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Abstract. By using a nonlinear model of an axisymmetric &« — € dynamo, an analytical expression
which gives the magnitude of the mean magnetic field as a function of rotation and other parameters
for a solar-type convective zone is obtained. The mean magnetic field varies as the % power of the
rotation rate. The resulting theoretical relationship of the X-ray luminosity as a function of the angular
velocity is in agreement with observations by Fleming, Gioia, and Maccacaro (1989).

1. Introduction

The magnetic fields of the Sun and of solar-type stars are believed to be generated
by a dynamo process in their convective zones (Moffatt, 1978; Parker, 1979;
Zeldovich, Ruzmaikin, and Sokoloff, 1983). It is known that kinematic dynamo
models give no estimate of magnitude for the generated magnetic field. In order to
find the magnitude of the field, the nonlinear effects which limit the field growth
must be taken into account.

The first theoretical attempts to study the relationship between the magnitude
of the magnetic field and the angular velocity and spectral type of the star were
made by Robinson and Durney (1982, see also references therein). In these papers
a simplified nonlinear dynamo model was used and crude scaling arguments were
made.

In the present paper, we obtain a new analytical expression for the magnitude of
the mean magnetic field near the stellar surface as a function of the angular velocity
of the star and the parameters characterizing the convective zone. By use of this
expression, we find a relation between X-ray luminosity and the stellar rotational
velocity.
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2. Nonlinear Dynamo Model

The evolution of the mean magnetic field, B, is described by the standard equa-
tion

0B

EzVX[VXB—%—aB—(nT—l-nm)VXB] (1)
(Moffatt, 1978; Parker, 1979; Zeldovich, Ruzmaikin, and Sokoloff, 1983), where
a determines the effect of the mean helicity of turbulent motions, V is a mean
velocity (the differential rotation), and 57 and 7,, are the turbulent and molecular
magnetic diffusion. We will use an (o« — {2)-approximation .

Let us split the a-effect into two parts:

o = ap + am, where g = —(7/3) (uV x u) is the hydrodynamic part of the
a-effect, and o, = (7/127p) (hV X h) is the magnetic part of the a-effect, where
u and h are the turbulent velocity and magnetic field, p is the density, 7 ~ I3 /77 is
the lifetime of the turbulent eddy, [y is the characteristic scale of turbulent motions
at the depth of the convective zone where the turbulent magnetic diffusion 77 is a
maximum. The splitting of the total a-effect into the hydrodynamic and magnetic
parts was first suggested by Frisch et al. (1975).

The type of nonlinearity we use includes the effect of delayed back action
of the magnetic field on the magnetic part of the a-effect. It is described by an
evolutionary equation (see Appendix):

o, b aB? Om
En e <B (V x B) - ) T 2)

where T = (211, /879, I, is the characteristic scale of the turbulent motions
near the top of the convective zone where the magnetic part of the a-effect is
a maximum, and the values 1 ~ 0.1 and p, =~ 1. Equation (2) was derived by
Kleeorin and Ruzmaikin (1982). The closed system of Equations (1) and (2) for B
and o, represents the nonlinear dynamo model under consideration.

Note that in the case T < T, and B - (V x B) <« ao/(énr) Equation (2)
yields the well-known result for the total a-effect: o = ag/(1 + £B?) (see, e.g.,
Roberts and Soward, 1975) where ¢ = pT'/(4wpnr), T, is the period of the stellar
activity.

For the sake of simplicity we consider only the axisymmetric case. (Note that
the axisymmetry refers only to the mean magnetic field, the fluctuating fields
are basically non-axisymmetric so that there is no contradiction to the Cowling
theorem.) Then the mean magnetic field can be represented by the poloidal,
B, = V x A(t,r,0)e, and toroidal B; = B(t,r,0)e, components evolving
according to Equation (1),

o (A ) ) A
£()-en )
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where 7, 0, ¢ are the spherical coordinates, and

. nA, ao(r, 6) A 0 am(r, )
L pummny R N N = 3
DO pA. 0 0

1 0 9(Q, A, sind)

ha_ 10 oy _ i
QA For o(r, 0) : ap(r, 6) ap(r, m—0),
10 /0 10 1 0 1
Ay =—— | — - —= =A - ————
r Or (arr) + r2 00 (smGBB sm@) r2sin2 0
Combination of Equations (2) and (3) yields
O O BOA M(B, A)
com o Pmo 208 P\ ) 4
5 T p Ot + p ’ @)
where
1 0 0
M(B, A) =2BA A+ ————(TA) (rB)+
29r or
+—1——— 9 (Asinf)—(Bsinb)
r2sin2g 09" " 80 '

