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Dynamics of Particles Advected by Fast Rotating Turbulent Fluid Flow: Fluctuations
and Large-Scale Structures
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Dynamics of particles advected by fast rotating incompressible turbulent fluid flow is studied. Fast
rotation and particle inertia imply the divergent particle velocity field and result in both intermittency in
spatial distribution of particles and formation of the large-scale inhomogeneous structures. A nonzero
mean helicity of fluid flow causes an additional mean nondiffusive turbulent flux of inertial particles. In-
termittency in the systems with and without external pumping is studied. Fast rotation causes anomalous
scaling already in the second moment of inertial particle number density and may result in excitation of a
small-scale instability of inertial particle distribution, which leads to the formation of small-scale particle
clusters. We discuss the relevance of our results for atmospheric, astrophysical, and industrial turbulent
rotating flows. [S0031-9007(98)07241-X]
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Dynamics of particles advected by turbulent rotatin
flows is of fundamental importance in view of a grea
number of applications in naturally occurring and labora
tory flows [e.g., dynamics of particles in the atmospher
tornado and dust storms, formation of planetesimals (pr
genitors of planets) in protoplanetary disks, industri
cyclone separators, etc.]. Interesting phenomena in t
bulent transport of particles and gases were discover
recently, e.g., turbulent thermal diffusion, turbulent baro
diffusion [1], and self-excitation, i.e., exponential growth
of fluctuations of the number density of inertial particle
[2]. The turbulent thermal diffusion and turbulent baro
diffusion cause formation of large-scale inhomogeneo
structures of particle concentration. The self-excitation
fluctuations of the number density of particles results
the intermittency in spatial distribution of inertial particles
Small-scale structures in particle distribution were ob
served experimentally [3]. All these effects are caused
inertia of particles which results in a divergent velocit
field of particles [4].

In the present Letter we show that the fast rotatio
results in very interesting dynamics of particles advecte
by incompressible turbulent fluid flow. In particular
fast rotation causes both intermittency in the spati
distribution of particles and formation of the large-scal
inhomogeneous structures.

Governing equations.—Consider particles advected by
fast rotating turbulent incompressible fluid flow. The
equation of motion for particles is given by

duydt ­ sv 2 udytp 1 2u 3 V 1 f1ymp , (1)
where the fluid velocityv is determined by equation

dvydt ­ 2===Pyr 1 nDv 1 2v 3 V 1 f2yr , (2)
tp ­ mpys6prnapd is the Stokes time,u is the velocity
of particle of a massmp and the sizeap, V is the angular
velocity, v is the velocity of fluid of the densityr and the
pressureP, n is the kinematic velocity, andf1 andf2 are
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the sums of external and centrifugal forces. We consid
an incompressible fluid flow (i.e.,= ? v ­ 0d. By means
of Eqs. (1) and (2) we derive equations forb ­ = ? u and
W ­ = 3 U,

≠by≠t ­ 2bytp 1 2V ? sW 1 = 3 vd , (3)

≠Wy≠t ­ 2Wytp 2 2bV (4)

(see [5]), whereU ­ u 2 v. For derivation of Eqs. (3)
and (4) we consider the case of fast rotation; i.e., we a
sume that for fluctuations=Pyr . 2v 3 V, V ¿ jWj,
andV ¿ j= 3 vj. We also assume thatjbj ¿ j≠Uy≠Zj,
where the axisZ is directed alongV. We study the
dynamics of particles for the times which are muc
larger than tp. Therefore we may neglect the time
derivatives in Eqs. (3) and (4) and obtain the stead
state solution of Eqs. (3) and (4):b ­ v ? s= 3 vdy
s1 1 v2d, W ­ 2bv, wherev ­ 2Vtp. The velocity
U can be presented as a sum of the vortical and t
potential components, i.e.,U ­ = 3 A 1 =f. In k
space bskd ­ 2k2fskd and Wskd ­ k2Askd, where
we use the condition= ? A ­ 0. This yields Uskd ­
isk 1 k 3 vdfskd, where fskd ­ isk 3 vd ? vskdy
k2s1 1 v2d. Fast rotation renders fluid flow to become
two-dimensional in the plane normal to the rotatio
axes V. In the two-dimensional case we use the fol
lowing identities: sv 3 kdi ­ veijkj, kisv 3 kdj ­
k2veinPnjskd, and sv 3 kdisv 3 kdj ­ k2v2Pijskd,
where Pijsad ­ dij 2 aiajya2, e11 ­ e22 ­ 0, e21 ­
2e12 ­ 1, and dij is the Kronecker tensor. Using the
above solutions and the identities we derive the tens
for the second moment of the velocity field of particle
advected by two-dimensional, homogeneous, isotrop
and reflectionary invariant turbulent incompressibl
fluid flow:
© 1998 The American Physical Society



