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Abstract. We consider the problem of long-time storage of high-energy protons, accelerated in the process
of a flare, in coronal magnetic traps. From the viewpoint of the storage, one of the most important plasma
instabilities is the kinetic cyclotron instability of the Alfvén waves. We carry out a detailed theoretical
analysis of the instability for typical conditions of the solar corona. It is the refraction of the Alfvén waves
in combination with a drastic decrease of the instability growth rate with an increase of the angle between
the directions of the wave vector and the stationary magnetic field that leads to the possibility of the
long-term storage of the flare protons. Sufficient conditions of the storage are determined.

1. Introduction

High-energy protons, accelerated in the process of solar flare and injected into coronal
regions of closed magnetic fields, can be trapped by these magnetic configurations
(Figure 1). Subsequent evolution of the trapped protons (quick loss in the solar
atmosphere, long-time storage in the trap, or escape into interplanetary space?) is of
great interest. '

Simple estimates show that Coulomb collisions in the coronal plasma (the concen-
trations n, we are interested in are of the order of 10’—108 cm™2) limit the lifetime of

Fig. 1. The structure of the magnetic field of a coronal active region.
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338 B. I. MEERSON AND I. V. ROGACHEVSKII

the protons with energies more than 10 MeV to the time of the order of 1 day. Protons
with these energies also take a day to escape, due to the magnetic drift in a non-uniform
and curved magnetic field (the intensity B, ~ 1-10 G). However, there are processes
which are able to reduce the life-time of the particles in such traps to some minutes.
Meerson and Sasorov (1981) noted that if the energy density of flare-injected plasma
(with allowance made for energetic particles) becomes comparable with, or greater than
the pressure of the magnetic field, the magnetic configuration breaks down. It is the
impossibility of combined ‘magnetic field-plasma’ equilibrium or MHD-instability of the
equilibrium which cause the breakdown (Meerson and Sasorov, 1981). In this case, an
appreciable amount of plasma together with energetic protons and frozen-in magnetic
fields is ejected from the trap on a timescale of 1~ %/c,, where . is a characteristic
size of the trap, c, = B,(4mnym,)~'/? is the Alfvén velocity, m, is the ion mass. For
typical values of ¥~ 10!°cm and c, ~ 108 cm s~! we have 7~ 10°s.

If the pressure of both background plasma, p,, and high-energy protons, p,, is much
less than the pressure of the magnetic field, i.e., if

ﬁo,h58npo,h/B%< 1, (L.1)

the plasma in the trap can be stable with respect to fast large-scale MHD perturbations.
In this case, however, various kinetic instabilities are essential. Some instabilities of this
kind have already attracted attention. Meerson et al. (1978) investigated the bounce-
resonant instability of the fast (magneto-acoustic) mode driven by high-energy protons
with a peaked energy distribution. According to Meerson et al. (1978), this instability
can support MHD-oscillations of a coronal condensation which give rise to a periodic
modulation of type IV radio emission. Another example of kinetic instability driven by
trapped high-energy protons was analyzed by Meerson and Sasorov (1981). They
studied the gradient instability of the Alfvén waves due to the magnetic drift resonance
with the protons.

However, it is the cyclotron instability (Sagdeev and Shafranov, 1960) that can be
the most important in the situation considered. The instability arises due to anisotropy
of longitudinal and transverse (with respect to the magnetic field) pressures of high-ener-
gy component of the plasma. In our case of a ‘magnetic mirror’ such anisotropy, namely,
Pr1 > Dy, is determined at least by a ‘loss-cone’ of the velocity distribution function
of energetic protons. The cyclotron instability generates Alfvén waves by means of their
resonant amplification by high-energy protons. If the plasma is homogeneous, the
condition of cyclotron resonance takes the form

CU—k”U”—nCOBi=O, n=0,+1,+2, ..., (1.2)

where w is the wave frequency, wgp; is the proton gyrofrequency, v, is the component
of proton’s velocity along the direction of the stationary magnetic field By, k, = k cos 6,
k is the absolute value of the wave vector k, and 0 is the angle between k and B,,. The
case of n = 0 in (1.2) corresponds to the Cerenkov resonance.

The scattering of high-energy protons by growing waves (Kennel and Petschek, 1966)
can lead to a quick particle drift to the loss cone, i.e., to their precipitation into dense
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HIGH-ENERGY PROTONS IN THE SOLAR CORONA 339

chromospheric regions, where the particles lose their energy by collisions. The obser-
vations, however, indicate that there is a possibility of long-term storage of high-energy
particles by coronal magnetic fields (Palmer et al., 1975). How do we explain this?

Such a problem was first formulated by Wentzel (1976). However, his attempt to
solve it had some shortcomings and that is why our results will differ considerably.

In this paper we carry out a consistent analysis of the cyclotron instability of the
Alfvén waves with due regard for real conditions in the solar corona. On the basis of
the analysis, we investigate the possibility of a long-term storage of high-energy protons
in the coronal magnetic traps.

In Section 2 we consider the linear theory of the cyclotron instability of Alfvén waves.
Here the expression for the instability growth rate is first obtained and investigated for
general case of the wave propagation at arbitrary angle 8to the direction of the stationary
magnetic field. The main result here is that the growth rate drasticalty falls with the
increase of the angle 0. Possible damping processes of Alfvén waves in the coronal
plasma are also discussed in Section 2.

In Section 3 the refraction of Alfvén waves propagating along the magnetic field lines
is studied, the ‘geometrical optics’ equations being approximately solved.

Section 4 gives the estimates of amplification coefficients for Alfvénic wave packets.
The refraction effects in combination with drastic fall of the growth rate with increase
of 0 leads to a possibility of a long-time storage of the particles. Sufficient conditions
of the storage are found.