Equations (3) and (4) are written in dimensionless variables: the coordinate r and
time ¢ are measured in the units of the stellar radius, R, and R2 /7, respectively;
the magnetic diffusivity 7 is measured in the units 77; « is measured in the units
au; the angular velocity Q(r, #) is measured in the units €2,; the vector-potential of
the poloidal field A(¢, r, 8) and the toroidal magnetic field B(t, r, 8) are measured
in units of R, R, B, and B,; the density p(r, 6) is measured in the units p,, where
Ry = o R, / nr,

B, = (47”*)1/277_T

The terms of the order of O(R,/Rq) are dropped in Equations (3) and (4). This
assumption corresponds to the usual assumptions of a — 2 dynamos. Equations
(3) and (4) describe a closed nonlinear system.

The most important parameter in the theory is the dynamo number D = R, Rq,
where Rq = Q,R2/nr. The dynamo number in solar-type convective zones is
estimated not to be much larger than the critical dynamo number D, (a threshold
of dynamo excitation), so that only a few modes are expected to be excited.

By using Equations (3) and (4) we estimate the magnitude of the mean magnetic
field as a function of rotation and other parameters for a solar-type convective zone.
The mechanism of o — 2-dynamo operates in the following way. The differential
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rotation generates the toroidal magnetic field from the poloidal field, whereas the -
effect excites a poloidal component of the field from the toroidal field. Nonlinearity
results in saturation of the magnetic field, because the total a-effect decreases as
the field grows. Therefore the nonlinearity supresses the generation of the poloidal
component from the toroidal field.

Let the total a-effect be reduced to the value «,,; = K«,, where the nondi-
mensional function ¢, is of the order of 1. We have to estimate the value K.
The reduction of the a-effect can be described by means of a decrease of the
Dynamo number. Indeed, let us provide the following replacements in Equa-
tion 3): A —» KA,, B —» B, and we take into account that « — Ka,. The
system obtained coincides with that of the linear dynamo (see Equation (3) with
N = 0) only if we replace D — KD and o — . Therefore in the saturation
regime the nonlinear problem is reduced to the linear one with an effective Dynamo
number Dy = K D. At saturation there is no growth of the magnetic field. This
means that Deg =~ D,,. It follows from here that

Now we estimate the ratio A,/ B,. Comparison of terms in Equation (3) which
describe the generation and dissipation of the ragnetic field yields

DetiQAs =~ AvB,,  aaBo = AA, . (6)
It follows from this that
Ay/B. ~ Di* ~ D712 (7)

Here we take into account that |)| & |a| ~ 1. Using the replacements A = K A,

B = B, and Equations (5) and (7) we obtain

B Baz D (8)

Equation (8) is in agreement with results of direct numerical simulations (see,
Ivanova and Ruzmaikin, 1977).

Note that here we have not yet used any quenching mechanism. However for
the estimation of the value B we have to choose an explicit form of the quenching.
Averaging Equation (4) over a time which is much longer than the period T of the
activity cycle we obtain

T
(apm) = 3;BA*A .

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1994SoPh..155..223K&amp;db_key=AST

356Ph, DI85, T2Z3K

rt

SOLAR IRRADIANCE VARIATIONS AND NONLINEAR MEAN FIELD DYNAMO 227

Here we take into account that |A,A| > (27 /T,)A. The averaged total a-effect is
given by (a) = (am) + ap.

The nonlinear problem has been reduced to a linear one with an effective
dynamo number D¢ =~ D.,.. Now we average the value « over the volume of the
convective zone. We take into account that

. 3 rTBAA 47 — 4m
(@) =< / Td% ~ 57 CTBA AN, ~ —-CTAB,A,, (%)

1
Go = 1 / aod®r ~ 4nLg | (9b)

where S denotes averaging over the volume of the convective zone, V is the
volume of the convective zone, P denotes averaging over a spherical surface, the
coefficient Cy depends on both the distribution, ap, in the convective zone and
the structure of the nonlinear solution for the magnetic field, A; and B; are the
toroidal components of the vector potential and the magnetic field near the top
of the convective zone, Ly is the depth of the convective zone, A, is the density
height scale and C = —CyA,A;/A;. The minus sign in Equation (9a) (as well as
in the expression for C) is due to the fact that the second spatial derivative of A
is negative. This is because the toroidal component of the vector potential has a
maximum inside the convective zone. The main contribution to the integral (9a) is
from the region near the surface of the Sun, because the density has a minimum
near the surface and strongly increases in the direction towards the bottom of the
convective zone. Therefore the value (&,,) is determined by the fields A, and B;
near the surface. The distribution of the nondimensional density in the convective
zone is given by

