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ABSTRACT: Traditionally, turbulence energetics is characterised by turbulent kinetic energy (TKE) and modelled using
solely the TKE budget equation. In stable stratification, TKE is generated by the velocity shear and expended through
viscous dissipation and work against buoyancy forces. The effect of stratification is characterised by the ratio of the
buoyancy gradient to squared shear, called the Richardson number, Ri. It is widely believed that at Ri exceeding a critical
value, Ric, local shear cannot maintain turbulence, and the flow becomes laminar. We revise this concept by extending the
energy analysis to turbulent potential and total energies (TPE, and TTE = TKE + TPE), consider their budget equations,
and conclude that TTE is a conservative parameter maintained by shear in any stratification. Hence there is no ‘energetics
Ric’, in contrast to the hydrodynamic-instability threshold, Ric−instability, whose typical values vary from 0.25 to 1. We
demonstrate that this interval, 0.25 < Ri < 1, separates two different turbulent regimes: strong mixing and weak mixing
rather than the turbulent and the laminar regimes, as the classical concept states. This explains persistent occurrence of
turbulence in the free atmosphere and deep ocean at Ri � 1, clarifies the principal difference between turbulent boundary
layers and free flows, and provides the basis for improving operational turbulence closure models. Copyright  2008 Royal
Meteorological Society
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1. Introduction

In large-scale atmospheric and oceanic flows, variations
of the mean velocity u = (u, v, w), density ρ, pressure
p, absolute temperature T , and other variables in the
vertical (along the z axis) are usually much larger than
in the horizontal (along the x and y axes), and the
vertical velocity w is much smaller than horizontal
velocities u and v (here the overbar and the prime
denote mean values and fluctuations, e.g. u = u + u′).
Then, to a good approximation, the mean shear is
S = i ∂u/∂z + j∂v/∂z. It causes shear instability and,
at typical geophysical scales, generation of very-high-
Reynolds-number turbulence.

This process is complicated by the vertical stratification
of density. In stable stratification, the mean fluid density
ρ decreases with increasing height: ∂ρ/∂z < 0. Then
a fluid element displaced upward (downward) over a
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distance δz differs in density from the ambient fluid by
ρ ′ = (∂ρ/∂z)δz and experiences the downward (upward)
acceleration: (g/ρ0)ρ

′ = (g/ρ0)(∂ρ/∂z)δz, where g =
9.81 m s−2 is the acceleration of gravity and ρ0 is a
reference density. In other words, the stable density
stratification prevents vertical velocity fluctuations. This
effect is the stronger the larger the vertical gradient of
the mean buoyancy, b, defined as b ≡ −gρ/ρ0, or its
square root N ≡ (∂b/∂z)1/2 called the Brunt–Väisälä
frequency.

Following Richardson (1920) the relative importance
of the counter-effects of shear and stratification are char-
acterised by the dimensionless ratio Ri = N2/S2, now
called gradient Richardson number. Since Richardson’s
time, the question of whether velocity shear can or can-
not generate turbulence at large Ri has been a principal
focus of attention. It is widely believed, in particular
in the meteorological community, that turbulence com-
pletely decays when Ri exceeds a critical value, Ric (see
e.g. Richardson, 1920; Prandtl, 1930; Taylor, 1931; Chan-
drasekhar, 1961; Miles, 1961; Monin and Yaglom, 1971;
Turner, 1973).
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Note that the same symbol (Ric) and name (critical
Richardson number) are applied to the hydrodynamic
instability threshold, Ric−instability, varying from 0.25 to 1
(Taylor, 1931; Miles, 1961; Abarbanel et al., 1984, 1986;
Miles, 1986). As follows from the perturbation analysis,
sheared flows are hydrodynamically unstable only at sub-
critical Richardson numbers: Ri < Ric−instability.

At first sight, this leads to the following conclusion:
at Ri > Ric−instability, infinitesimal perturbations are sta-
ble – hence the velocity shear cannot generate turbu-
lence. However, this reasoning is inapplicable to finite
perturbations: they cause internal gravity waves with
inherent orbital motions and local shears, including hori-
zontal shears of vertical velocities, which are not affected
by static stability and immediately generate turbulence
(Phillips, 1972, 1977). Furthermore, it has been recog-
nised that very-short-wave perturbations in sheared flows
are dynamically stable even under neutral stratifica-
tion, so that the stable static stability simply shifts the
dynamic instability towards larger wavelengths (Sun,
2006). Hence, perturbation analysis cannot be fully con-
clusive in answering the question of whether or not the
shear can maintain turbulence at large Ri.

