesnikov and Y. Yuditsky

Remark 1. This approach reveals the length and schedule of the input Γ processed by the
players. Indeed, the stored seeds (or more precisely, their evolution which is traceable by
the adversary simply by corrupting at different times players who share a seed) do reveal
to the adversary the number of times the update function has been invoked. We hide this
information by requiring the agents to run updates at each clock tick.

Algorithm 1 summarizes the update operations performed by agent Ai (1 ≤ i ≤
n) during the r-th clock cycle. The key point is the generation of Rj , the label re-
randomizing quantity. Notice also that in every clock cycle, there may or may not be
an input symbol received by the agent; if the agent did not receive any input, we assume
that the input symbol is not initialized.

4 The Constructions in Detail

4.1 The (n, n)-reconstruction protocol

We start our formalization of the intuition presented above with the case where all n out
of the n agents participate in the state reconstruction. The protocol for this case, which
we call Π(n,n), is presented below.

Protocol Π(n,n). The protocol consists of three phases:

Initialization. The dealer secret-shares among the agents a secret value for each state,
such that the value for the initial state is 1 and for all the other states is 0. This is done
as follows. Agent Ai (1 ≤ i ≤ n) is given a a random binary string xi1x

i
2...x

i
m, with the

constraints that
x1
init + x2

init + ...+ xninit ≡ 1 mod 2,

where init is the index of the initial state of the computation, and for every 1 ≤ j 6=
init ≤ m,

x1
j + x2

j + ...+ xnj ≡ 0 mod 2.

Each agent then proceeds to assign its state labels as `ij ← xij .

Event Processing. Each agent runs Algorithm 1, updating its labels and computing the
new seeds for the PRG. Let T be the set of all possible agents’ pairs. For line 8 of Algo-
rithm 1, each agent Ai now computes

Rj =
∑

T∈T ,Ai∈T
(bTj )r.

Reconstruction. All agents submit their internal states to the dealer, who reconstructs
the secrets corresponding to each state, by adding (mod 2) the shares of each state, and
determines and outputs the currently active state (the one whose reconstructed secret is
1).

Before proving the correctness and privacy achieved by the protocol, we illustrate the
operation of the online (Event Processing) phase with the following example; refer to
Figures 1 and 2. The two figures describe the execution of the protocol on an automaton
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s1 s2

s3

α
α

α

α

β β

β

β

s4

(`i1)r−1 (`i2)r−1

(`i3)r−1
(`i4)r−1

Fig. 1. The internal state of agent Ai before a transition.

s1 s2

s3

α
α

α

α

β β

β

β

s4

(`i1)r =
(`i2)r =

(`i3)r =

(`i4)r =

=
∑

T,i∈T (b
T
1 )r+p

= (`i2)r−1 + (`i4)r−1+

=
∑

T,i∈T (b
T
3 )r+p

= (`i1)r−1 + (`i3)r−1+

+
∑

T,i∈T (b
T
2 )r+p

+
∑

T,i∈T (b
T
4 )r+p

Fig. 2. The internal state of agent Ai after an α transition.

with four states and two possible inputs. Figure 1 presents the internal state of agent Ai
after the (r − 1)-th clock cycle. The agent holds the original automaton and has a label
for each of the four states, (`i1)r−1, (`i2)r−1, (`i3)r−1 and (`i4)r−1.

Figure 2 shows the changes in the agent’s internal state compared to Figure 1 after
the r-th clock cycle. We also assume that in this clock cycle the agents receive an input
symbol α. The new labels for each state are the sum of old labels and pseudo-random
values. The labels in the sum are the old labels of all the states that transition to the
current state given the input. Thus, the new (`i2)r includes a sum of the old (`i2)r−1 and
the old (`i4)r−1, while the new (`i3)r doesn’t include any labels in its sum because there is
no state that transitions to s3 after an α input. The pseudo-random addition to each state
j = 1, . . . , 4 is the sum

∑
T,i∈T (bTj )r.

We start by proving the correctness of the construction.

Proposition 1. At every Event Processing step of protocol Π(n,n), the secret correspond-
ing to the current state in the computation is 1 and for all other states the secret is 0.

Proof. The proof is by induction on the number of steps r that the automaton performs,
i.e., the number of clock cycles.



10 S. Dolev, J. Garay, N. Gilboa, V. Kolesnikov and Y. Yuditsky

For the base case, if we consider the state of the protocol after the initialization step
and before the first clock cycle, i.e., at r = 0, then the statement is true by our definition
of the label assignments. Let us first consider the case where at the r-th step an input
symbol γr from Γ is received. Following the protocol, agent Ai’s new label for state j
becomes

`ij ←−
∑

k :
µ(sk,γr)=sj

`ik +
∑

Ai∈T
(bTj )r.