Finally, in Section 5 we present a brief discussion of the results and compare them
with those of Wentzel (1976).

2. The Cyclotron Instability of the Alfvén Waves Driven by High-Energy Protons

Let us consider a magnetic trap filled with two-component plasma, namely, relatively
cold ‘background’ and high-energy protons, the background plasma concentration, n,,
being large compared to the high-energy proton concentration, n,. This model
corresponds to a post-flare situation in the solar corona; it can be also applied to
planetary magnetospheres. In this section we treat the plasma as homogeneous.
Inhomogeneity effects will be analysed in Section 3.

The dispersion equation controlling frequencies of MHD waves and the character of
their growth (damping) can be obtained by standard methods of linear theory of plasma
(see, e.g., Ginzburg and Rukhadze, 1972, p. 402). This takes the form

e + &) + ey = N2 cos?6 e+ e + Y
T T I OO P IR
(2.1)

where N = kc/wis the refractive index of the plasma, c is the velocity of light in vacuum,
)" and ()" are the real parts of the components of the dielectric constant tensors of
the background plasma and of high-energy protons respectively, ¢}’ and ()’ are the
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corresponding imaginary parts (see Appendix 1). Equation (2.1) was obtained under the
following assumptions: (i) the components of the dielectric constant tensor, which
define the imaginary parts of MHD wave frequencies (see below) are much less than
the components defining the real parts of the frequencies; (ii) the contribution of high-
energy protons to the real parts of MHD wave frequencies is much less than the
corresponding contribution of the background plasma;* (iii) the Alfvén velocity is much
less than the velocity of light in vacuum: ¢, < ¢. It should also be remembered that we
require B, , <1 (see (1.1)).
From Equation (2.1) we have the following dispersion relation

2N?cos?0=U+ /W, 2.2)
where
U=¢e¢Q"(1 +cos?8) + ¢, +¢&, +ePcos?b, (2.3)
W = (e 8(6, ))*> + 26" (" sin? 0 — 4aiely)” cos? 6) +
+ 2697 (¢- sin? 0 — 4aiely) cos? ) — 2e5Y cos? (e + &9 sin?0), (2.4)
e, = e +elcos?l, & =el) + 5 cos?o,
0(0, o) = (sin* 0 + 42 cos?6)'/?, o= w/wg,.

The dispersion Equation (2.2) describes the modified MHD waves, the sign (+ ) in
(2.2) corresponding to an ion-cyclotron (Alfvén) wave while the sign (—) corresponds
to a fast (magneto-acoustic) wave. In formula (2.4) we omitted terms of a higher order
with respect to small parameters »n,/n, and m,/m;,; m, is the mass of electron.

Let us consider the physical meaning of different terms in expressions (2.3) and (2.4).
The first two terms in (2.3) and (2.4) determine the frequencies of modified MHD waves.
The third term, both in (2.3) and in (2.4), describes the resonant amplification (or
damping) of these waves by high-energy protons. The last term, both in (2.3) and in (2.4),
determines Landau damping of the modified MHD waves on background plasma
electrons.

The velocity distribution function of the background plasma electrons may be
assumed to be Maxwellian with the temperature 7, the corresponding thermal velocity
being v, = (2T,/m,)"/?. As to the velocity distribution of the high-energy protons, the
presence of a loss-cone in the magnetic trap causes a deficit of the particles with large
longitudinal velocities. This fact enables us to assume the distribution function of
high-energy protons ‘bi-Maxwellian’ with T, > T:

m, m;, \'? mvy  m
f(v)=n1< ’ )( ) exp(——*——m, 25)
277:TJ_ 27IT|| ZTJ_ ZTH

* It can be shown from Equations (A1.1)-(A1.6) in Appendix 1 that condition (i) is equivalent to
ny/ne < o= w/wg;. When a < 1 (see below), this inequality can be rewritten as f, o < 1. Condition (ii) is
fulfilled when n,/n, < o2 In case of a < 1, this is equivalent to 8, < 1.
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HIGH-ENERGY PROTONS IN THE SOLAR CORONA 341

where the indices L and | stand for directions transverse and longitudinal to the
stationary magnetic field, respectively, T is a characteristic energy of protons. The
parameter n=1-T/T, characterizes the degree of temperature anisotropy;
0 < n<1. As we know, such a character of anysotropy of the high-energy proton
distribution leads to the possibility of a resonant excitation of ion-cyclotron (Alfvén)
waves (Sagdeev and Shafranov, 1960). So we consider the case of sign ( + ) in dispersion
Equation (2.2).

It is known, that the character of ion-cyclotron wave polarization is controlled by the
competition between the parameters sin® 0 and o = w/wy, (see, e.g., Stix, 1962). When
the angle 0is very small, sin? 6 < «, the wave polarization is close to circular, while in
the opposite limit, sin? > «,* the waves have almost linear polarization. We found this
fact to significantly affect both the growth rate of the cyclotron instability and the wave
damping rates on the background plasma electrons. So we first consider these limits
prior to general case.

A. sin’0 <«

In this case the expansion of the formula (2.4) in small parameter sin® 6/« yields the
following equation for the real part of frequency of modified ion-cyclotron wave having
almost circular polarization:

® = kyca(l— )2, (2.6)

In (2.6) we have omitted small corrections taking into account the contribution of
high-energy protons. These corrections can be easily found from general equations
(2.2)—(2.4).

