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1. Introduction 

The aerosols in Titan’s atmosphere have a major effect on 
the heat balance and dynamics of that atmosphere. As a 
result, they have been the subject of a number of inves- 
tigations. These have included laboratory simulations of 
the aerosols themselves (Bar-Nun et al., 1988; Scat- 
tergood et al., 1992), as well as theoretical computations of 
their light-scattering properties (Podolak and Danielson, 
1977 ; Rannou et al., 1995), their contribution to the atmo- 
spheric heat budget (McKay et al., 1989) and the mic- 
rophysics of their growth (Podolak and Podolak, 1980 ; 
Toon et al., 1992). Recently, calculations have even begun 
to include crude modeling of the dynamic behavior of the 
aerosols (e.g. Hutzell et al., 1996). In this study we present 
a new dynamical mechanism, based on the recently dis- 
covered effects of turbulent barodiffusion and turbulent 
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thermal diffusion (see Elperin et al., 1995, 1996a, 1997), 
which can have an important effect on the vertical dis- 
tribution of the aerosols. As a result, it will affect the 
computed albedo of the satellite and, hence the quality of 
a given model’s fit to the observations. Below, we present 
the theory underlying this effect and compute its mag- 
nitude for conditions relevant to Titan. 

2. The governing equations 

If n&t, r) is the number density of light particles in some 
fluid (such as the Titan atmosphere) at time t and position 
r, then the evolution of this distribution is determined by 
the equation of convective diffusion : 

an, + 
at +V.(n,v) = -a. J (1) 

where v is the velocity of the medium and the diffusive 
flux J in the case of heavy passive scalar particles (i.e. 
where the mass of a particle is much greater than the mean 
molecular weight of the surrounding fluid) is given by 

J = -D(Bn,-zn,) 
(e.g. Akhiezer and Petleminskii, 1981). Here D is the 
coefficient of molecular diffusion, IC is Boltzmann’s 
constant, g is the acceleration of gravity, T is the tem- 
perature of the surrounding fluid, mp is the mass of a 
particle and mp is the mass of a molecule of the sur- 
rounding fluid. The second term in the flux J describes 
the sedimentation of the passive scalar particles in a grav- 
ity field with a velocity v, = D(m,g/+cT). This means that 
the velocity of these particles is given by vp = v+v,. We 
consider a Brownian approximation for diffusivity of par- 
ticles. In this case the coefficient of diffusion is given by 
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KT 
D=- 

6na,pv 

(e.g. Landau and Lifshitz, 1987) where a, is the radius of 
a Brownian particle and v is the kinematic viscosity of the 
carrying fluid. Note that, although equation (1) does not 
formally include coagulation, it is applicable to a volume 
averaged density of particles. This can be seen by mul- 
tiplying the coagulation equation by the volume of the 
particles and integrating over the size distribution of the 
aerosols. The integral term weighted with the particle mass 
vanishes and we get the continuity equation (1) for the 
volume averaged density of particles. Thus, the equation 
can be seen as describing an average effect which does 
not take explicit account of the size distribution of the 
particles. 

The velocity Y and the density p of the medium satisfy 
the continuity equation 

ap - t+v+v) = 0. (3) 

In order to derive an equation for the mean mass con- 
centration we average equation (1) over an ensemble of 
random velocity fluctuations. For this purpose we use the 
stochastic calculus which was applied in mag- 
netohydrodynamics (Zeldovich et al., 1988, 1990; Kleeo- 
rin and Rogachevskii, 1994) and for passive scalar trans- 
port in incompressible (Zeldovich et al., 1988, 1990; 
Avellaneda and Majda, 1994) and compressible (Elperin 
ef al., 1995, 1996a,b, 1997) turbulent flows. The use of the 
technique described in Elperin et al. (1995, 1997) allows 
one to derive an equation for the mean field N = (n,) : 

g + si * ((V,,+ v,)N- b,aN) = 0 (4) 

where 

l? = D,, = D6,, + (zz+,,) (5) 

Veff = v - (zu(V - u)) (6) 

and v = V+u, V = (v) is the mean velocity and u is the 
turbulent component of the velocity, z is the characteristic 
time of turbulent motions which depends on the scale of 
motions. Note that equation (4) is written in the form of 
a conservation law for the total number of particles. 