Here we emphasise that the ‘energetics’ and the ‘insta-
bility’ critical Richardson numbers, Ric and Ric−instability,
should not be confused, and limit our analysis to the
energetics of turbulence. The overwhelming majority of
experiments (see data synthesised in our Figures) show
general existence of turbulence up to Ri = 102 and do
not support the concept of Ric.

In practical meteorological and oceanographic mod-
elling, this concept, implying no turbulent mixing at
Ri > Ric, is unacceptable. In the free atmosphere, where
Ri typically varies from 1 to 10 and often approaches 102,
pronounced turbulence has been observed almost continu-
ously at all levels (Lawrence et al., 2004), not to mention
that the effective eddy viscosity, KM , and conductivity,
KH , are orders of magnitude larger than the molecular
ones (Kim and Mahrt, 1992). The same is true for the
deep ocean.

To guarantee essential turbulent mixing at large Ri,
modern turbulence closures are equipped with Ri-
dependencies of the turbulent Prandtl number, PrT ≡
KM/KH , preventing appearance of Ric, and/or with non-
zero background turbulent diffusivities, preventing unre-
alistic laminarisation.

Some meteorological observations over very cold and
smooth surfaces bear witness to a considerable decrease
(but never total degeneration) of turbulence in a thin
near-surface layer with perceptible wind shears and
extremely strong temperature increments (e.g. Smedman
et al., 1997). Degeneration of turbulence was occasion-
ally observed in strongly stratified airflows over smooth
land surfaces (Monti et al., 2002) and in some labora-
tory experiments (Strang and Fernando, 2001). These
regimes quite probably correspond to a delayed onset
of turbulence due to the absence of pronounced initial
perturbations.

2. Turbulent energies

Using the state equation and the hydrostatic equation,
the density and the buoyancy are expressed in the atmo-
sphere through the potential temperature, θ , and specific
humidity, q; and in the ocean, through θ and salinity, s.
These variables are adiabatic invariants conserved in the
vertically displaced portions of fluid, so that the density
is also conserved. This allows the calculation of its fluc-
tuation: ρ ′ = (∂ρ/∂z)δz and the fluctuation of potential
energy per unit mass:

δEP = g

ρ0

∫ z+δz

z

ρ ′dz = 1

2

b′2

N2 . (1)

For simplicity, we consider the dry, thermally-stratified
atmosphere, where the buoyancy, b, is expressed through
the potential temperature: b = βθ (β = g/T0 is the
buoyancy parameter, and T0 is a reference value of
absolute temperature), whereas the mean-flow equations
include only the vertical component, Fz = w′θ ′, of the
potential temperature flux, and the tangential components
τxz = u′w′ and τyz = v′w′ of the Reynolds stresses
representing the vertical turbulent flux of momentum:
τ = iτxz + jτyz.

The familiar budget equations for turbulent kinetic
energy (TKE), EK = 1/2uiui , and the mean squared
potential temperature fluctuations, Eθ = 1/2θ ′2, are

DEK

Dt
+ ∂�K

∂z
= −τ · S + β Fz − εK, (2)

DEθ

Dt
+ ∂�θ

∂z
= −Fz

∂θ

∂z
− εθ . (3)

Here, D/Dt = ∂/∂t + u∂/∂x + v∂/∂y; t is the time; the
term −τ · S describes the TKE production rate; �K =
ρ−1

0 p′w′ + 1/2u′
iu

′
iw

′ and �θ = 1/2θ ′2w′ are the 3rd

order vertical turbulent fluxes; p′ is the pressure fluctu-
ation; εK = ν(∂u′

i/∂x ′
k)(∂u′

i/∂x ′
k) and εθ = −κθ ′�θ ′ are

the molecular dissipation rates, ν is the kinematic viscos-
ity, and κ is the temperature conductivity (Tennekes and
Lumley, 1972; Kaimal and Finnigan, 1994).

Following Kolmogorov (1941), εK and εθ are expressed
through the turbulent dissipation time scale, tT:

εK = EK(CKtT)−1, εθ = Eθ(CPtT)−1, (4)

where CK and CP are dimensionless constants of order
unity; and tT can be expressed through the turbulent
length scale l = E

1/2
K tT.