In the case considered, the wave growth rate has the form

r= FO{I - Oz[a(rla o, y) + (9/05)2b(’7, ®, y)]} ) (27)
where
a(n, o, y) = (2 + * exp<1 _ 2“) -
. on-u 2y?
—2”"“exp(z“';3))yza-—n)-l, 2.8)
n—a 2y

b(n, o, y) = (1/2)*(n — )~ '[1 + exp(—2a/y*)][n — ath(a/y*)], (2.9)

(-apd-n"' (1-ap?
N (n—a) exp< 22 ) , (2.10)

I, = (n/2)/? w(n/ng)

y = (ky/wg;)(T/m;)'/?. I, is nothing but a well-known expression for the growth rate
of unstable ion-cyclotron wave propagating along the magnetic field, 6 = 0 (Kennel and
Petschek, 1966; Feigin and Yakimenko, 1969).

* To get this limit it is necessary to require a < 1. In the case of 8, > n,/n, the latter inequality is always
true (see below).
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In the case of n2 «, ® < 1, and y ~ 1, the order of magnitude estimated for I}, is
I'y~ B,nw. Note, that Equations (2.6)-(2.10) are valid for arbitrary 0 < a < 1. It
follows from (2.10) that the instability criterion for 8 = 0 has a well-kown form # > «,
ie,l1 - T,/T, > w/wg (Sagdeev and Shafranov, 1960). When 7 > «, the expressions
a(n, o, y) and b(n, o, y) are both positive. Then Equation (2.7) means that the wave
growth rate decreases monotonically with 6, i.e., the maximal growth rate is I, and it
takes place at @ = 0. The formula (2.7) describes small negative corrections to the
growth rate I;,, whose absolute values increase with 6.

From general expressions (2.2)—(2.4) we can derive the instability criterion for the
case of sin?6 < 1:

Sy 3(6, o) + 2ath(a/y?)
2o+ 8(6, o) th(a/y?)

2.11)

When « <y? the criterion is reduced to n> (6, «)/2; when 6 = 0 this converts to
Sagdeev’s—Shafranov’s criterion #> «. It follows from (2.11) that the instability
threshold increases with 6. Given 0, the growth rate achieves maximum in the region
of y ~ 1(for the case of @ = 0 and « < 1 the corresponding value of yis 27 '/2). It follows
that unstable wave with a maximal growth rate has a frequency of the order of
w =~ (ca /Do) Wg;, Where vy = (2T /m;)!/? is a characteristic velocity of high-energy
protons. Since for the typical coronal conditions we have ¢ /v, ~ 10~2—10"1, the value
of o is rather small, « = w/wy,; < 1. Therefore, in what follows we are interested in the
case of a < 1, when ion-cyclotron waves convert to ‘purely’ Alfvén waves.

Unstable Alfvén waves can be Landau-damped on thermal electrons. In the region
of sin? § <€ o the corresponding damping rate has the form (Stepanov, 1958)

v =~/ /4)(m,/m)(vr./ca) exp(~ ¢4 /v%,) sin 0, (2.12)
and it is usually small.

B. sin?0> a

In this case we may expand the expression (2.4) in small parameter o/sin? 6. Then the
wave growth rate is

I'=(iw/2)(ca/c)* (W) - 2aie) ctg? 6) , (2.13)

where now w = k| ¢, with an accuracy of small corrections of the order of §, and o,

The calculation of the components &{' and &{” for the distribution function (2.5) (see
Appendix (1) gives an expression for the wave growth rate I' which can be tabulated.
The final formula appears nearly as cumbersome, as in general case of arbitrary sin® 6/ «,
so we do not present this here. It should be noted, however, that the expression (2.13)
differs from corresponding results obtained by Dobes§ (1968) and by Melrose and
Wentzel (1970) by presence of the second term proportional to £{5”. Since both the terms
in (2.13) are comparable with each other, the account of the second term is indispensable.

It follows from (2.13) that the order of magnitude estimate of the wave growth
(damping) rate I' in this range of angles 0is I' ~ aff, w(at n 2 aand y ~ 1). This suggests
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HIGH-ENERGY PROTONS IN THE SOLAR CORONA 343

that in the region of sin®6> « a significant decrease of the growth rate occurs. For
example, when n > «, the growth rate decrease factor is of the order of #/«. It is essential
that this decrease of the growth rate with 6 takes place at very small values of 6, as long
as a < 1. This fact, unnoticed by Wentzel (1976), will be shown to play the most
important role in the problem of the storage of high-energy protons (see Section 4).

It is to be recalled that in the case of 0 < sin®0 < 1 the instability criterion (2.11)
remains correct as well as its reduced form 7 > 0(0, «)/2 for o < y* ~ 1.

Now let us consider Alfvén wave damping in the region of sin® 0> . Since high-energy
protons affects wave dispersion characteristics, the Alfvén wave gets some properties
of fast (magneto-acoustic) mode, the fact leading to modified (additional) wave damping
on thermal electrons of the coronal plasma. The corresponding damping rate can be
easily obtained from (2.2)—(2.4) and this takes the form:

Yo = —i(w/4)(ca/c) e e ctg?h. (2.14)

It follows the order of magnitude estimate of the ratio between v,, and I. When 7 2 «,
we have '

Yo/ T 22 (Borme /m)'/2 (1/ 1) . (2.15)

It is clear that in certain conditions the modified damping rate can dominate over the
instability growth rate in the region of sin? 6> «. On the other hand, when 5 2 «, the
modified damping rate in the region of sin® # > o is always much less than the instability
growth rate in the region of sin? < «, the ratio of y,,/I" being of the order of

P/ T = (Bym,/m,;)'/? < 1. (2.16)

Note, that the possibility of modified damping of the Alfvén wave on coronal electrons
due to the ‘coupling’ with fast mode was discussed by Wentzel (1976), within the frame
work of a phenomenological model. Wentzel assumed that the mode ‘coupling’ is caused
by the resonant protons. It follows from Equation (2.14) that this is not the case. Indeed,
we need only a contribution of high-energy protons to the wave dispersion.
Equation (2.14) differs considerably from the heuristic result of Wentzel (see his
formula (12)), the latter, in particular, does not include parameters of high-energy
protons.

