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Equations (17)-(19) have been obtained after averag-
ing the fast-oscillating terms in the expressions for
the energy dissipation rate and the projections of the
tidal torque on the OXYZ coordinate axes. The
inertial axis OZ has been taken along the binary
system's total angular momentum vector, which is
equivalent to the condition

Ko sinJ = IQ sin (8 — J). (20)
In deriving Egs. (13)-(16) we have made use of
the relation * ¢ + U = n. The angle A remains
practically unchanged in the present approximations.

One can solve the system of evolutionay equa-
tions (13)-(16) numerically. The results we have
obtained for two of the most typical cases are here
shown in graphical form.

Figure 3 plots the parameters Q, w, and u =
cos B against elapsed time t for a binary system
comprising white dwarfs with parameters v; ~ 10*2
cm 2/sec, M, = M, ® 1 My and for initial values B, =
60°, Q, = 0.35-102 sec™!, w, = Q,/2, €, = 0.01.
Figure 4 illustrates the evolution of the eccentricity
e for the same case.

In Fig. 5 we track the evolution of @, w, u
for a pair of white dwarfs with v, ~ 10° cm ?/sec

and white dwarts with v, ~ 10° cm ?/sec and M, =
M, = 0.33 Mg in which the initial angular velocity
of orbital motion oxceeds each stars's axial angular
rotation speed: w, = 2Q, * 0.04 sec™!. The inclina-
tion B, = 45°. The two viscosities we have con-
sidered, v ~ 10*2, 10° cm 2/sec, are the limiting
values found by Durisen. ®

It is evident from these diagrams that if the
axial rotation has a higher angular velocity than
the orbital motion ( @ > w, Figs. 3 and 4), then
synchronization (2 = w) and alignment of the rotation
axis (B = 0°) will be achieved almost simultaneously;
a far longer time will be required for the orbital
eccentricity to disappear. On the other hand, if
Q < w (Fig. 5), synchronization will set in well
before the axis becomes aligned.
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If small-scale magnetic fluctuations are generated in a medium subject to MHD turbulence, the total
(hydrodynamic + magnetic) turbulent pressure will drop; and if the turbulence has become thoroughly
established, this effect may reverse the sign of the large-scale magnetic force in the medium, rendering the

large-scale field unstable.

1. INTRODUCTION

The magnetic fields of solar active regions
have a highly nonuniform structure: a configuration
of flux ropes develops, by some mechanism not yet
fully understood. It has been suggested (see the
monographs of Parker ! and Priest,? and the
references therein) that the magnetic flux ropes
might originate from the prevailing large-scale field
in the sun's convective zone when magnetic buoyancy
triggers instabilities there. However, in order for
such an instability to set in, the initial magnetic
field would have to be strongly nonuniform in the
direction of gravity; to the point where the charac-
teristic scale for changes in the field is smaller
than the density scale-height. Magnetic fields as
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inhomogeneous as we observe could be excited only
by powerful, localized generators — sources which
do not seem typical of the convective zone.3>*

In this letter we propose a net type of in-
stability which might, if it were to develop in the
turbulent solar convective zone, give rise to irregu-
larities in the large-scale magnetic field taking the
form of ropes or sheets. This instability could
be triggered if a negative effective magnetic pressure
were to emerge in a medium having well-developed
small-scale hydrodynamic turbulence. Fine-scale
turbulent pulsations would act as the energy source
driving the instability.

Although several authors have investigated
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instabilities that would result from reversals in the
sign of various forces, °*~7 the effects stemming
from a sign reversal of magnetic forces within an
ambient large-scale field, engendering unstable MHD
perturbations in a medium subject to hydrodynamic
turbulence, have not previously been considered.

2. EFFECTS OF NEGATIVE MAGNETIC PRESSURE

Suppose that a medium is characterized by
magnetohydrodynamic turbulence having a basic
scale 2, of hydrodynamic motion and a scale 2p,
of magnetic pulsation. One example is the sun's
turbulent convective zone: granules of scale %, ~
(5-10):107 cm stochastically form and decay, while
the energy of random hydrodynamic pulsations
generates turbulent magnetic fields. We have
recently shown ®>° that the minimum scale, the
thickness of the threads in the pulsational magnetic
field, should be roughly %, ~ zoRm"llz, where
Ry, is the magnetic Reynolds number.