In view of Equation (1), 1/2(βθ ′)2N−2 = 1/2b′2N−2

is nothing but the fluctuation of potential energy, so that
the mean turbulent potential energy (TPE) is defined as
EP = 1/2(β/N)2θ ′2. Then, multiplying Equation (3) by
(β/N)2 and assuming that N2 = β∂θ/∂z changes only
slowly in space and time gives the following TPE budget
equation:

DEP

Dt
+ ∂�P

∂z
= −βFz − εP, (5)
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where εP = (β/N)2εθ and �P = (β/N)2�θ are the dis-
sipation rate and the vertical turbulent flux of TPE.

In a sense, TPE is analogous to the available potential
energy (APE) introduced by Lorenz (1955, 1967): both
APE and TPE are proportional to the squared perturbation
of potential temperature or density (in contrast to the
seemingly natural idea of the linear dependence of
any kind of potential energy on density). The principal
difference between these two concepts is that APE is an
integral property of the entire flow-domain (e.g. of the
atmosphere as a whole), whereas TPE is determined in
each point of turbulent flow.

The term βFz appears in Equations (2) and (5) with
opposite signs and describes the energy exchange between
TKE and TPE. It disappears in the budget equation for
the total turbulent energy (TTE), E = EK + EP, which
has the form of a conservation equation:

DE

Dt
+ ∂�E

∂z
= −τ · S − εE, (6)

where εE = εK + εP and �E = �K + �P are the dissipa-
tion rate and the vertical turbulent flux of TTE.

The left-hand sides of Equations (2), (3), (5) and
(6) are neither productive nor dissipative and describe
the energy transports. In the equilibrium (homogeneous
and stationary) regime they turn into zero, so that the
TTE budget Equation (6) simplifies to εE = −τ · S > 0,
which implies generation of TTE in any stratification
and thus argues against any finite value of the energetics
critical Richardson number (cf. Equation (11) below).

In view of Equations (2)–(6), maintaining turbulence
at large Ri can be explained as follows. Suppose that
the buoyancy flux, βFz, becomes so large that TKE
considerably decreases. According to Equation (6), TTE
is conserved, so that TPE increases and fluctuations
of buoyancy strengthen. In other words, fluid elements
acquire stronger accelerations and speed up toward their
‘equilibrium level’, which causes re-establishment of
TKE, and decrease of TPE. In its turn, too large TKE
causes stronger displacements of fluid elements, hence
stronger buoyancy fluctuations and therefore increase
of TPE. Such oscillations are typical of intermittent
turbulence.

The TPE fraction, EP/E, is negligible in neutral strat-
ification and increases with strengthening static stability
(increasing Ri). Generally speaking, the dependence of
EP/E on Ri is not universal. However, in the equilibrium
turbulence regime, when the left-hand sides of the energy
budget equations become zero, Equations (4)–(6) yield
a simple dependence of EP/E on the so-called flux
Richardson number, Rif = βFz(τ · S)−1:

EP

E
= (CP/CK)Rif

1 + (CP/CK − 1)Rif
; (7)

the budget equations for the turbulent fluxes simplify
to the familiar down-gradient formulations (Monin and
Yaglom, 1971; Tennekes and Lumley, 1972):

τ = −KMS, βFz = −KHN2; (8)

and the flux Richardson number becomes:

Rif = Ri/PrT. (9)

Furthermore, the turbulent Prandtl number, PrT ≡
KM/KH , and in view of Equations (7)–(8) the TPE
fraction, EP/E, become universal functions of Ri (see
Zilitinkevich et al. (2007)).

Up to the present, quantitative analyses of the tur-
bulence energetics have been basically limited to the
TKE budget. Only recently has Equation (3) for the
squared potential-temperature fluctuations been treated
in terms of TPE (e.g. Holloway, 1986; Dalaudier and
Sidi, 1987; Hunt et al., 1988; Canuto and Minotti, 1993;
Schumann and Gerz, 1995; Hanazaki and Hunt, 1996;
Keller and van Atta, 2000; Canuto et al., 2001; Stretch
et al., 2001; Cheng et al., 2002; Luyten et al., 2002; Jin
et al., 2003; Hanazaki and Hunt, 2004; Rehmann and
Hwang, 2005; Umlauf, 2005). The budget equations for
all three energies, TKE, TPE and TTE, were consid-
ered by Canuto and Minotti (1993), Canuto et al. (2008),
Elperin et al. (2002) and Zilitinkevich et al. (2007). Zil-
itinkevich (2002) employed the pair of budget equa-
tions – for TKE and TPE – to derive a non-local closure
model, which explained the distant effect of the free-flow
stability on the surface-layer turbulence.