Apart from this damping mechanism, a ‘usual’ Landau damping of Alfvén waves on
thermal electrons may also contribute to the wave damping; for corresponding damping
rate see Appendix 2.

C. GENERAL CASE OF sin?0~ «o

Carrying out the expansion of (2.4) in small parameters m,/m, and f, (the parameter
sin? 6/« has an arbitrary value), we obtain the wave growth rate in the form

I'=(iw/4)(ca/c) (¢, + (sin®0/0(B, w)e' — 4acos®Biel) b)), (2.17)

where w = k| ¢, with an accuracy of corrections determined by small parameters f, and
a. The expressions for the components of the dielectric constant tensor for the distri-
bution function (2.5) are given in Appendix 1.
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We carried out numerical calculations of the dimensionless growth rate,
I'= (ny/n,) w3 T, over a wide range of angles 6, fixing the value of y = 2~/ which
corresponds to the maximal growth rate of the ‘straight’ wave (6 = 0). Figures 2 and 3
represent several results of these calculation for various cases typical for the solar
corona. The numerical results confirm the analytical estimates presented in items (a) and
(b) of this section. It is important that instability is followed by stability beginning with
an angle 6 = 6,, unless the anisotropy parameter # is very large, n < #.. In our case of

y = 272 we found #. to be approximately equal to 0.41. The dependence of 8, = 6,(#)
4{1% L r
12 A1
0.5
8 E
(a) 0.3- (c)
4 1o
0.1+
0 >0
10° 30° 50°

Fig. 2. The dimensionless growth rate, I = (ny/n,) w3 T, is plotted against the angle 8 (y =271/,
a=7x 1073) for various values of the anisotropy parameter #: (a) n = 0.4 (curve(a)); (b) n=0.17
(curve (b)); (¢) n = 0.05 (curve (c)).

\r 21\ r
30+
1.5
20-
(a) 17\t

10 - J

(b) 0.5

0 . . - >0
10° 30° 50° 10° \30° 50 70°

Fig. 3. The dimensionless growth rate, I' = (n,/n,) w5 T, is plotted against the angle 0 (y =272,
o= 1.8 x 1072) for various values of the anisotropy parameter #: (a) n = 0.4 (curve (a)); (b) #=0.17
(curve (b)); (c) 1= 0.05 (curve (c)).
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60°4

40°4

20°A

0.1 0.2 0.3 0.4

Fig. 4. The dependence of the angle 6, on the anisotropy parameter # for y = 2~1/2 and various values
of a: a =7 x 1073 (curve (a)); « = 1.8 x 102 (curve (b)).

is shown in Figure 4 for two typical values of «. The convergence of these two curves
6,(n) in the region of sin?#> o can be explained by independence of I upon o for such
angles (see Equations (2.13), (A1.4), and (A1.6)). When # > #., we have I'> 0 for all
angles, 0° < < 90°.

In the case of sin? § ~ «, the Alfvén wave damping may be determined by high-energy
protons themselves (when 6 > 0,) as well as by Landau damping on thermal electrons.
The latter mechanism is characterized by the damping rate (Stepanov, 1958)

y= (iw/4) (e /e)) cos? O(1 — sin®6/6(6, w)) . (2.18)

As to modified damping due to the mode coupling, it is always very small unless
sin? 6> a.

So far we have analysed the dependence of the wave growth rate on the angle 0 for
a fixed value of y. In contrast, the y-dependence of the growth rate for fixed 6 is shown
in Figure 5a, b for the anisotropy parameter # = 0.1 and 0.4, respectively. It is seen that
the characteristic scale of the wave growth rate decrease with y is of the order of unity
for all angles. On the contrary, as we have seen earlier, the characteristic scale of the
wave growth rate decrease with the angle 0 is equal to «'/2, i.e. much less than unity
in the situation considered.

So, in this section we have investigated the cyclotron instability of Alfvén waves and
their possible damping mechanisms over a wide range of parameters 6, y, and 7. This
investigation is necessary for the determination of the role the cyclotron instability can
play in real situations, such as solar corona or planetary magnetospheres.
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1 2 y
Fig. 5. The dimensionless growth rate, I'= (ny/n;)wz,'I, is plotted against the parameter y

(calvo=T7x10"3)at 6=0°; 5°; 10°; 15° for various values of the anisotropy parameter #: (a) # = 0.1;
(b)n =04

3. Alfvén Wave Propagation and Amplification in Closed Magnetic Fields

In the solar corona above the active regions, the spatial distributions of plasma density
and (especially) the magnetic field are strongly inhomogeneous if scales of the order of
0.5—1 R, are meant. In this situation, Alfvén waves propagating along a magnetic field
line of the active region are subjected to refraction.

To investigate this, let us consider the evolution of Alfvénic wave packet whose length
is small if compared to the field line length .%, but large if compared to the wavelength,
4. In the frame of the WK B approximation, or the approximation of geometrical optics,*
Weinberg (1962) obtained a system of evolution equations for the radius-vector r of the
center of the packet and for the characteristic wave-vector k. These equations can be

* For waves of the frequency range considered, this approximation is valid with high precision; the
parameter A/.% being as small as 1074,
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written in Hamiltonian form as follows:
dr/dt = dw/0k , (3.1
dk/dt = — dw/or (3.2)

where @ = ke, (1), ¢, (r) = By(r) (4 mm, ny(r))~'/2 is the vector of Alfvén velocity.