When turbulent- magnetic fields are generated,
the total (hydrodynamic + magnetic) turbulent
pressure P¢ will diminish. This phenomenon is quite
general in character and might serve as a mechanism
for producing flux tubes (ropes) in the large-scale
solar magnetic field.

The principle of this effect qualitatively becomes
apparent if we take isotropic turbulence as an
illustration. In this case, one will recall, <u; (r)-
uy (@) = <u >845/3 and (ki (r) by () = <h ?>8;/3,
where the vectors h and u represent random
pulsations of the hydrodynamic and magnetic fields,
8ij is the Kronecker delta, and the angle brackets
signify averages over some scale longer than £,.

For isotropic turbulence the combined turbulent
pressure may be written as

P, = Wnl3 +2W,/3, @)
where Wy, = <h?>/87 is the energy density of the
magnetic pulsations and Wi = <pu?>/2 is that of the
turbulent hydrodynamic motions %> (p denotes the
plasma density).

Now suppose that the turbulence is maintained
by some "inexhaustible" energy reservoir. This is
in fact the typical situation in the convective zones
of the sun and stars, where changes of state occur
only over long evolutionary time spans. Accordingly
when turbulent magnetic fields are generated, the
total energy of of turbulence will be conserved (the

dissipation of energy will be offset by replenishment).

In light of this circumstance (Wi + Wp = const)
we can express the change of the turbulent pressure
in an unbounded, statistically homogeneous medium
in terms of the change AWy, in the magnetic energy
desnity:

P, = PO — AWy/3, 2
where Pt( 9) denotes the initial (excluding the
generated field) turbulent pressure. When turbulent
magnetic fields are generated, AWy will be positive,
so the turbulent pressure will diminish.

Next let us superimpose on the fine-scale
isotropic MHD turbulence a large-scale (LB > 2%,)
magnetic field. In particular, in the solar convection
zone such a field will be induced by the effects of
differential rotation and helicity. *?>* On becoming
"entangled" by the hydrodynamic turbulence, this
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large-scale field will give rise to additional small-
scale magnetic pulsations. 13, One can show that
the energy density Wy, of the turbulent magnetic
pulsations will then depend primarily on two quanti-
ties, Wk and the energy density W = B 2/8w of the
large-scale magnetic field B.

For the weak-field case (W <« Wg), we may
expand Wy, in powers of WR, obtaining

Wa = Wa® + a, (W) B/8n + . . .,

where Wm( °) js the magnetic energy density that
the pulsations would have if the large-scale field
were absent. . Combining this expression with Eq.
(2), we may write the turbulent pressure P in the
form .

B = PO — g B245.
t G
¢ 3
For large-scale processes the total pressure
Ptot will play an important role:

Ptot=Pk +Pt_+PBy

where Pk is the ordinary gas-dynamical pressure of
the plasma and Pg = B ?/8n is the magnetic pressure
of the large-scale field. With Eq. (3), the total
pressure becomes.

Pyt = B+ B.® + (1 — gp) BY8n, ”

where gp = a¢/3. Thus in the presence of well-
developed MHD turbulence the sign of the effective
magnetic pressure Pp = (1 — qp)B ?/8n can change
if qp > 1.

When a large-scale field B is superimposed on
turbulence that is initially isotropic, the isotropy
will break down. Nevertheless Eq. (4) will remain
valid; only the ratio between qp and at will change .
Our calculations indicate!) that in the case of
Kolmogorov turbulence with a superposed large-scale
magnetic field the effective magnetic force may be
expressed in the form

Fp=—V ({1 —gp) B8 + (B- V) (1 — gs) Bf4n. (5)
In deriving Eq. (5) we have presupposed !* that
the statistical moments have a characteristic relaxa-
tion time.

In two limiting cases the functions qp (Rp,
as(Rpy, €,) are given by simple expressions:

€0)s

a) e, .,< 1, Ry s 2 gp = 4 In R,/15, g = 2qp/3;
b) Ra" < eg<<1: go~ 8(1— 5ln e2)/25, gs~ 8 (1
— 151n g,)/15%,

(6a)
(6b)

where g, =4vp?/u?, v = B/ /4up is the Alfven velocity, and
u, = v<u?> is the turbulence velocity.

We point out that along with the possibility
that the effective magnetic pressure may be negative
(when qp > 1), Eq. (5) also provides for a possible
reversal in the sign of the magnetic stress force
(when qg > 1). For given ¢, one can estimate
from the expressions (6) the values of the magnetic
Reynolds number for which the sign of the magnetic
forces will reverse.