Ro
p(r) = exp{ / Ap(r’)dr’} :

This yields [ p~!(r)d*r = 47A,(r). At saturation the total a-effect is reduced to
the value (&) =~ K &g which yields

K~1-— CT%ZASBS : (10)

Combining Equations (5), (8), (10) we obtain, in dimensional variables, the mag-
nitude of the mean toroidal magnetic field near the stellar surface:

D 12 /1, 7 1/2
~ 1/4 _ Lo PxNmTMT
Bs K’DCT <Dcr 1) < ls ) ( LOAp/L , (1O
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where k = m(32/C)/? ~ 1. The result (11) is in agreement with that obtained
by means of a quantitative analysis (Kleeorin, Rogachevskii, and Ruzmaikin,
1994).

Note that, whereas the growth rate in the kinematic regime is independent of
the molecular magnetic diffusivity, n,,,, the field magnitude in the stationary state
is proportional to n71n/2. Therefore, in a perfectly conducting fluid, the magnitude
B; vanishes. The value (11) for the magnetic field also correctly vanishes when
the turbulent diffusivity, /7" or the convective zone depth, Ly, goes to zero.

Now we specify the dependence of the dynamo number on the angular velocity
and other parameters of the convective zone. We use a spatial distribution of the

hydrodynamic part of the a-effect of the form

1(2)Q(z) for IQ/u k1,
ap &
0 u(z) for [Q/u>1

(Zeldovich, Ruzmaikin, and Sokoloff, 1983). This function has a maximum at
the depth z = z,, determined by the condition l,(2m) = uo(zm)/Qu(zm)-
The turbulent magnetic diffusivity is 77 = L, (zm)uo(zm). It follows then that
Im(zm) = (n7/9%)/?. The maximum value c, of the hydrodynamic part of the
a-effect is given by

e & U0 (Zm) % 7l (2m) = (7).

Now the dependence of the dynamo number on the angular velocity and other
parameters of the convective zone is given by

D~ (Qu/nr) 2R3

Then the magnitude of the mean magnetic field near the surface is

_ R, 3/2 L T PxTNm 172
B~ a0 () () ( o ) | 2
s p

Here 7 = l(z) /nr, and it is assumed that D/D,, — 1 = D/D,,. The magnitude B;
depends both on 2,7 and the parameters of the stellar convective zone.

Let us estimate, as an example, the mean toroidal magnetic field near the surface
of the Sun. The parameters of the solar convective zone at the depth =~ 2 x 107 cm
are: N, ~ 4 x 10° cm? s71, I, = 2.6 x 107 cm, p, =~ 4.5 x 1077 g cm™3,
Ay, = 3.6 X 107 cm (Spruit, 1974). We use here also x =~ 0.1, n7 ~ 101? cm? s71,
Lo = 03 Ry, Der = 10%, D/D,, =~ 2 to 5. This gives, according to (11),
B; ~ (1-3) x 10? G. This value is the same as the mean toroidal magnetic field
usually estimated from solar observations (Parker, 1979).

Note that we do not take into account the terms ~ o? in the mean field dynamo
equations for the Sun. Indeed the o? terms are not essential if

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1994SoPh..155..223K&amp;db_key=AST

r199256Ph; ZI55. ZZZ3K0

SOLAR IRRADIANCE VARIATIONS AND NONLINEAR MEAN FIELD DYNAMO 229
19(92, Arsin@
198, ) > |aAA| .
T a(r, 0)

This inequality is reduced to the following sufficient condition for neglecting the
o? effect in the dynamo equation:

(6Q)L0 > «.

Let us estimate the terms in this inequality. As follows from Libbrecht (1988)
and Kiiker, Riidiger, and Kitchatinov (1993) the maximum value of the radial
drop of 62 for the Sun is the following: for 30° < 6 < 90° the radial drop
60 = (0.15-0.2)Q; at § = 30° the value 6Q2 =~ 0.05%2,; for § < 10° the radial
drop 62 — 0. The angle 6§ = 90° corresponds to the pole. We use also the fact that
o=~ (Qnr)/2 =~ 10° cm s™!, and Ly = 0.3 Rg. Then for §Q =~ (0.15-0.2)X,,
(6Q)Lo ~ 10* cm s~!'. Note also in the nonlinear stage of the magnetic field
evolution, o decreases. Therefore the o effect in the scale ~ L is not essential for
the Sun and we can use the o — €2 dynamo as a good approximation. However the
o? effect can be important in scales much smaller than the thickness of the solar
convective zone (see Gilman, Morrow, and DeLuca, 1989).