Clearly, turbulent flows, as any other mechanical sys-
tems, are not fully characterised by their kinetic energy.
It is not surprising that the traditional approach based
on only the TKE budget could be misleading. The con-
cept of the energetics critical gradient Richardson number
is one example. In due time it was deduced from Equa-
tion (2) as follows: in very strong static stability (at large
Ri) the negative buoyancy flux, βFz, passes a threshold,
after which the TKE production, −τ · S, becomes insuf-
ficient to compensate the TKE losses, −βFz + εK, so
that the turbulence can only decay (Prandtl, 1930; Chan-
drasekhar, 1961; Monin and Yaglom, 1971).

However, the steady-state TKE budget equation, −τ ·
S = −β Fz + EK(CKtT)−1, is not closed. The above
reasoning says only that the ratio of the TKE consumption
to its production, Rif = −β Fz/(−τ · S) called flux
Richardson number, cannot exceed unity. But Rif is an
internal turbulent parameter (τ and Fz depend on each
other), which is why the restriction Rif < 1 says nothing
about maintenance or degeneration of turbulence at large
Ri. To proceed further, the traditional approach employs
Equations (8)–(9) and assumes that the turbulent Prandtl
number, PrT, is either constant or limited to a finite
maximal value, PrT−max. If so, it would indeed follow
from the TKE budget equation that the equilibrium
turbulence exists only at Ri smaller than some critical
value Ric < PrT−max.

The fallacy in this conclusion is that neither theory nor
experiments confirm the existence of any upper limit for
PrT. On the contrary, the presence of turbulence at very
large Ri has been disclosed in numerous experiments and
numerical simulations, in particular those summarised
in Figures 1–4 below. Furthermore, Figure 3 (and prior
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empirical evidence) clearly shows unlimited increase of
PrT with increasing Ri.

3. Strong- and weak-mixing regimes

Below we consider empirical data on TKE, TPE and
vertical turbulent fluxes of momentum and potential tem-
perature for different stratification regimes from neutral
(Ri = 0) to very stable (Ri � 1).

Figure 1 shows EP/E as dependent on Ri after recent
atmospheric experiments (Uttal et al., 2002), laboratory
experiments (Ohya, 2001), and our large-eddy simula-
tions (LES) using NERSC (Nansen Environmental and
Remote Sensing Centre) code (Esau, 2004). In the exper-
iments, very large Ri are observed above the turbulent
boundary layers, in the strongly heterogeneous ‘capping’
temperature inversions, where considerable amounts of
TKE and TPE are transported from the boundary-layer
interior, so that the energetics of turbulence is not fully
controlled by local factors, and EP/E depends not only
on Ri but to a large extent on the initial and boundary
conditions.

Quite useful in this context are LESs representing
more homogeneous regimes, where the basic features
of turbulence are more closely linked with the focal
factors. In particular, LES data in Figure 1 show a
well-pronounced monotonic dependence: the ratio EP/E

sharply increases with increasing Ri in the interval 0 <

Ri < 1 and then levels off approaching the limiting value:
EP/E ≈ 0.25.

Figure 2 shows the Ri-dependences of the normalised
turbulent fluxes of momentum, τ/EK (where τ = |τ |),
and heat, −Fz/(EKEθ)

1/2, once again more pronounced
in LES data.

Figure 3 shows the Ri-dependence of the turbulent
Prandtl number, PrT, according to recent data from the
literature (Bange and Roth, 1999; Ohya, 2001; Strang and
Fernando, 2001; Stretch et al., 2001; Monti et al., 2002;
Rehmann and Koseff, 2004; Mauritsen and Svensson,
2007) and our LES. Data for very large Ri follow
the linear law: PrT ≈ 5 Ri; data for very small Ri

Figure 1. The ratio of the potential to total turbulent energies,
EP/E, versus the gradient Richardson number, Ri. Blue points and
curve – meteorological field campaign SHEBA (Uttal et al., 2002);
green – lab experiments (Ohya, 2001); red/pink – new large-eddy
simulations (LES) using NERSC code (Esau, 2004). Vertical error
bars show one standard deviation above and below the averaged value

within the bin; horizontal bars show the width of the bins.

approach the well-known neutral-stability limit: PrT ≈
0.8 (Churchill, 2002); and data for any Ri are roughly
approximated by the interpolation formula:

PrT ≈ 0.8 + 5 Ri. (10)

The latter implies that the flux Richardson number, Rif =
Ri/PrT, monotonically increases with increasing Ri and
approaches Rif = Ri∞f ≈ 0.2 at Ri � 1.