It further is worth noting that calculations
support our assumption that the total energy of MHD
turbulence is conserved if the energy reservoir is
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inexhaustible. Indeed, the superposition of a

quasihomogeneous large-scale field upon well-developed

MHD turbulence will not affect the total turbulence
energy, but will merely redistribute it between the
hydrodynamic' and the magnetic pulsations.

The negative magnetic-pressure effect should
not be confused with the lowering of magnetic
pressure by turbulent diamagnetism. !° Although
diamagnetism can reduce the magnetic pressure, it
cannot change the sign (P; * P,/Ry, where B, P,
denote the magnetic pressures inside and outside
the turbulent region). Moreover, turbulent diamag-
netism tends to "expel" the magnetic field from the
zone occupied by turbulent plasma, whereas the
negative magnetic-pressure effect may strengthen
the field in that region.

We see, then, that once fine-scale turbulence
has become established, the elasticity of the large-
scale magnetic field will largely be suppressed.
This circumstance might be capable of triggering
large-scale MHD perturbations.

3. LARGE-SCALE MHD INSTABILITY EXCITED BY
NEGATIVE VALUE OF EFFECTIVE MAGNETIC
PRESSURE

Let us examine the large-scale phenomena that
will develop on scales L in the range %, < L « Lpg.
The influence of the small-scale turbulence on these
processes will be described in terms of the param-
eters gp, qs, and the turbulent viscosity coefficient
Vvt ~ %,U,/6. Even though gp, qg, vt may all be
determined by one and the same turbulence, the
three parameters characterize different effects.

The first two measure the nonlinear (with respect
to the large-scale field) negative contribution of
the turbulence to the effective magnetic force, while
the parameter vt specifies the turbulent diffusion
of the large-scale magnetic field (an effect linear in
the field strength).

We first consider the properties of magnetic
buoyancy in the presence of small-scale turbulence.
Let the x axis of a Cartesian coordinate system be
directed opposite the free-fall vector g, and let the
z axis lie along the large-scale magnetic field B (z).
To simplify matters we regard the field as horizontal.

We single out a magnetic flux tube located along
the x axis at level 1, say, where the density is
p; and the field strength is B,. Now we gradually
move the flux tube as a whole upward from level 1
to level 2, at which the ambient medium has corre-
sponding parameters p,, B,. If the density p;*
within the tube (in position 2), once the total
pressures inside and outside the tube have equalized
turns out to be lower than the density p, of the
surrounding plasma, the flux tube will continue to
float upward due to Archimedean forces.

Provided dissipative processes are absent and
the thermal conductivity is high enough, the density
excess Ap = p,* — p, can be determined, as usual,
from the laws of conservations of mass and magnetic
flux within the tube. We need merely recognize
that in the presence of fine-scale turbulence the
criterion for balance between the total pressures
inside and outside the flux tube (at level 2) will
take the form

KpB,? KpBY
02 + St i = crp* + Sn
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where Kp =1 — gqp, Cg is the speed of sound,
and B,* is the magnetic field strength within the
tube at point x,. Assuming the displacement £ =
X, — X, to be small, we shall write the density
p, and field strength B, as

Pe =p1 (1 —&/Ap), By =B, (1 —EAp),
where A, = —p-dx/dp, AR = —B+dx/dB are the
scale heights of the density and the magnetic field.
As a result we obtain a density differential

— B:Kp (Ag — Ay) :

A=A,

(N

The flux tube can become buoyant, that is,
instability can set in, if

Kp (A — Ap)/ AgA, 0.
p (A o)/ ApAp < (8)

In mildly turbulent plasma having a comparatively
small magnetic Reynolds number (with the quantity
Kp % 1), the small-scale turbulence will not affect
large-scale processes. Then in view of the condition
(8), the criterion for instability due to magnetic
buoyancy will take the form Ag < A;. In other
words, instability will develop only if the scale for
change in the initial magnetic field is less than the
density scale-height. 3,1

The situation will be radically different, how-
ever, in a medium whose fine-scale hydrodynamic
turbulence has become well established. Thus, when
ap > 1 the effective magnetic pressure of the plasma
will become negative (Kp < 0), and conventional
magnetic buoyancy in a highly nonuniform magnetic
field will no longer exist [see the inequality (8)].
On the other hand, when Ag > A, and Kp < 0 in-
stability will be excited in the large-scale magnetic
field.. It is evident from the condition (8) that
instability will develop even in a large-scale field
that is initially quasihomogeneous.