VOLUME 81, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 5 OCTOBER1998
ktumskduns2kdl ­ D'fk2Pmnskd 1 v2kmkn

2 vskmens 1 knemsdksg

3 fvskdys1 1 v2d , (5)
where D' ­ u2
0t0y2s1 1 v2d, u0 is the characteristic

turbulent velocity in the maximum scalel0 of turbulent
motions,t0 ­ l0yu0, andk is measured in the unitsl21

0 .
In r space this tensor is given by
ktumsxdunsx 1 rdl ­ D'hsF 1 Fcddmn 1 rF0Pmnsrd 1 sF0
cyrd frmrn 2 srmens 1 rnemsdrsyvgj , (6)
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where F ­ 2f 0
vyrs1 1 v2d, Fc ­ v2F, F0 ­ dFydr,

and r is measured in the unitsl0. The functionFcsrd
describes the potential component, whereasFsrd corre-
sponds to the vortical part of the turbulent velocity of pa
ticles. The degree of compressibility iss ­ FcyF ­ v2.
Therefore the particle velocity field is compressible du
to both fast rotation and particle inertia, while the turbu
lent fluid flow is incompressible. Note that in the limi
of very small particle inertia, i.e.,tp ! 0, the degree of
compressibilitys ! 0 and the particles velocity coincides
with the fluid velocity. On the other hand, for very larg
particle inertia, i.e.,tp ¿ V21, the correlation function
ktumuml ! 0. The latter implies that very heavy particle
are not affected by the turbulence. Note that the exter
body force does not explicitly appear in the final expre
sion for the correlation functionktumsxdunsx 1 rdl of the
particle velocity field because the parameters ¿ tpyt0.
However, the body force in the Navier-Stokes equation f
the fluid determines the spectrum of the fluid velocity fiel

Number densitynpst, rd of small particles in a turbulent
flow is determined by the equation

≠npy≠t 1 === ? snpud ­ DDnp ,

where D is the coefficient of molecular diffusion. We
study one-way coupling whereby particles are advected
a prescribed turbulent velocity field. This approximatio
is valid whenmpnp ø r. Particle-particle interactions
become important only whenmpnp , r.

Small-scale fluctuations.—We consider the case of
large Reynolds and Peclet numbers. To study the flu
tuations of particle number density we derive an equ
tion for the second moment of particle concentration. F
this purpose we use a method of path integrals and mo
fied Feynman-Kac formula (for details see, e.g., [1,2,6
The equation for the second-order correlation functio
F ­ kQsxdQs ydl is given by

≠F

≠t
­ 22fDmns0d 2 Dmnsrdg

≠2F

≠xm≠yn

1 2ktbsxdbs ydlF

2 4ktumsxdbsydl
≠F

≠xm
1 I , (7)

whereQ ­ np 2 N , r ­ y 2 x, I ­ 2ktbsxdbs ydlN2,
Dpm ­ Ddpm 1 ktupuml, N ­ knpl is the mean number
density of particles, andt is the momentum relaxation
time of random velocity fieldu, which depends on the
scale of turbulent motion. We use here for simplicit
the d correlated in the time random process to descri
a turbulent velocity field. However, the results rema
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valid also for the velocity field with a finite correlation
time, if all moments of the number density of the particle
vary slowly in comparison with the correlation time of the
turbulent velocity field (see, e.g., [6]).

Equation (7) forb ­ 0 was first derived by Kraichnan
(see [7]). In this particular case,b ­ 0, this equation
describes a relaxation of the second moment of partic
number density. On the other hand, whenb fi 0, i.e.,
when the velocity of particle is divergent, Eq. (7) implies
both an effect of self-excitation of fluctuations of particle
number density caused by the second term in (7) a
anomalous scalings for the fluctuations.