Let us consider a coronal magnetic field line of the active region. For the sake of
simplicity, we assume the field line to be plane. Introduce the local Cartesian coordinate
system (x, y, z), where the z axis coincides with the tangent to the chosen field line, while
the x and y axes are opposite to the directions of the principal normal and binormal,
respectively (Figure 6). Let us also introduce the arc length parameter / of the field line
considered. Rewrite (3.1) in the following form:

(di/db)e, = c4 , (3.3)

where e, = dr/d/is the unit vector directed along the z axis. Time derivative of the wave
vector k in the chosen local coordinate system takes the form

dk dk, dk, dk, de,. de,

—=—"e+—2e

- , + e, +k, —+k, —, (3.4)
dt ds dr dt ds dt

where e,, e, are unit vectors directed along x and y axis, respectively. Since the field
line is assumed to be plane, the direction of the vector e, is constant and de,/dz = 0.

Now we make a transition from the derivatives with respect to ¢ to the derivatives
with respect to /in the right-hand side of (3.4). Then, using Frenet formulae which relate
derivatives de;/d/ to vectors e, themselves (see, e.g., Korn and Korn, 1968) we obtain
the expression for dk/dz in the following form:

oL er0) v Bre (% v rr0)),
de dr d!/ d/ d/

(3.5)

where R (/) is the local curvature radius of the chosen field line.

]

Fig. 6. The local Cartesian coordinate system (x, y,z) associated with the field line of the stationary
magnetic field. The y-axis (not shown) is perpendicular to the plane of drawing and is directed to reader.
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In the case of B, , < 1, the coronal magnetic field may be regarded as potential,
curl B, = 0. Besides, we may neglect the spatial inhomogeneity of the coronal plasma
concentration. This can be justified by the fact that the concentration and magnetic field
inhomogeneities in (3.2) appear in the function c,(r) only, the dependence of the
magnetic field of the active region on r being there much stronger than the corresponding
dependence of (7,(r))!/2. Then, the derivative dw/dr in (3.2) takes the form

0w/d = —(ca/By)(k-V)B, . | | (3.6)

Combining (3.2)—(3.6) and using the equation div B, = 0 we obtain equations describing
the change of the wave vector’s coordinates k., k,, and k, in the process of Alfvénic

X y’
wave packet propagation along the stationary magnetic field:

dk OB 0
—x _ k0= +kZ(R‘1——BOZ>, (3.7)
d/ B, 0z B,, 0z
dk,
—2 =90, 3.8
3 (3.8)
dk

Z=—kx<R—1+%z—)-kziBﬁz—. (3.9)
d/ B,,0z B, 0z

It follows from (3.8) that the y component of wave-vector k does not vary during
propagation (it should be remembered that this is a consequence of the field line being
a plane and of the plasma concentration inhomogeneity being weak). Thus, we may put
k, = 0: the account of non-zero k, can be made by simply redenoting the final results.

For potential magnetic fields, the derivative dB,/0x is well-known to relate to the
local curvature radius of the field line:

0B, /B,0x = —R~1(]). (3.10)

Taking into account (3.10) and the equalities B, = B, and 0B,/0z = 0B,/ 0l, which take
place for the chosen field line, we can rewrite the equation system (3.7) and (3.9) in the
following form:

dk, 0B,

—= =k, +k,2R™'()), 3.11
al Bl ( @) 3.11)
dk, _ ~k, 9B, (3.12)
d! B,dl

Integration of (3.12) yields the result: k, B, = constant (i.e. @ = constant). Combining
(3.11) and (3.12), we obtain two equations describing the evolution of the angle
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0 = arctg(k,/k,) and the wave number k = (kK2 + k2)'/2:

dx _ 0B,
di Byl

X+ 2R, (3.13)

1 4k _ 3B,

dl  Byal

cos260+ R '(l)sin28, (3.14)

where X = tg0=k_ /k,.

It follows that changes of both angle 6 and wave number k during wave-packet
propagation take place as a result of two factors: curvature of the field line and
longitudinal non-uniformity of the magnetic field.

Equation (3.14) can be integrated in quadrature. Its solution, however, appears rather
cumbersome and we do not write it down, since it will not be used further. As to
Equation (3.13), its solution for an initial condition X(/,) = X takes the form

4

_ BO(I) 2 — 1/ BO(IO))2 /)
)= (2% —oo? - :
X{) (Bo(lo)) (XO +2 J R-1(l )<B0(l,) dl (3.15)

(o]

Expression (3.15) describes the evolution of the angle 8 between wave vector k of the
propagating packet and the direction of the stationary magnetic field.

Since the Alfvén wave growth rate was found to decrease rapidly, even for small
angles 6 (see Section 2), it is the limit of small X that we are primarily interested in. For
the initial condition 0(/,) = 6, = 0 we have from (3.15) in the first order of (I - /,)/R < 1:

0, Al) ~ 2R () 41, (3.16)

where 4/ =] -1,.

It follows that Alfvén wave refraction is rather significant in typical conditions of the
corona. Since the results of Section 2 indicate a strong dependence of the wave growth
rates on the angle 0 between k and B, the consistent account of the refraction effects
is indispensable in investigations of the cyclotron instability in the solar corona. It
should be noted that a similar conclusion is also valid in the case of Alfvén-wave
instabilities in the magnetospheres of the Earth and planets, where the refraction effects
have not received sufficient attention, until recently.

As a result of the cyclotron instability, the test wave packet is amplified. Let us
consider a packet which starts from a point /, and propagates along the field line. The
wave amplification coefficient corresponding to the wave passage along a part of the
field line with a length A/ takes the form

t lo+ A4I(t)

A2) = JF’(t’)dt’= J IOLIIROP (3.17)

0 I
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where ¢ is the time it takes for the wave packet to pass the distance 4l If [, = —.%/2
and ¢ = 1,, = {92, dI/c, (), the amplification coefficient A(f) converts to the integral
amplification coefficient corresponding to one full passage of the packet along the total
field line with the length Z.