Consider now the next state of the computation in the automaton; we wish to show that
the secret corresponding to that state will be 1. Let curr be the index of the current state
of the automaton, and next be the index corresponding to the next state; by definition,
µ(scurr , γr) = snext . Then,

`inext ←−
∑

k :
µ(sk,γr)=snext

`ik =

`icurr +
∑

k 6=curr :
µ(sk,γr)=snext

`ik +
∑

i∈T
(bTj )r.

By the induction hypothesis, we know that

n∑

i=0

`icurr ≡ 1 (mod 2)

and for k 6= curr ,
n∑

i=0

`ik ≡ 0 (mod 2).

Thus, if we sum over all the agents:

n∑

i=0


`

i
curr +

∑

k 6=curr :
µ(sk,γr)=snext

`ik +
∑

i∈T
(bTj )r




=

n∑

i=0

`icurr +
∑

k 6=curr :
µ(sk,γr)=snext

n∑

i=0

`ik

+

n∑

i=0

∑

i∈T
(bTj )r ≡ 1 + 0 ≡ 1 (mod 2).

This is because in
∑n
i=1

∑
i∈T (bTj )r, every (bTj )r appears exactly twice in this sum, once

for every element in T . Using similar arguments one can see that all the other states will
resolve to 0.

In the case that in the r-th step no input symbol is received, due to the fact that we just
add the random strings in the same way as in the case above, we again get that the secret
corresponding to the current state of the computation is 1, and for all others is 0. ut
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Proposition 2. Protocol Π(n,n) is (n− 1)-private in the PCM model according to Defi-
nition 2.

Proof (sketch). Recall that the underlying observation is that when a corruption takes
place (which cannot happen during the label-update procedure), the agent’s state includes
the current labels and PRG seeds which have already been evolved, and hence cannot be
correlated with the label shares previously generated.

Without loss of generality, consider the case where Adv corrupts all but one agent
according to an arbitrary corruption timeline, and assume, say, agent A1 is not corrupted.
We argue that the view of the adversary is indistinguishable from a view corresponding to
(randomly) initialized agents A2, ..., An on the given automaton and any initial state. In
other words, the view of the adversary is indistinguishable from the view he would obtain
if he corrupted the agents simultaneously and before any input was processed. Once we
prove that, the proposition follows.

The view of each corrupted agent includes n − 1 seeds that he shares with other
agents and the FSA labels which are secret shares of 0 or a 1. We argue that, from the
point of view of the adversary, these labels are random shares of either 0 or 1. This
follows from the PRG property that an evolved seed cannot be correlated with a prior
output of the PRG, and from the fact that A1 remains uncorrupted. Indeed, the newly
generated “empty” states’ labels look random since the adversary cannot link them to the
PRG seeds in his view. The other states’ labels look random to the adversary since they
are XORed with A1’s label.

Thus, the total view of the adversary consists of random shares of 0 and 1, and is
hence indistinguishable from the one corresponding to the initial state. ut

We now calculate the time and storage complexity of Π(n,n). At every step of the
computation, each agent pseudo-randomly generates and XORs n − 1 strings. Further,
each agent holds a small constant-length label for each automaton state, and n − 1 PRG
seeds, yielding an O(m+ n) memory requirement.

4.2 The (n − t, n)-reconstruction protocol

Recall that in this case, up to t of the agents might not take part in the reconstruction, and
thus n > 2t.

A straightforward (albeit costly) solution to this scenario would be to execute Π(n,n)

independently for every subset of agents of size t+1 (assuming for simplicity n = 2t+1).
This would involve each agent Ai holding

(
n−1
t

)
copies of the automaton A, one copy

for each such subset which includes Ai, and updating them all, as in Π(n,n), according to
the same input symbol. Now, during the reconstruction, the dealer can recover the output
from any subset of t+1 agents. The cost of this approach would be as follows. Every agent
holds

(
n−1
t

)
automata (one for every t + 1 tuple that includes this agent), and executes

Π(n,n), which requires O(m+ t) memory, resulting in a total cost of O
((
n−1
t

)
· (m+ t)

)
,

with the cost of computation per input symbol being proportional to storage’s. In the
sequel, we will refer to this approach as Π

(n−t,n)
naive .

We now present Π(n−t,n), an improved (n − t, n) reconstruction scheme, whose in-
tuition was already presented in Section 3. The protocol uses Shamir’s secret-sharing
scheme [17], which we now briefly review. Let F be a field of size greater than n, and
s ∈ F be the secret. The dealer randomly generates coefficients c1, c2, ..., ct from F and
construct the following polynomial of degree t, f(x) = s+ c1x+ c2x

2 + ...+ ctx
t. The
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dealer gives each participant Ai, 1 ≤ i ≤ n, the value f(i). It can be easily seen that
one can reconstruct the secret from any subset of at least t+ 1 points, and no information
about the secret is revealed by t points (or less).