We seek a solution to the equation for the functionF in
the form

Fst, rd ­ Csrdr s12ddy2 exp

∑
2

Z r

0
xsxd dx

∏
expsgtd ,

whered is the dimensionality of space, and the functio
Csrd is determined by

C00ymsrd 2 fg 1 U0srdgC ­ 0 , (8)

where U0srd ­ fsd 2 1dxyr 1 x2 1 x 0 1 sd 2 1d 3

sd 2 3dys4r2dgymsrd 2 ksrd, 1ymsrd ­ 2yPe 1 2f1 2

F 2 srFcd0gyd, xsrd ­ msrd fs3d 1 1dF0
c 2 F0 1 2rF00

c gy
d, ksrd ­ 22fsd2 2 1dF0

cyr 1 s2d 1 1dF00
c 1 rF000

c gyd,
distancer is measured in units ofl0, time t is measured
in units of t0, Pe­ l0u0yD ¿ 1 is the Peclet number,
and Re­ l0u0yn ¿ 1 is the Reynolds number for the
turbulent flow.

We consider the case of large Schmidt numbers, Sc­
nyD ¿ 1. The solution of Eq. (8) can be obtained usin
an asymptotic analysis (see, e.g., [2,6]). This analys
is based on the separation of scales. In particular, t
solution of the Schrödinger equation (8) with a variabl
mass has different regions where the form of the potent
U0srd, massmsrd, and, therefore, eigenfunctionsCsrd
are different. Solutions forF and F0 in these different
regions can be matched at their boundaries. Consider tw
dimensional turbulent fluid flowsd ­ 2d. The asymptotic
analysis yields the growth rate of fluctuations of particl
concentration

g ­
fb2

2 1 s1 2 ad2g2

s3 2 pd2 ln2

√
Re

Rescrd

!
, (9)

where Re. Rescrd and the critical Reynolds number
Rescrd is given by Rescrd . exphs3 2 pd fpk 1

arctanssss1 2 adyb2ddd 2 arctanssssj 2 adyb2dddgyb2j. Herek ­
1, 2, 3, . . . , b2

2 ­ sq 2 1d2My4s1 1 qsd2, M ­ 21 1

2ss5 1 4qd 2 s2s9 1 8qd, q ­ 2p 2 1, p is the
2899
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exponent in the energy spectrum of the turbulent flu
flow, a ­ sq 2 1d f1 2 ss3 1 2qdy2s1 1 qsdg, and
j ­ s1 2 9sdys1 1 sd. Therefore, the fluctuations of
particle number density can be excited without an extern
source. The mechanism of excitation of these fluctu
tions is associated with the fact that the Coriolis forc
concentrates the particles either at boundaries of turbul
eddies or at their centers; i.e., it causes formation
small-scale inhomogeneities in particle distribution. Th
effect acts in a wide range of scales of turbulent motion
Scale-dependent turbulent diffusion causes relaxation
clusters of particles. Since in small scales the turbule
diffusion is weak, the fluctuations of particle numbe
density are localized in small scales. The scale of loca
ization of fluctuations is given bylf , ln expspkyb2d,
whereln , Re21ys32pd is the viscous dissipation scale o
a fluid flow. It was found in [2] that the growth rategs of
thes-order correlation function of particle number densit
is given bygs ~ s2g2 for s ¿ 1 (whereg2 ­ g is the
growth rate of the second-order correlation function
This implies that wheng . 0 (i.e., fluctuations of particle
number density are excited), higher moments grow fas
than lower moments, i.e.,gs . gs21 and gs . sg2y2.
This results in intermittency, i.e., the appearance of sha
peaks in which the main part of the field intensity i
concentrated.