The continuity equation (3) can be rewritten in the form - 
( 1 l+$ (V-u)= -;(..,,-;~ (7) 

where pr = fi+p, p = (pf) is the mean density and p” is 
the fluctuation of the density. We take into account that 
the turbulent velocity of the particles coincides with that 
of the surrounding fluid because the random component 
of the terminal fall velocity v, equals zero. 

Consider the case of low Mach numbers : A4 << (l,,/L)“2, 
where I,, is the maximum scale of turbulent motions, L is 
some characteristic large scale (e.g. the inhomogeneity 
scale of the mean temperature or the mean density), 
M = ((u*))~‘~/c, is the Mach number and c, is the sound 
speed. Since the fluctuations of pressure are of the order 
of P = c:/Y h p(u”), the ratio p/p - hf2 << 1. Therefore, 
we can neglect terms -p” and equation (7) is reduced to 

<a-u, ‘1: - $Qp. (8) 

Using the ideal gas equation of state for the surrounding 
fluid for the mean fields P = p’cT/m, yields 

VT VP vp : -- __=--_=A 
T P P-’ 

(9) 

Combining equations (4-6) (8) and (9) allows us to 
rewrite equation (4) in the following form 

~+F(J,+J,) = 0 (10) 

where the turbulent flux of the particles is given by 

JT= -Do VN+N~-N~ 
‘I 

(11) 

D, = u&,/3 is the coefficient of turbulent diffusion, u0 is 
the characteristic velocity in the scale Z,,. The molecular 
flux of the particles 

JM = -D f7N+k,y+k,y -1 (12) 
comprises three terms : molecular diffusion (N VN), 
molecular thermal diffusion (-k,VT, where k, is the 
molecular therm21 diffusion ratio) and molecular bar- 
odiffusion (- k,VP, where k, is the molecular bar- 
odiffusion ratio, see for example Landau and Lifshitz 
(1987)). Comparing the molecular (12) and turbulent (11) 
fluxes of particles we can interpret the new additional 
turbulent fluxes as fluxes caused by the effects of turbulent 
thermal diffusion (N k,vT, where kT = N is the turbulent 
thermal diffusion ratio) and turbulent barodiffusion 
(N k,aP, where kp = -N is the turbulent barodiffusion 
ratio). 

Remarkably, the additional turbulent flux caused by 
the effect of turbulent thermal diffusion appears also for 
inertial particles advected by a turbulent flow (Elperin et 
al., 1996a). The turbulent flux of small inertial particles 
of mass mp is given by 

(13) J$‘) = -DTpT+vN] 

(14) 

(see Elperin et al., 1996a), where k$‘) is the turbulent 
thermal diffusion ratio of small inertial particles and 
D,kp) is the coefficient of turbulent thermal diffusion, 
Pe = uolo/D is the Peclet number, Re, = min {Re, Pe,}, 
Re = l,,u,,/v is the Reynolds number, PeT = I,,u& is the 
thermal Peclet number and x is the coefficient of molecular 
thermal conductivity. Turbulent thermal diffusion of 
small inertial particles is caused by the correlation between 
temperature and velocity fluctuations of the surrounding 
fluid and leads to the relatively strong mean flux of small 
inertial particles in the direction of the regions with the 
minimum (or maximum) of the mean temperature of the 
surrounding fluid, depending on the ratio of material par- 
ticle density to that of the surrounding fluid. Note that 
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the velocity field of particles is divergent due to the finite 
inertia of particles advec ted by turbulent flow. For heavy 
particles (with sizes > 1 pm) the turbulent thermal 
diffusion ratio k$‘) >> N at large Reynolds and Peclet 
numbers. 

where Ap N Ap. In this case all aerosol particles are located 
in the vicinity of the surface of the planet. 

For the light particles the effect of inertia is negligible. 
However, compressibility of the surrounding fluid results 
in the new additional turbulent flux of particles caused 
by turbulent thermal diffusion. The additional turbulent 
nondiffusive fluxes of light particles can be also estimated 
as follows. We average equation (1) over the ensemble 
of the turbulent velocity field and subtract the obtained 
averaged equation from equation (1). This yields equation 
for the turbulent component q of particles number density 

However, in a turbulent atmosphere (Pe cc 1) the situ- 
ation is drastically changed, i.e. the height length scale of 
the mean particle concentration is 

AN=Ap 1+3* 
( ) 

-I 
. 