The expression for net local growth rate I'' = I' + p, which in fact depends on
coordinates, can be obtained in the geometrical optics approximation. The results of
these calculations, however, coincide with the corresponding formulae of Section 2, but
all the parameters, except the universal constants and the wave frequency, become
dependent on coordinates. The dependences of 6(/) and k(/) which are necessary for
calculation of A(¢), are determined by Equations (3.16) and (3.14), respectively.

In the next section we estimate the amplification coefficient 4 (¢) and use the estimates
to determine the sufficient conditions of high-energy proton storage in the coronal
magnetic trap. The last question we mention in this section is the bounce-motion of
trapped protons, which is characterized by typical bounce-frequency ,. These effects
could be taken into account (see, e.g., Meerson et al. (1979), where the corresponding
non-linear theory was developed). However, in the frequency range considered, w > Q,,
the account of the bounce-cyclotron effects in the linear theory would lead only to
small oscillatory corrections to the wave growth rate (Meerson and Sasorov, 1979,
unpublished).

4. Amplification Coefficients and the Time of Storage of High-Energy Protons

The excitation of the Alfvén wave turbulence due to the cyclotron instability can cause
the scattering of the high-energy protons and lead to their precipitation into dense
chromospheric regions. In this section we obtain some sufficient conditions of particle
storage, i.e., the conditions of the life-time of protons in the trap being sufficiently large,
despite the development of the cyclotron instability.

First of all, the validity of the linear theory of the Alfvén wave excitation, developed
in Sections 2 and 3 requires the characteristic lifetime of protons in the trap to be much
more than the wave-passage time 7,,.* Since for high-energy protons in the coronal
magnetic field, the loss-cone is rather narrow, the proton life-time is approximately equal
to the characteristic time 7, of quasi-linear diffusion (so called ‘weak-diffusion regime’,
which is realized when 1, < 1,,; 7, = Q; ! is the typical bounce-period of high-energy
proton). Based on this, let us require 7, to be much greater than t,,. What is more, the
mequality of 7, > 7, presents a reasonable condition for the storage.

It was shown in the Section 2 that noticeable wave growth occurs only in the limited
angle interval of 0 < 0 £ o'/ < 1. That is why we may estimate the quasi-linear diffusion
coefficient by its approximate value for the case of parallel propagation (Kennel and

* Since a typical wavelength of an unstable wave is much less than the scale of inhomogeneity of an Alfvén
velocity profile at chromospheric altitudes, we may neglect the reflection of the wave from the ends of the
magnetic trap.
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Petschek, 1966):

Bi(k ~ wp,/vo)/ Ak

D, ~ (w%ﬁ/vo) B%

(4.1)

where Ak ~ wg,; /v, is a characteristic bandwidth of wave spectrum and B, is a Fourier
component of the magnetic field of the Alfvén turbulence taken at the point of the
cyclotron resonance.* The expression for B7 as a function of time takes the form

B} = B exp(24(2)), 4.2)

where B, is an initial level of Alfvén ‘noise’. In the range of wave-numbers considered,
the initial noise level is probably determined by thermal fluctuations. Then, the estimate
for B}, can be obtained by using well-known formulae for the spectral density of plasma
fluctuations (see, e.g. Akhiezer et al., 1974) with allowance made for the fact that the
main source of fluctuations in our case is the high-energy protons rather than
background plasma:

B/Zk ~ (0/ wg)(@g,/06) & - (4.3)

Here we took k ~ wy,/v,, &, is characteristic energy of accelerated protons and 0 £ a!/2.

An analysis of the formulae for the instability growth rates obtained in Section 2
shows that there exist two parameters significantly affecting the wave amplification,
namely, f, and #. If we assume that the process of acceleration of protons in the flare
does not lead to their appreciable anisotropy, the anisotropy parameter # will be
determined by the size of the loss-cone. In this situaion, the only parameter significantly
controlling the wave growth rate is f3,.

Let us denote by f. the critical value of 8, for which the time of proton diffusion, 7,
becomes comparable with the wave-passage time 7,,. Using Equations (4.1)—(4.3) and
taking into account the estimate t,, ~ D!, we first get the critical value of 4, for which
T, =T,

A.~1n (M) , (4.4)

& 0T,

To obtain a sufficient condition of the storage, we calculate the amplification
coeflicient 4 (see (3.17)) for the waves, which have a maximal growth rate at an initial
point J,. That is, we consider waves with initial conditions 6(/,) = 6, = 0,
k(ly) = ko = wp;/vy, and k,(I,) = 0. Besides, we estimate the particle diffusion due to
the turbulence, whose final level is determined by amplification in the process of wave
propagation up to the point where the amplification is followed by damping or becomes

* All the quantities in formula (4.1) and in a number of following expressions are, in fact, the functions of
the coordinates. However, for order of magnitude estimates we are interested in, we may assume expression
(4.1) to be somehow averaged with respect to coordinate /, the L-dependence being retained. Here L is the
distance between the photosphere and the top of the field line.
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very small (due to refraction). In other words, we calculate the amplification coefficient
A taking into account the positive part of the curve I''(6) only. Carrying out these
calculations, we may neglect the evolution of the parameter y = (k/wg,)(T,/m;)'/?, in
the process of the wave propagation, since the wave growth rate’s dependence on 0 is
much stronger than its dependence on y in the range of angles § < «!/? we are interested
in. It should also be remembered that in our model of a plane field line and slowly varying
plasma concentration, k, remains equal to its initial value. Therefore, k, remains zero
for the wave with a maximal growth rate.