Anomalous scalings for a passive scalar advected by
turbulent fluid flow are a subject of active research in re
cent years. For an incompressible turbulent velocity fie
the anomalous scalings for scalar field can occur only b
ginning with a fourth-order correlation function (see, e.g
[8]). Here we have shown that the anomalous scalings a
pear already in the second moment of the number dens
of inertial particles due to the effects of rotation and inerti
Now we consider the case when there is no self-excitati
of the fluctuations of the number density of particles
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i.e., when Re, Rescrd, and fluctuations are sustained b
a sourceIsrd. We study a zero mode for Eq. (7), i.e
the mode withg ­ 0. The external source is chosen a
follows: Isrd ­ I0s1 2 rsd, where0 # r # 1 ands . 0,
and for r . 1, Isrd ­ 0. The second momentFsrd
in scales ln # r , 1 is given by F ­ r2asA3r jb2j 1

A4r2jb2jd 2 I0r32qyc2 [for 1y33 , s , minss1, 1y9dg,
and F ­ A3r2a cossb2 ln r 1 w2d 2 I0r32qyc1 [for
maxs1y33, s1d , s , minss2, 1y9dg, where c6 ­
2bmfs3 2 q 1 ad2 6 b2

2g, s1,2 are the roots of the
equationM ­ 0, and bm ­ s1 1 qsdy3s1 1 sd. The
term ~r32q in these equations corresponds to a norm
scaling for the second moment of particle concentratio
whereas the term~r2jb2j corresponds to the anomalou
scaling. When maxs1y33, s1d , s , minss2, 1y9d the
anomalous scaling in the rangeln # r , 1 is complex
s~r2a6ijb2jd.

Note that Eqs. (7)–(9) in the cased ­ 2 describe also
formation of particle clusters on the surface of water (e.
scum on the sea surface). In this case the horizon
motions of the surface of water are compressible, i
=== ? v' ­ 2≠vZy≠Z, wherevZ is the vertical component
of water velocity in the vicinity of the surface. The degre
of compressibility is determined by the surface waves.

Large-scale effects.—Now we consider the large-scal
dynamics of particles in a fast rotating turbulent fluid flow
The equation for the mean fieldN ­ knpl reads

≠Ny≠t 1 === ? fNVeff 2 D̂===mNg ­ 0

(see [1]), where D̂ ; Dpm, Veff ­ V 2 ktbul, and
V ­ kul is the mean velocity. Using the expressio
for b we calculate the effective velocitysVeffdj ­
Vj 1 viaijys1 1 v2d, where aij ­ ktuis=== 3 vdjl.
Consider the following model of three-dimensional turb
lent fluid velocity field:
ktymsxdynsydl ­ D'fFasr, Rd sdmn 2 lmlnd 1 rF0
asdmn 2 lmln 2 rmrnyr2d 1 msr, Rd´mnkrkg

1 Dkhsr, Rdlmln , (10)
n
y
le

al
s
s

on

te
e
he
n

where ´mnk is the Levi-Civita tensor,r ­ y 2 x ­
r 1 srmlmdl, Dk ­ y

2
Zt0, l is the unit vector in the di-

rection ofV, R ­ s y 1 xdy2, andF0
a ­ ≠Fay≠r. When

Dk ­ 0 andm ­ 0, Eq. (10) recovers a well-known equa
tion for two-dimensional incompressible turbulent flow
WhenDk fi 0 andm fi 0, Eq. (10) describes nearly two-
dimensional homogeneous and isotropic helical turbulen
with slow vertical (alongV) motions of fluidsy' ¿ yZd.
Now we calculate aij ­ a

s0d
ij 1 a

s1d
ij , where a

s0d
ij ­

ktyis=== 3 vdjl ­ a0dij, and a
s1d
ij ­ ktUis=== 3 vdjl ­

a0fv2Pijsvd 2 ´ijpvpgy2s1 1 v2d, where a0 ­ 2ktv ?

s=== 3 vdly3 is the a effect (see, e.g., [9]). Here we use
Eq. (10) and the equation forUskd which is rewritten in
r space. The derived formula foraij yields the effective
velocity of particlesVeff ­ V 1 a0vys1 1 v2d. This
formula implies that the large-scale turbulent flux o
-
.
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f

particles has a component in the direction of the rotatio
axis. The latter can result in the large-scale instabilit
and formation of large-scale inhomogeneities in partic
spatial distribution.