P p 
(20) 

$-DA, = -V.(Nu+Q) (15) 

where np = N+ q, Q = uq - (uq). Equation (15) is written 
in a frame moving with <he mean velocity V. The mag- 
nitude of dq/at- DAqt- V * Q can be estimated as q/z, 
where z is the turnover time of turbulent eddies. Thus the 
turbulent field q is of the order of 

In order to analyze equation (20) we use parameters typi- 
cal for the atmosphere of the Earth. We find from equa- 
tion (20) that aerosol particles with size less than 1 pm 
have a height length scale which is of the order of the 
density stratification length (A,) of the surrounding fluid. 
Note, in passing, that the latter conclusion explains the 
occurrence of the small aerosol particles in the upper 
atmosphere. Thus, turbulent diffusion considerably 
enlarges the characteristic scale height of the particle dis- 
tribution. 

4 - - ,A@. u) - z(u * V)N. 

Now we calculate th.e turbulent flux of particles 
JT = (uq) : 

3. Physics of the effect 

JT N - N( ZU(V * U)) - (rUuj)VjN. (16) 

Using equations (5), (8) and (9) we can reduce the tur- 
bulent flux of particles equation (16) to equation (11). 
Note that the turbulent flux of particles can be estimated 
also by means of simple dimensional analysis (see Col- 
egrove et al., 1966). 

The equilibrium solution of equation (4) is given by 

Now we study the dynamics of the large-scale distribution 
of the concentration of the particles in a small-scale tur- 
bulent fluid flow. Turbulent thermal diffusion may result 
in the formation of inhomogeneous structures in a large- 
scale distribution of the particles advected by a com- 
pressible turbulent fluid flow. The mechanism of this effect 
is as follows. In incompressible flow the mass of fluid 
flowing into a small volume at any time exactly equals the 
mass outflow from this volume. In the limit of infinite 
Peclet number the particles are frozen into the flow of the 
surrounding fluid. Therefore, there is no accumulation of 
the particles at any point of the volume. 

(D+D,)aN, q = N,, . (17) 

Let the vectors g and Vp be directed along the Z axis. 
Equation (17) can be rewritten as 

(3+Pe)VN,, = -No 3>p’+PeA;’ (18) 
a 

where 

P is the fluid pressure, Pe is the Peclet number, DT is the 
coefficient of turbulent Idiffusion, lo is the maximum scale 
of turbulent motions, and u,, is the typical velocity in scale 
lo. The solution of equation (18) has the form 

where 

N,, = N, exp (-Z/AN) (19) 

AN = A,(3--Pe)(3S +p,)’ 

is the height length scale of the mean particle con- 
centration distribution. Without turbulence (when 
Pe < 1) the height length scale AN is given by 

The situation changes if V * u # 0 in a turbulent fluid 
flow. In this case the mass of fluid flowing into a small 
volume does not equal the mass outflow from the volume 
at any moment. Therefore, at times smaller than a charac- 
teristic time of the turbulent velocity field there is accumu- 
lation (or outflow) of particles. Note that accumulation 
and outflow of the particles in a small control volume 
are separated in time and molecular diffusion breaks the 
symmetry between accumulation and outflow (i.e. it 
breaks a reversibility in time). The latter can cause pattern 
formation in the concentration distribution of the par- 
ticles advected by a compressible turbulent fluid flow. 
Indeed, let us demonstrate this effect. For this purpose we 
derive the equation for ni. Multiplication of equation (1) 
by np and simple manipulations yield : 

2 + (9 - A) = -,;(a - U) - 2D(b,)* (21) 

where A = n;U- Dan&$ Consider the evolution of the 
number density of the particles in a volume V, in the 
Lagrangian frame. Integrating equation (21) over the vol- 
ume V, we obtain 

-&dV, = -~n;(+v)dV*-2D~(bzJ2dV* 
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where we use the fact that (V - U) = (a ev). The latter 
equation shows that in an incompressible fluid flow 
Jni dV, can only decrease with time due to molecular 
diffusion. On the other hand, in a compressible fluid flow 
the value {tii d& can grow when V *v < 0. Thus, the 
regions where V *v < 0 contribute to the growth of 
J$ dV,. However, the total number of particles in the 
whole system is conserved. 

Now we elucidate the roles of molecular diffusion and 
sedimentation. Integration of equation (1) over the vol- 
ume I’, yields 

where we use Gauss’ theorem j(V * B) d V* = +B* dS. 
Thus, only molecular diffusion and sedimentation can 
change a number of particles in the volume I’*. However, 
the direction of this change (growth or decay of jnp d I’* 
and Jrzi dV,) is determined by V-v. When D = 0 and 
v, = 0 the particles are “frozen: into the surrounding fluid 
and jn, dV/, = constant. If V * v < 0 and D # 0 there 
occurs a redistribution of the particles so that regions with 
a high concentration of particles are contiguous to the 
regions with a low concentration. As a result, large-scale 
inhomogeneous structures in the spatial distribution of 
the particles concentration are formed. 