3. Solar X-Ray Luminosity

As an application of (12), we relate the amplitude of X-ray variability to stellar rota-
tion. Observations of soft X-rays in stellar coronae show a correlation between the
X-ray luminosity, L., and rotational velocity Vq: L, ~ Vg . Fleming, Gioia, and
Maccacaro (1989) analyze an X-ray-selected sample of 128 late-type (F-M) single
stars and find the exponent 5 ~ 1.05 & 0.08.

Let us find a theoretical dependence of the X-ray luminosity on the magnetic
field and express the magnetic field using our formula (12) to obtain the luminos-
ity dependence on the rotational velocity. Theoretically, the X-ray luminosity is
estimated by assuming that the necessary energy comes from reconnections of the
magnetic fields in the coronae. Roughly, if the magnetic energy accumulated in a
unit volume, B2 /8, is released in a reconnection time 7, the rate of release is
proportional to B2 /(877.). The accumulation of magnetic energy is due to electric
currents generated by convective motions on the stellar surface (see, e.g., Priest,
1982). More accurately, the rate of magnetic energy release in ergs per second, (),
is determined by a time-averaged Poynting flux:

B2t dw
Qz ~
8ml 1+ (wrr

E /W(w)dS (13)

(Vekshtein, 1987), where [ is a characteristic size of the magnetic region, W (w)
is the spectrum of the hydrodynamic energy of the turbulent pulsations near the
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surface of the star, and 7, is a characteristic time describing the relaxation of the
magnetic field to a minimum energy state. The time 7, can be estimated as the time
scale for the onset of the tearing-mode instability: 7. ~ T;_‘Sﬁf , Where 6 varies
from O to 1 depending on the regime of the tearing instability (see, e.g., White,
1983), 7, ~ I./Cy is the Alfvén time, 74 ~ I2/1, is the diffusive time, I, is the
thickness of the current layer in the reconnection region, and Ca = B,/ (47rpc)1/ 2
is the Alfvén speed. Parameters with the subscript ‘c’ correspond to the corona and

upper chromosphere. The spectrum W (w) can be chosen in the form

ww = [-1) (%—%) (%)ﬂ (Vj:z) - +1V2k4dk,

where v(k) is the turbulent viscosity in the scale k~!, k is the wave number, ko and
ug are the wave number and characteristic velocity in the maximum scale, [y, the
turbulent motions. For example, for the Kolmogorov spectrum of hydrodynamic
pulsations, ¢ = % We use here the Lorenz profile of the frequency component of
the spectrum. Integration in w and k space in (13) yields

Q. ~ Bgrr
¥ 8l

u3dS . (14)

Here we assume that vk? ~ 1/7,(k) and 7, < 79, where 7,.(k) = 279(k/ko)! ™9,
To ~ lo/up. It follows from (14) that the rate of the released magnetic energy Q,
depends on magnetic field as

2—6
QJI ~ Bc )

where we take into account that 7, ~ B%. The X-ray luminosity L, is defined
as L, =~ Q;N,,, where N, is the number of magnetic regions in the corona.
Therefore, the X-ray luminosity L, is given by

Ly ~ Nyp,B*?

We estimate the exponent [, in the X-ray luminosity vs stellar rotation, assum-
ing that the basic contribution to the X-ray luminosity comes from the magnetic
fields outside sunspots and active regions. In this case the number of magnetic
regions, N,,, is independent of the mean magnetic field, B, and is determined
only by the number of convective cells at the photosphere. On the other hand, the
rate of magnetic energy release in ergs per second, Q, ~ B27%. This is due to
the magnitude B, ~ k.B;, k. = 10~!. Therefore, the dependence of the X-ray
luminosity on the mean magnetic field is given by L, ~ B27°. By use of the
expression (12) for the field B, near the surface we can express the X-ray lumi-
nosity in terms of the rotational velocity, V. The result is given by: L, ~ Vg ,
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where 8 = 3(2 — §)/4. Since 0 < § < 1 we obtain that % <p< % in satisfactory
agreement with observations (see Fleming, Gioia, Maccacaro, 1989).