The mechanism for the appearance of an addition
mean turbulent flux of particles along the rotation axi
is as follows. The Coriolis force concentrates particle
at the centers of eddies when they rotate in the directi
which is opposite to the vector of main rotationV, i.e.,
for those eddies where the vorticity= 3 v and V are
antiparallel. On the other hand, the eddies which rota
with V do not contain particles because the Coriolis forc
carries out particles to the boundaries of the eddies. T
particles containing eddies which move in the directio
opposite toV (i.e., along the vorticity= 3 v) have the
positive helicity, while the eddies which move alongV
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have the negative helicity. When the mean helicity
zero, the numbers of eddies with positive and negati
helicities are the same, and the additional mean turbul
flux of particles vanishes. When the mean helicity
negative (i.e., thea effect is positive) the number of
eddies with negative helicity (which move in the directio
of V) is larger than that with positive helicity. This
results in the appearance of an additional mean turbul
flux of particles along the rotation axis. On the othe
hand, when the mean helicity is positive (i.e., thea effect
is negative) the number of eddies with positive helicit
(which move in the direction opposite toV) is larger
than that with negative helicity. This causes an addition
mean turbulent flux of particles in the direction which i
opposite to the rotation axisV. Thus, the nonzero mean
helicity breaks a symmetry between particle containin
eddies which move in the direction ofV and in the
opposite direction.

Applications.—The analyzed effects of formation of
small-scale and large-scale inhomogeneities of partic
distribution in fast rotating turbulent fluid flow are im-
portant in atmospheric turbulence (e.g., dynamics of p
ticles and hydrometeors in the atmospheric tornadoes a
dust storms), in astrophysical turbulence (e.g., formati
of planetesimals in accretion protoplanetary disks), and
industrial turbulent rotating flows (e.g., cyclone dust co
lectors and vortex chambers). Indeed, characteristic
rameters in the atmospheric tornado arel0 , s3 10d 3

103 cm, u0 , 30 100 cmys, andV , 1 s21 (see, e.g.,
[10]). The conditions2V

p
33 d21 , tp , s6Vd21 im-

plies that the particles of the sizeap , 90 170 mm can
be accumulated in the small-scale clusters. The ty
cal size of the clusters is about5 10 cm. The criti-
cal Reynolds numbers which are necessary for formati
of the small-scale particle clusters are about130 (for par-
ticles of the sizeap , 100 mm). The typical Reynolds
number in the atmospheric turbulent fluid flow Re,
s1 10d 3 106. Therefore, fluctuations of particle num
ber density can be easily excited and the small-sc
particle clusters are formed. Now we estimate the larg
scale effective velocityVeff of particles in the atmo-
spheric tornado. Thea effect is estimated asa0 ,
u0 , 30 100 cmys. Therefore the large-scale effectiv
velocity of particles of the sizeap , 100 200 mm is of
the order ofVeff , 25 50 cmys. This causes the mean
turbulent flux of particles and formation of large-scal
inhomogeneities in particle spatial distribution. The cha
acteristic time of particle inhomogeneities formation
more than103 sec.

Now we consider particles in astrophysical turbulenc
i.e., formation of planetesimals (progenitors of planet
in accretion protoplanetary disks (see, e.g., [5]). Pla
etesimals are formed from grains and dust in the gase
protostellar disks or the solar nebula due to coagulatio
Inertia of particles advected by turbulent rotating flui
flow causes formation of small-scale and large-scale inh
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mogeneities of particle distribution. The typical param
ters of the protosolar nebula arel0 , 1011 cm, u0 , 4 3

105 cmys, andV , 4 3 1027 s21, the Reynolds number
Re , 1010. A value v ­ 2Vtp ­ 0.2 corresponds to
ap , 10 cm, the Stokes time in accretion protoplaneta
disks tp ~ ap because the mean free path of molecul
the protosolar nebula is much larger than the size
particles. Particles of the sizeap , 10 20 cm can be
accumulated in planetesimals. The characteristic size
planetesimals for the first modesk ­ 1d is l1 , 104 cm
and for the second modesk ­ 2d is l2 , 106 cm. There
is also a possibility for the change of a settling veloci
due to the large-scale effective velocity. For the protos
lar nebula the effective velocity isVeff , 2 3 105 cmys.

An additional application of these effects is the in
dustrial rotating turbulent flows, e.g., the cyclone du
collectors (see, e.g., [11]). The typical flow param
ters in the cyclone dust collectors arel0 , 10 cm and
V , 50 75 s21, the Reynolds number Re, 3 3 103.
Therefore particles with the sizeap , 10 25 mm can be
accumulated in small-scale clusters of about 2 cm dur
a time interval of order of 10 sec. The latter can expla
some peculiarities observed in the cyclone dust collect
(see, e.g., [11]).
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