All the conditions considered above for the formation 
of inhomogeneous structures in the concentration dis- 
tribution of the particles are only necessary, but not 
sufficient. The sufficient conditions can be determined only 
after the analysis of the large-scale stability of the equi- 
librium concentration distribution. This analysis is per- 
formed in the next section. 

4. Formation of large-scale inhomogeneities in spatial 
distribution of particles concentration 

Now we study the dynamics of the large-scale distribution 
of the particle concentration in the small-scale stratified 
turbulent fluid flow with V * u = -u * @p/p) # 0. Equa- 
tion (4) for the mean number density of the particles can 
be rewritten in the form 

C3N 
at + V * [(v, - zD,F,(z))Jlj = 9 * [(D + DTF,(z))aN] 

(22) 

where we take into account that for the stratified turbulent 
flow 

D,,r = DL, + D&(z)&, (23) 

V,, = DTF,(z)z, 
47" 

D, = 3 (24) 

(see Elperin et al., 1995). Here we use the notation 
(I?) = utF,(Z). Equation (22) has the equilibrium solu- 
tion (17). Hereafter, we consider the case Pe >> 1, i.e. 
DT >> D. Now we study the stability of this equilibrium 
solution. 

We seek a solution of equation (22) of the form 

N(t,r) = N,(r)+N(t,Z)exp(ik-r,) (25) 

where the wave vector k is perpendicular to the axis Z. 
Substituting equation (25) into equation (22) yields 

dN 1 a’N 
-= ,z+~o;-$N at 0 0 

(26) 

where 

1 
- = F,(z), PO = F,‘+iF,+v,, 
m. 

K. = k2-&i,‘. 
0 

Hereafter, we consider the case F,(z) >> Pe-’ for all Z. 
Equation (26) is written in dimensionless form, coordinate 
Z is measured in units AT, time t is measured in units 
A+lDT, the wave number k and value ;1 are measured in 
units A; ’ and -7 = ArZ, u. = ? t ,A T /DT N 3m,/(m, Pe), and 
A, is the characteristic scale of the spatial temperature 
distribution, the temperature T is measured in units of 
temperature difference 6T in the scale AT, and con- 
centration N is measured in units N,. The vector 2 = le=, 
e= is a unit vector directed along the axis Z. 

Substituting 

N(t, Z) = Ye(Z) exp (Yet) exp [ 2 o - 1s~ dZ ] (27) 

reduces equation (26) to the eigenvalue problem for the 
Schrddinger equation 

~Yo”+,Wo- Uo]Yo = 0 (28) 

where W. = --y. and the potential Or, is given by 

(29) 

Now we use a quantum mechanics analogy for the 
analysis of the formation of inhomogeneities in a spatial 
distribution of the particle concentration. The instability 
(y. > 0) can be excited if there is a region of potential well 
where U, < 0. A positive value of W, corresponds to the 
turbulent diffusion, whereas a negative value of W. results 
in the excitation of the instability. Now we introduce a 
functionf = In (u’) andf’ = F,‘/F,. The potential ~~~ can 
be rewritten as 

U, = & [(f’ - 3b)2 + [A + v. exp ( -f>l* 
0 

+4k2+2f”-21.‘~/12]. (30) 

4.1. Estimation of growth rate of the instability 

In order to estimate the first energy level W. we use a 
modified variational method (e.g. a modified Ritz 
method). The modification of the regular variational 
method is required since equation (28) can be regarded as 
the Schrodinger equation with a variable mass m,(Z). 
Now we rewrite equation (28) in a form 
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mo = woyo, fz= uo-;g. (31) 
0 

The modified variational method employs an inequality 

W, d I, I = ~mo’I’*hY dZ (32) 

where Y is an arbitrary function that satisfies a nor- 
malization condition 

jm,‘%‘*Y dZ = 1. (33) 

The inequality (32) can be proven if one uses the expan- 
on 

Y := f a,Y~~‘, 
p=o 

where 

pzo I4 = 1 and fmo(YLP))*Y’gk) dZ = Bpk, 

The eigenfunctions Ybp) satisfy the equation 
&bp’ = W,Yp’. We chose the function Y in the form 