Numerical estimates show that the Alfvén wave damping by thermal electrons
(including the ‘modified’ damping) can be neglected for typical values of coronal
parameters. As to the amplification 4, we can represent this in the form

A =F0‘Eo, (4.5)

where I, is the growth rate (2.10) of the wave propagating along B, 1, is a parameter
with the dimension of time. Since the function I'(6) rapidly decreases in the region of
6 ~ a'/2 we can take for 1, the value (see Equations (3.16) and (3.17))

7o~ (R/ca)al/?. (4.6)

Making use of the estimate I'y ~ f§, nw and substituting (4.6) for (4.5) we obtain an
estimate for the amplification coefficient:

A~ B, nwg a*?*R/c, . 4.7)

Combining (4.4) with (4.7) we get an expression for the critical value of fx«:

3/2p—1 2 %
~ Y0 R ln(Bo(vo/a’Bz) >, (4.8)
2nwpc)? gL
where we put 7, ~ L/cy4.
For practical use, it is convenient to rewrite this in the form
ﬁ* = ﬁ*(La BO(L)s 809 77) =
3/4(MeV MeV
~8x 106 0 (MeV) 1n<5><10‘5 2‘“—”) (4.9)
B3y*(G)L(Ro) 7 B5(G)L(R,) '

In formula (4.9) we took for n, the value of n, ~ 10® cm 3 (the dependence on n, in
(4.8) is very weak), and made use of the fact that R ~ L. The parameter L is measured
in solar radii, R, . The formula (4.9) enables us to estimate the threshold value of fx,
such that the inequality of < P« corresponds to a relatively long-term storage of the
protons, 1, > 1, in spite of the development of cyclotron instability. To carry out such
an estimate it is necessary, apart from the typical energy of accelerated protons and the
degree of their velocity distribution anisotropy, to know the typical value of height of
the storage region as well as the magnetic field there.

We carried out illustrative calculations with formula (4.9) for two typical cases,
characterized by the following parameters: (i) L = 0.3 R, B, = 10 G and (ii)) L = R,

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1983SoPh...87..337M&amp;db_key=AST

356Ph: D 87: D337V

rt

HIGH-ENERGY PROTONS IN THE SOLAR CORONA 353

B, = 1G. In both cases we considered accelerated protons with a typical energy of
& = 30 MeV. The estimate of 5 can be made as follows. If the anisotropy parameter
is determined by the size of the loss-cone only, the expression for the effective value of
n can be written as

7= p(J@f@)@)/J% f(v)do. (4.10)

Assuming the distribution function f(v) is Maxwellian outside the loss-cone and zero
inside it, we obtain, after calculations, = 3Q2u + 1)~ !, where u = B,,,/Bu, is the
‘mirror ratio’ of the magnetic trap, B, is the magnetic field at the top of the field line,
and B_,,, is the magnetic field in a region of lower corona where Coulomb collisions
become essential. For a typical coronal situation this corresponds to values of p = 15
and 150 in cases of (i) and (ii), respectively, the values of # being approximately equal
to 0.1 and 0.01, respectively. Then formula (4.9) yields the following results for fx:
Px ~ 4 x 1072 in the case of (i) and B~ 0.4 in the case of (ii). It should be noted that
P« increases rapidly with distance from the photosphere. Therefore, if the storage region
of high-energy protons corresponds to moderate coronal heights, and the parameter §,
exceeds the value of f«, the dynamics of the particles is essentially determined by
cyclotron instability. The investigation of non-linear dynamics of the protons in this
situation presents a difficult and interesting problem (cf. similar problems in magnetos-
pheric physics; Bespalov and Trakhtengertz, 1980) which, however, falls outside the
limits of this article. When f, < B« long-term storage of the protons presents no problem.
For a very high corona the threshold value of f« may exceed the threshold of MHD
instabilities (Meerson and Sasorov, 1981), so the main effect of 8, > B« in this case must
be the ‘catastrophic’ escape of particles into interplanetary space.

5. Discussion

In this paper we considered the evolution of high-energy protons accelerated in the
process of solar flare and trapped by coronal magnetic fields. One of the most important
instabilities, governing storage time of the protons in such traps, is the cyclotron
instability of the Alfvén waves, which develops due to ‘unavoidable’ anisotropy of
perpendicular and parallel (with respect to the magnetic field) pressures of high-energy
particles. The scattering of the particles by excited waves can lead to a quick loss in the
dense chromospheric regions. However, there is evidence of the possibility of long-term
storage of protons in coronal magnetic configurations. This presented a problem
deserving attention.

It was Wentzel (1976) who firts made an attempt to clarify the mechanism of
‘switching off” the cyclotron instability. His idea was as follows. Since generated Alfvén
waves undergo refraction, the angle 6 changes in the process of the wave propagation.
According to Wentzel, the wave stops growing as soon as it reaches a threshold value
of 6, where a modified damping of the wave on coronal electrons becomes significant.
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It was assumed that the damping is associated with coupling between Alfvén and
magneto-acoustic modes by means of cyclotron-resonant protons.

However, the phenomenological approach used by Wentzel did not allow him to
investigate the damping mechanism properly. Accurate calculations (see Section 2)
show that modified damping results from the contribution of total distribution function
of high-energy protons to the wave dispersion equation, rather than from the resonant
protons only. And, what is still more important, this damping can be neglected for
typical coronal conditions.* Hence, the problem in question has remained unsolved until
recently.

In this paper we carried out detailed investigation of the cyclotron instability of the
Alfvén waves and the possible mechanisms of wave damping in a broad region of angles,
0° < 0<90°. It was established that an abrupt fall of the wave growth rate occurs when
passing from the region of circular polarization of the wave, sin*0 < w/wg,, to the
region of linear polarization, sin® 6> w/wg,. Since the ratio of w/wp, is usually much
less than unity, this transition takes place at very small 6.