Generally speaking, Figure 3 could suffer from the
artificial self-correlation between PrT determined as
(τN2)/(βFzS) and Ri = (N/S)2. However, the small-Ri
interval (Ri < 10−1) is obviously free from this draw-
back, which lends credence to the entire Figure. More-
over, the linear Ri-dependence of the turbulent Prandtl
number represents the only physically consistent very-
large-Ri asymptote. The higher and the lower power laws
are both unacceptable: PrT ∼ Ri1+ε substituted into Equa-
tion (9) leads to the physically senseless decrease of Rif

Figure 2. Normalised turbulent fluxes of momentum and heat, (a) τ/EK and (b) Fz/(EKEθ)
1/2, versus Ri, using the same data as in Figure 1.
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Figure 3. Turbulent Prandtl number PrT = KM/KH versus Ri. Blue
points and curve – meteorological campaigns SHEBA (Uttal et al.,
2002, mostly for Ri < 1) and CASES-99 (Poulos et al., 2002,
for 0.1 < Ri < 100); green – laboratory sheared flow (Ohya, 2001);
red – new LES using NERSC code (Esau, 2004); grey – direct numer-
ical simulations (DNS) with 32 (lightest), 64 (darker) and 128 (darkest)
nodes, respectively (Stretch et al., 2001). Numbers show data from lit-
erature: 1 – nocturnal atmospheric boundary layer (Bange and Roth,
1999); 2 – sediment-loaded flow (COSINUS, 2000); 3 – laboratory
turbulence (Polyakov, 1989); 4 – laboratory grid-generated turbulence
(Rehmann and Koseff, 2004); 5 – laboratory sheared flow (Strang and
Fernando, 2001); 6 – atmospheric slope flow (Monti et al., 2002). The
dashed curve: PrT = 0.8 + 5 Ri is composed of the two asymptotes:
already known: PrT = 0.8 at Ri < 0.1, and obtained from this figure:
PrT = 5 Ri at Ri > 1. Red, green and blue curves show bin-averaged
data for the corresponding data sources. Horizontal bars show the width
of bins. Vertical bars show one standard deviation above and below the
averaged value within the bin. The thin line: Ri/PrT = Rif = 1 sepa-
rates out the ‘in principle impossible area’ (Rif cannot exceed unity in

the steady state).

with increasing Ri; whereas PrT ∼ Ri1−ε leads to the lim-
itless increase of Rif up to Rif > 1, which contradicts
Equation (2).

Using empirical very-large-Ri limits disclosed in
Figures 1 and 3, namely EP/E ≈ 0.25 and Rif ≈ 0.2,
Equation (7) allows estimation of the ratio of the
dissipation constants in Equation (4): CK/CP ≈ 0.6.
Then, using empirical large-Ri limits: EP/E ≈ 0.25 and
EK/E = (E − EP)/E ≈ 0.7 after Figure 1 and Rif ≈ 0.2
after Figure 3, Equation (4) for the dissipation rates
yields εE ≈ 0.7C

1/2
K E3/2l−1. Then using the very-large-

Ri limit: τ/EK ≈ 0.1 after Figure 2, the equilibrium
TTE budget equation, εE = −τ · S, yields the asymptotic
formula:

E ≈ 0.02(CKSl)2 > 0 at Ri � 1. (11)

Equation (11) determines essentially positive TTE in any
stationary, homogeneous sheared flow and confirms our
argumentation against the energetics critical Richardson
number.