Y = A exp [ - a(Z- Zo)2/2], (34) 

where the unknown parameters a and Z. may be found 
from the condition of rninimum of the function I(a, Z,) 
(see equation (32)). Here we use the following spatial 
distributions off(Z) and L(Z) : 

f(Z) = .b,Z* exp ( - poZ’) (35) 

L(Z) = (Z- 2,) exp (- coZ2) (36) 

where PO << 1 and e. cx 1. Substituting equation (34) and 
equation (36) into equation (32) yields 

a2boZ; 

(a+b,)(a+2b,) (37) ) 

where b = l/Z-b, < 0. 
Thus, the modified Ritz method allows us to estimate 

the growth rate of the instability : 

; y. = - w. N T 
[ 

I-- q ~exp(-?$$)] 
2Jl+c, 

&)exp c,2; Y2 ( ) 5x1 -co) 

where r] = v,/A,, co = 2bo, Z. = - L,Y/(l -co) and 
determined from an equation 

(38) 

Y is 

(Y+ 1)2 = 2qY&exp - ( $?$J). 

.Defining a critical value of Y at which y. = 0, i.e. 

y* = 2(1 +co)ln q 
CT 

CofG ( 1 2fi 
(39) 

we can rewrite the growth rate of the instability in the 
form : 

where 

l/Y2 \ 
p=+-l) 

(40) 

Here we consider a case of k << 1 which implies long-wave 
perturbations in the horizontal plane. Note that only this 
case is important in planetary atmosphere applications. It 
is seen from equation (39) and equation (40) that the 
instability is excited when 

T,,JG?& (41) 
0 

and Y > Y,,. For example, when b. >> 1 (i.e. the inhom- 
ogeneity of turbulence is very weak), the growth rate of 
the instability is given by 

y. - b,;l;Y; (42) 

where Y, = q - 1 + ,/v](q -2). It follows from equation 
(42) that in homogeneous turbulence the instability is 
not excited. Thus, it is shown here that the equilibrium 
distribution (19) of particle concentration is unstable. The 
instability results in the formation of an inhomogeneous 
distribution of particle concentration. The exponential 
growth during linear stage of the instability is saturated 
by nonlinear effects (e.g. two-way coupling of particles 
and turbulent fluid flow, a change of temperature dis- 
tribution in the vicinity of temperature inversion layer). 

4.2. Numerical study of the instability 

Equation (28) was solved numerically with turbulent kin- 
etic energy and mean temperature profiles given by equa- 
tion (35) and equation (36). The extremum of turbulent 
kinetic energy is located at Z = 0, temperature minimum 
is located at Z = 2, (see equation (35) and equation (36)) 
and Z = -H is a location of a impermeable for particles 
boundary (surface of a planet). The boundary condition 
is determined by integrating equation (22) which yields 
the condition for Y. 

dye 
-= 
dZ 

-~lxo-2fvo atZ= -H. (43) 

Equation (43) provides zero flux of particles through a 
horizontal boundary plane Z = -H. The second bound- 
ary condition is Yo(Z = co) = 0. 
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O-1 

perature at a location r = r*. It is seen from equation (45) 
that even in equilibrium particles are concentrated in the 

0.01 0.11 0.21 0.31 0.41 
R 

vicinity of the minimum in the temperature distribution. 
Now we estimate the variation of the optical depth 

where we used the relation T = T, + 6T. 
The temperature distribution in the atmosphere of 

Titan is as follows (e.g. Atreya, 1981). The surface tem- 
perature is about 90K. The temperature decreases with 
altitude to a minimum of about 70 K at a height of about 
40 km and rises to about 170 K at an altitude of approxi- 
mately 200 km. In the vicinity of the temperature-mini- 
mum AT - 8&100 km, and ISTj/T, N 0.5 and 
fJ - (y-l)-’ - 2.5. Thus, for these parameters we deter- 

-0 

Fig. 1. Dependence of the growth rate of the instability versus 
b, for 1, = 1, z10 = 2.2, H = I 

As an example, Fig. 1 shows the dependence of the 
growth rate of the instability versus b0 for 2, = 1, u. = 2.2 
and k << 1. These values of parameters satisfy the necess- 
ary condition (41) for the excitation of the instability. 
The minimum of the functionf(Z) describing the spatial 
distribution of the turbulent kinetic energy is chosen to 
be located at the height H = 7A, from the surface of the 
planet. These numerical results are in a good agreement 
with the analytical estimates obtained by means of the 
modified Ritz method (see Section 4.1). Instability is 
excited when O<b,, < 0.57. Note that the analytical esti- 
mate obtained by means of the modified Ritz method 
yields the upper limit for b, = 0.5. 