Further, the consistent treatment of the problem enabled us to investigate the wave
refraction effects, taking into account both the curvature of the magnetic field line and
the longitudinal nonuniformity of the magnetic field. We obtained simple relations
describing change of the angle 0 when the wave packet propagates along the field line.
Therefore, we revealed a rapid decrease of the wave growth rate in the process of the
wave propagation in the trap.

These effects lead to the possibility of long-term storage of accelerated protons by
coronal magnetic fields. We determined some sufficient conditions for such storage. The
most important parameter from the viewpoint of storage is the parameter S, (it should
be noted that it was the curvature radius of the magnetic field line that served as a key
parameter in Wentzel’s theory). If the value of f, is less than a critical value fx,
determined by formulae (4.8) and (4.9) the storage time for the protons with energy of

10-30 MeV may amount to 1 day.
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Appendix 1

Real and imaginary components of the dielectric constant tensor for background plasma
can be found, for example, in the review by Ginzburg and Rukhadze (1972), p. 466.

* As to the Alfvén wave refraction, Wentzel considered it only qualitatively.
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As to the corresponding components of the dielectric constant tensor for high-energy
protons, they can be obtained by calculation of the well-known general expressions for
velocity distribution function (2.5). Then the real components of the tensor elements can
be shown to have the following form:

£ = (n, ) (exp(=5)/s) ¥ n°L() 2,0 @), (AL1)

n=1

853" = u(n, o) (exp (- S)/S)( OEOJ n2L(5) X (1, % ) 2, (5) + 28(s) ¥(n, a,y)) ;

n=1

(A1.2)

e = ine(n, ) (exp (= )/y) Y. n2(ILs) - L) Zn(n. 2 3) +

+ieQ(n,/ng) o !, (A1.3)

where

x(n, o) = (n/2)/2(c/ca)? (m/no)a>(L =)~ ",

An(8) = (1= s/nf* + (s/n)*(1 = 21, 1 (s)/L,(s)) ,

£(s) = s*(o(s) = 1,(5))

(n, o, y) = (2/7)" 21— (o/y)uy ,

21 2, ¥) = n((8/m) - (n/»)(u_,, — w,)) — (/P (u_, + u,),

T, o, y) = nu_,, +u,) + (a/m)(u_, —u,),

s=(1-1n)""'y*tg?0;1,(w),and I, (w) are the modified Bessel functions of the nth order
and the derivative with respect to w, u,, is the imaginary part of the Kramp function,
which has the following form:

u, = (2//m) f exp(z2 - #£)dz, A= (x-n)/y/2.

The second term in (A1.3) arises because of the quasi-neutrality of the total system
‘plasma + high-energy protons’. Indeed, the component (%" results from the summation
of electron and ion contributions (see, e.g., Ginzburg and Rukhadze, 1972, p. 466), the
contributions effectively compensating each other. If high-energy protons are absent, the
condition of plasma quasi-neutrality takes the form of ny =n,. In this case
Q" = inelY". However, if there is a small group of high-energy protons in the system,
the quasi-neutrality is restored through a ‘drawing out’ of additional electrons from the
dense regions of background plasma. The corresponding quasi-neutrality condition
now becomes ny; + B, — n,, = 0, where n, is the high-energy protons concentration.
Then the summation of electron and ion contributions in &{%" yields an additional term,
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proportional to #,. It is natural to attribute this term to the component &45”, just.as it
was done in (A1.3).

The imaginary components of the dielectric constant tensor elements contributed by
high-energy protons are of the form

£ = — ik 2% D) (e (=)/5) Y H, (07, 5)8,(1 4, 9), (AL4)

n=1

8(212)i = - ”?(71’ o, y)(exp(—s)/s)( OzO: Hn(O(, Y S) 3,1(77, a, y)in(s) -

n=1

—&(s) exp (- Ot2/2y2)> ; (A1)

ei3" = #(n, @, y) exp(-s) i H,(%, ,8)5,(n, %, p)U(5)/1,(s) - 1), (AL.6)

n=1

where
#(n, 0, y) = \/21(c/ca P (1/mo) (op) " (1 = )71,
H, (2,3, 5) = n*L(s) exp (- (n* + 42)/2y?),
5,(n, &, y) = (nn/a) sh(na/y?) - ch(na/y?),
5,(n, ¢, y) = (n/o) ch (no/y?) - n=" sh(na/y?) .

Appendix 2'

In the literature, one can find two formulae for the collisionless damping rate of the
Alfvén waves in the region of sin? > «, the formulae differing from each other. One of
them was obtained by Stepanov (1958) (his formula (39)), the other was presented by
Ginzburg and Rukhadze (1972), formula (25.46a). We carried out the consistent analysis
which showed that the general expression for the damping rate has, in fact, the form

y= —/molm,/m)o?exp[ - (ca/vr)] X
X [(v7e/2¢A) G20 + (Ca/v7.) 1820 + Ca /v7.] - (A2.1)

The term corresponding to the first summand in (A2.1) originates from the component
¢59" of the dielectric constant tensor of the background plasma, and this coincides with
corresponding result of Stepanov. The second summand is associated with the
component £, and this term coincides with formula (25.46a) of Ginzburg and
Rukhadze (1972). Besides, there exists the third term whose value may be comparable
with those of the two mentioned above. This term owes to account of the component
e’ of the dielectric constant tensor of the background plasma.

The Alfvén wave damping is not exponentially small as long as ¢, /vy, < 1. In this
case, the first term obtained by Stepanov (1958) dominates. However, presence of small
factors such as «® and m,/m, makes the damping rate very small in almost all interesting
situations.
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Note that the ratio between damping rate y and ‘modified’ damping rate 7y, of (2.14)
has the form of y/y,, ~ a?/B, at c, /v, S 1.
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