LES data in Figure 2 reveal that τ/EK as well as
−Fz/(EKEθ)

1/2 turn into constants in the two alternative
regimes: near-neutral and very stable, with the sharp tran-
sition in the narrow interval of Ri around Ri ≈ 0.2–0.3

(cf. Mahrt et al., 1998). The same kind of transition
between EP/E = 0 and EP/E ≈ 0.3 is recognisable in
Figure 1. Moreover, as seen from Figure 3, the two
asymptotes: PrT ≈ 0.8 for Ri � 1 and PrT ≈ 5 Ri for
Ri � 1 match at Ri ∼ 0.25. Coincidence of this value
with the classical hydrodynamic instability threshold is
eye-catching. However, as our figures prove, this thresh-
old by no means separates the turbulent and the laminar
regimes, as the classical concept stated, but the two essen-
tially different turbulent regimes:

• (Ri < 0.1) strong mixing capable of very efficiently
transporting both momentum: τ/EK ≈ 0.3 and heat:
−Fz/(EKEθ)

1/2 ≈ 0.4;
• (Ri > 1) weak mixing quite capable of transporting

momentum: τ/EK → constant ≈ 0.1; but rather inef-
ficient in transporting heat: −Fz/(EKEθ)

1/2 drops to
∼0.04 at Ri = 50 and, as follows from the asymptotic
analysis of Equation (3), tends to zero as Ri−1/2 at
Ri � 1 (in accordance with Figure 3).

It is conceivable that the weak turbulence regime
is most probably dominated by internal waves, which
efficiently transport momentum but do not transport heat
(see e.g. Nappo, 2002). For large Richardson numbers,
the source of turbulence can be either internal gravity
waves or so-called pancake vortices (see Lilly, 1983).
Thus the terms ‘strong’ and ‘weak’ acquire concrete
physical sense: strong turbulence is fully chaotic and
vortical, whereas weak turbulence is wave dominated and
presumably intermittent.

Among practically important applications of turbulence
closures suitable for very stable stratification we mention
the deep-ocean downward heat flux known to be a
controlling factor of the rate of global warming (Hansen
et al., 1985) and optical turbulence in the free atmosphere
essential for astronomical observations (Lawrence et al.,
2004).

The above analyses disprove the concept of the ‘ener-
getics’ critical Richardson number in its classical sense.
Experimental LES and DNS data summarised in our
figures, and other evidence from modern literature (e.g.
Galperin et al., 2007; Mauritsen et al., 2007; Zilitinke-
vich et al., 2007; Canuto et al., 2008) demonstrate gen-
eral existence of turbulence at very large Ri, up to
Ri > 102, exceeding its commonly accepted critical val-
ues by more than two orders of magnitude.

What is factually observed is a threshold interval
of Richardson numbers, 0.1 < Ri < 1, separating two
regimes of essentially different nature but both turbulent.
The laminar regime could take place at very large Ri
in the absence of pronounced initial perturbations, most
probably due to the delayed onset of turbulence.

The concept of the two principally different turbulent
regimes sheds light upon many uncertain problems.
In particular, it allows refining the definition of the
stably stratified atmospheric boundary layer (ABL) as
the strong-mixing stable layer, in contrast to the also
stable but weak-mixing free atmosphere. Because these
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Figure 4. The gradient Richardson number within and above the stable
ABL: Ri versus z/L, where L = τ 3/2(−βFz)

−1 is the Monin–Obukhov
length scale. Red points (for z < h) and pink points (for z > h) show
LES data (NERSC code: Esau, 2004); blue points show atmospheric

data (Uttal et al., 2002).

two turbulent regimes are characterised by the small and
the large Ri, respectively, it is natural to expect that the
ABL outer boundary, z = h, should fall into the threshold
interval: 0.1 < Ri < 1.

Figure 4 confirms this conclusion. It shows Ri as
dependent on the dimensionless height z/L, where
L = τ 3/2(−βFz)

−1 is the Monin–Obukhov length scale
(Monin and Obukhov, 1954) widely used in boundary-
layer meteorology. Red and pink points show our LES
data: red for the ABL interior (z < h), pink for the free
atmosphere (z > h), where h is determined as the height
at which τ diminishes to 5% of its surface value; atmo-
spheric data (Uttal et al., 2002, blue points) do not give
such opportunity.

4. Concluding remarks

Our analyses demonstrate that the TKE budget equation,
used by itself in many theoretical analyses and applica-
tions, is not sufficient to characterise the energy trans-
formations in stratified flows. Equally important are the
budget equations for TPE and TTE.

The latter, in contrast to the kinetic energy, represents
an invariant conserved in the absence of the shear and dis-
sipation. Its budget equation provides the key argument
against the energetics critical Richardson number and
opens new ways towards advancing turbulence closures
and computational tools for geophysical fluid mechanics.

Data analyses in section 3 represent illustrations rather
than validation of our basic conclusions. Further experi-
mental and numerical-simulation studies of similar kind
are needed.
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