Let us estimate the growth rate of this instabi-
lity. Neglecting dissipative processes for simplicity's
sake, we shall retain only the Archimedean force
in the equation of motion of the magnetic flux tube:

s /apn — _ (24)* €K (As — A)
d2g/der = (0)_?1\:“%0%

where vp = B ,/V/4up; is the Alfvén velocity. We
seek a solution to Eq. (9) of the form £ « exp (yt);
the instability growth rate will then be given by

(9)

¥ =(va/Ao) V— Kp (1 — Ap/Ag), (10)

which makes use of the fact that A, = cg?/g.

The small-scale turbulent pulsations are the
energy source for this instability. This circumstance
represents a fundamental distinction between the
instability we are discussing and that considered by
Parker. ! The Parker instability is triggered by
gravity forces in a highly nonuniform magnetic field
(Ag < Ap), and in that sense is analogous to
Rayleigh—Taylor instability.

As for the role of the turbulent viscosity, it
will serve either to weaken the instability or to
stabilize it completely.z) As a consequence our
mode of instability will have a threshold character.
It is evident from Eq. (10) that the instability
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growth rate is proportional to the large-scale field
strength B. To obtain an estimate, we may regard
the turbulent damping decrement yq of the MHD
perturbations as being of order v¢/A,*. Then
instability will set in only if the large-scale field is
sufficiently strong: B > Bep* v¢, p). The threshold
of instability for the large-scale field can be deter-
mined from the equation

€ (gp (89y Rm) — 1) = (1p/3Ap)% (11)

We therefore have here a new channel capable
of transferring energy from small-scale turbulence
to the large-scale magnetic field. The resultant in-
stability could serve to generate irregularities in
the large-scale field taking the form of sheets or
ropes.

4. INSTABILITY IN TURBULENT SOLAR
CONVECTIVE ZONE

It is important to decide whether the instability
triggered by negative magnetic pressure might
produce magnetic nonuniformities whose scale is
comparable to that of sunspots. To be specific, let
us take Spruit's modell® for the convective zone.
In this model the plasma at a depth of order 10 “
km (at least the size of a sunspot) would have
parameters Ry = U%,/vpy = 3.1:107, a magnetic-
viscosity coefficient vy = 1.1-10 ° cm ?/sec, p =
5-10"% g/cm 3, AQ = 4.3-10® ecm, vt = 5-10'! em 2/
sec, U, = 1.2:10* cm/sec, and £, = 2.8-10% cm.
The time scale for rotation of a turbulent convec-
tion cell will be roughly T, ~ %2,/u, = 2.3-10* sec;
we emphasize that our discussion is valid only for
time spans longer than t,. In a field B = 100
gauss, the Alfvén velocity vap = 1.3-10% cm/sec,
and e, * 4.7-1072,

By Egs. (6b), the coefficient Kp = —1.8.
The effective magnetic pressure will then be negative
(see Secs. 2, 3), triggering an instability which
will develop on a time scale T, ~ Ap/(vA‘/j—Kp) =
2.5-10° sec. For definiteness we assume that
Ay/Ag < 1. At the levels in question the character-
istic time for decay of MHD perturbations due to
turbulent viscosity is roughly tq ~ Ap%/v¢ * 3.7-10°
sec. According to Eq. (11), the threshold of in-
stability for the large-scale field will be Bep(vip) =
65 gauss. Since T, < Ty < 14, the instability when
B > Bep will not be suppressed by the turbulent
viscosity, and it would indeed be able to develop
on scales comparable to the spot size.
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Both theoretical estimates and the observations
indicate that the toroidal magnetic field on the sun
is nearly zero in the polar cap regions and on the
equator; it reaches a maximum at low latitudes.

For the most part, then, it is only at low latitudes
that the large-scale field can become unstable.
Presumably this is the circumstance that would
account for the so-called royal zone of spot for-
mation on the sun.

The authors are indebted to a referee for
valuable -comments.

;)Ihese results will be discussed in full in a separate paper.
)In the solar convective zone the turbulent viscosity signifi-
cantly exceeds both the magnetic and the kinematic viscosity.
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