Protocol Π(n−t,n). As before, the protocol consists of three phases:

Initialization. Using Shamir’s secret sharing as described above, the dealer shares a secret
1 for the initial state and 0 for all other states. In addition, the dealer generates a random
seed for every set of n− (t− 1) = n− t+ 1 agents, and gives each agent the seeds for
the sets it belongs to. Let T be the set of all possible subsets of n− t+ 1 agents.

Event Processing. Each agent runs Algorithm 1 updating its labels, as follows.
Let T ∈ T and j, 1 ≤ j ≤ m, be a state of the automaton. Upon obtaining value

bTj (refer to Algorithm 1), the agents in T (individually) construct a degree-t polynomial,
PTj , by defining its value on the following t + 1 field points: 0, all the points i such that
Ai 6∈ T , and k such that k is the minimal agent’s index in T (the choice of which point
in T is arbitrary). Now define PTj (0) = 0, PTj (i) = 0 ∀Ai 6∈ T , and PTj (k) = bTj .

Observe that by this definition, every agent Ai ∈ T can use polynomial interpolation
to compute PTj (i), since the only required information is bTj (and the knowledge of set
membership).

Let polynomial Pj be defined as Pj =
∑
T∈T P

T
j . Each agent Ai now computes

Pj(i) (note that this is possible since the values corresponding to sets the agent does not
belong to is set to 0), and updates the j-th label, 1 ≤ j ≤ m, in Algorithm 1 by setting
Rj = Pj(i) in line 8.

Reconstruction. At least t+ 1 agents submit their internal state to the dealer, who, for ev-
ery j = 1, . . . ,m, views the j-th labels of t+1 agents as shares in a Shamir secret-sharing
scheme. The dealer reconstructs all the m secrets using the scheme’s reconstruction pro-
cedure, and determines and outputs the currently active state (whose recovered secret is
equal to 1).

Proposition 3. At every Event Processing step of protocol Π(n−t,n), the shared secret for
the current state in the computation is 1 and for all the other (inactive) states, the shared
secret is 0. Furthermore, t+ 1 agents can jointly reconstruct all secrets.

Proof. We prove the proposition by induction on the number of clock cycles r. We show
that at each clock cycle r, for every state sj , the n labels `1j , . . . , `

n
j are points on a degree

t polynomial Qj whose free coefficient is 1 if j is the current state and 0 otherwise.
At initialization, the claim is true by our definition of the label assignments.
Assume that the induction hypothesis is correct after r − 1. We prove the hypothesis

for the r-th step. Assume first that in this step the agents receive an input letter γr, and
denote the current state by scurr . By our definition, the new label of the state j of agent i
is

`ij ←−
∑

k :
µ(sk,γr)=sj

`ik + Pj(i),

or, equivalently,
`ij ←−

∑

k :
µ(sk,γr)=sj

Qk(i) + Pj(i).
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For every j, 1 ≤ j ≤ m, define polynomial Q′j as

Q′j =
∑

k :
µ(sk,γr)=sj

Qk + Pj .

Therefore, Q′j(i) = `ij for every j and every i. In addition, since every Qk is of degree t
and so is Pj , we deduce that Q′j is also of degree t. We finish proving the induction step
by showing that Q′j(0) = 1 only for the correct state.

Let µ(scurr , γr) = snext . By induction, Qcurr(0) = 1 and Qj(0) = 0 for any
j 6= curr . Furthermore, by construction Pj(0) = 0, and therefore Q′curr(0) = 1. Since
Qj(0) = 0 for any j 6= curr , we have that Q′j(0) = 0 for any j 6= next .

If the agents do not receive any input symbol in the r-th clock cycle, then the claim
follows by similar arguments as above. ut

Proposition 4. Π(n−t,n) is t-private in the PCM model according to Definition 2.

At a high level, the proof follows the steps of the proof of Proposition 2. The full details
of the privacy analysis are presented in the full version of the paper [9].

We now calculate the costs incurred by the protocol. The space complexity of each
agent is as follows. An agent holds a label for every state, i.e. m · (dlog|F|e + 1) bits.
Additionally every agent holds

(
n−1
n−t
)

=
(
n−1
t−1

)
seeds, where every seed is of size len .

Thus, in total we have
(
n−1
t−1

)
· len + m · (dlog|F|e + 1) bits. Each step of the Event

Processing phase requires O(m
(
n−1
t−1

)
) time for seed manipulation and field operations.

Reconstruction (by the dealer) is just interpolation of m polynomials of degree t.
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