4. Conclusions

By use of a nonlinear model of an axisymmetric & — {2 dynamo we have found
an expression for the magnitude of the mean magnetic field as a function of the
stellar rotation rate and other parameters of the solar-type convective zone. This
expression predicts that the field varies as the % power of the rotation rate. This
permitted the study of the relation between stellar rotation rates and the X-ray
luminosity. The exponent in the relation between the X-ray luminosity and the
stellar rotation is % < B < 2, in satisfactory agreement with observations.
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Appendix. Evolutionary Equation for the Magnetic Part of the o-Effect
Let us derive the equation for the magnetic part o, of the a-effect (for details see

Kleeorin and Ruzmaikin, 1982). The mean magnetic helicity of the turbulent field
is given by

x=(ah) = [ x.(k)db,

where k is the wave number, x. (k) is the spectral density of the magnetic helicity,
and a is the fluctuating part of the vector potential.
ForV-A =V:(A) =V -a=0 we obtain

(h-(V x h)) /kzx*(k (A1)
_ T 2
0 = Ty~ (V x b) / k2 (k) (k) dk (A2)

where A = (A) + a is the total vector potential. The induction equation for the
total magnetic field H = B + h is given by
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where we consider the case with zero mean velocity. It follows from (A3) that the
equation for the vector potential, A, is given by

O0A

—a-;———uxH—anx(VxA)JrVQ. (A4)
Here @ is an arbitrary function. Let us multiply Equation (A3) by a and Equation
(4) by h, add them, and average over the ensemble of turbulent pulsations. The
result is given by

0
5%‘:-2((uxh)-B>—2nm<h.(V><h)>—<V-[a>< (ux h)]). (AS5)
Here we omit the term ~ (h - V®) which is small in a medium with zero mean
velocity. Taking into account that the mean velocity V yields an additional term
V - (xV) in Equation (A5), the effective electric field Eess = (u x h) is given by
(Moffatt, 1978; Parker, 1979, Zeldovich, Ruzmaikin, and Sokoloff, 1983)

Eef = (u x h) =aB —79(V x B),

where o = o + @y, and ) = 7, + nr. The term (V - [a X (u X h)]) in Equation
(A5) vanishes as a result of averaging of (div) over the volume. It follows from
this that Equation (AS5) is reduced to

88—>::2[nB-(VxB)—aB2—nm(h-(VXh)>]- (A6)

Now let us assume that in the inertial range ky < k¥ < k; the spectrum of the
helicity x.(k) is given by

1

X« (k) = xk% (kﬁ())_q , P=(¢-1) [1 - (%)q_l]_ : (A7)

where |x| = |{(a - h)| ~ B2/ko, k; ' is the maximum scale of the turbulence, k; '
is the scale of the cutoff of the helicity spectrum. The parameter ¢ is assumed to be
known. For example, for Kolmogorov’s spectrum, ¢ = % (developed hydrodynamic
turbulence) and for Kraichnan’s spectrum, ¢ = % (turbulence of interacting Alfvén
waves). Substitution of (A6) into (A1) yields

om = Iy, (A8)
where
=+
4mpnr
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1 g—-1 k1 4=2 ko g-1
p=-—"—"1-— -1 |1 - =
182 —¢q [\ ko k1
Here we take into account that 7, (k) = 279(k/ko)!~%. The turbulent magnetic
diffusivity, np, for turbulence, which is far from the equipartition of the ener-
gy of hydrodynamic pulsations and magnetic fluctuations, is given by nr =
(12mk3)~ L.
Multiplying Equation (A6) by I and using (Al) we obtain Equation (2),
where

3 - ko N7 [k} ¢
NI
g—1 k1 ko
(see Kleeorin and Ruzmaikin, 1982).
Spectral properties of the magnetic helicity, x«(k), satisfy the realizability

condition: |y« (k)| < 2k~1M (k) (Moffatt, 1978), where M (k) is the spectrum of
the magnetic fluctuations. It follows that

k1= 2
— < —, A
<ko) =P (89

-1

-1

Here we use a magnetic spectrum of the form

B? (k)

For the case ¢,, = 1 this spectrum was obtained using different techniques by
Ruzmaikin and Shukurov (1982), Kleeorin, Rogachevskii, and Ruzmaikin (1990),
Kleeorin and Rogachevskii (1994), Brandenburg et al. (1994a, b). It is seen from
(A9) that for ¢,,, > 1 and ¢ < 2 the wave number k and therefore £ is close to k.

Indeed, k; is determined from

kl gm+1—q 2
<k_o> Pk

It follows from this that P(k;) =~ 1 and k; = ko. In this case, which seems to be
typical for the solar type convective zones, y = % and p, = l,and T = 1o R,,.

Note that Equation (2) can also be regarded as a consequence of the conservation
of total magnetic helicity [(A - H) d*r in the limit of R,, — oo.
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