5. Discussion 

Aerosols are produced by the photochemical process in 
the upper atmosphere of Titan and move with the terminal 
fall velocity to the lower atmosphere where they are 
accumulated in the vicinity of the temperature minimum 
due to effects of turbulent barodiffusion and turbulent 
thermal diffusion. This causes an increase in the optical 
depth of the atmosphere. Now we assume that the pressure 
and density in the Titan atmosphere are related by an 
adiabatic law : Pp-’ = const. Although the lapse rate in 
Titan’s atmosphere is subadiabatic, the data in Linda1 et 
al. (1983) can be fit sufficiently well by this assumption, 
that it is a good approximation for the atmosphere below 
the temperature inversion. Equation (18) which describes 
equilibrium distribution of particles is reduced to 

VN, VT -= -o- 
NO T 

where y is the specific heats ratio and 

3(m,lm,h + Pe 
‘= (y-1)(3+Pe) 

The solution of equation (44) is given by 

(44) 

(45) 

where N* and T* are particle concentration and the tem- 

mined that the increase of the optical depth caused by the 
accumulation of particles in the region with minimum 
temperature is &Jr, - 0.64. 

On the other hand, the equilibrium distribution of par- 
ticles is unstable under certain conditions (see Section 3). 
The instability results in the additional growth of the 
optical depth in the region of the temperature inversion. 
Nonlinear effects (e.g. effect of aerosol particles on the 
turbulent fluid flow, redistribution of the mean tem- 
perature due to accumulated aerosols) saturate the insta- 
bility. The nonlinear effects are important when the spatial 
density of particles m,N, is of the order of the density p 
of the surrounding fluid. Since the optical depth enhance- 
ment is proportional to the ratio of the gas density to the 
spatial density of aerosols, a substantial enhancement of 
the optical depth is expected. This enhancement of the 
aerosol distribution will have a number of consequences 
for the Titan atmosphere. In the first place it will affect 
the reflective properties of the atmosphere and result in a 
change in the computed geometric albedo for a given 
aerosol composition. In the second place, by changing the 
position of the aerosols with respect to the gas, it will affect 
the observed widths of spectral features in the atmosphere. 
The implications for models of Titan’s aerosol are clear. 
Finally, since the aerosols influence the heat balance in 
the atmosphere, this too will have to be recomputed with 
the expected enhancement taken into account. 

It may be argued that the increased spatial density of 
aerosols will result in a corresponding increase in the 
coagulation rate. This, in turn, will make the aerosol par- 
ticles grow faster and fall out faster, thus neutralizing the 
effect. In fact, according to the models of McKay et al. 
(1989), the aerosol particles in this region are of the order 
of a few tenths of a micron (similar results were obtained 
by Podolak and Podolak (1980)). Particles this small are 
strongly influenced by the convective motions of the gas. 
Indeed the mechanism we describe derives from this 
source. In order to fall against the convective eddies, the 
aerosol particles would have to have radii at least an order 
of magnitude larger. It is not clear that aerosol growth 
can proceed quickly enough to cause substantial sedi- 
mentation on the relevant time scale. 

The characteristic time of excitation of the instability 
~inst - (lo- lOO)A~/O, - lo- 100 years, were we used 
that in the atmosphere of Titan at a height of about 40 km 
the turbulent diffusion coefficient is of order DT N 104- 
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10’ cm2 s-‘. It is interesting that Titan’s year (29.5 Earth 
years) is the same order of magnitude as this characteristic 
excitation time. Seasonal changes in the heating rate could 
act to change the altitude of the temperature inversion in 
the atmosphere, which would, in turn, affect the vertical 
distribution of the aerosols. There will, undoubtedly, be 
additional effects due to influence of the ambient con- 
ditions on the details of the microphysics. Such a mech- 
anism could, therefore, help to explain the observed hemi- 
spheric albedo dichotomy (Sromovsky et al., 1981), as well 
as its seasonal change (Caldwell et al., 1992 ; Lockwood 
et al., 1986). Clearly detailed numerical models will be 
necessary before the importance of this mechanism can 
be fully assessed. Future studies will try to further quantify 
these effects, and their influence on Titan’s atmosphere. 
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