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Dynamics of Particles Advected by Fast Rotating Turbulent Fluid Flow: Fluctuations
and Large-Scale Structures
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Dynamics of particles advected by fast rotating incompressible turbulent fluid flow is studied. Fast
rotation and patrticle inertia imply the divergent particle velocity field and result in both intermittency in
spatial distribution of particles and formation of the large-scale inhomogeneous structures. A nonzero
mean helicity of fluid flow causes an additional mean nondiffusive turbulent flux of inertial particles. In-
termittency in the systems with and without external pumping is studied. Fast rotation causes anomalous
scaling already in the second moment of inertial particle number density and may result in excitation of a
small-scale instability of inertial particle distribution, which leads to the formation of small-scale particle
clusters. We discuss the relevance of our results for atmospheric, astrophysical, and industrial turbulent
rotating flows. [S0031-9007(98)07241-X]
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Dynamics of particles advected by turbulent rotatingthe sums of external and centrifugal forces. We consider
flows is of fundamental importance in view of a greatan incompressible fluid flow (i.e¥ - v = 0). By means
number of applications in naturally occurring and labora-of Egs. (1) and (2) we derive equations for= V - u and
tory flows [e.g., dynamics of particles in the atmosphericW =V X U,
tornado and dust storms, formation of planetesimals (pro-
genitors of planets) in protoplanetary disks, industrial db/at = =b/7, + 2 - (W +V Xv), (3
cyclone separators, etc.]. Interesting phenomena in tur-
bulent transport of particles and gases were discovered
recently, e.g., turbulent thermal diffusion, turbulent baro- aW/at = —W/r, — 2bQ (4)
diffusion [1], and self-excitation, i.e., exponential growth
of fluctuations of the number density of inertial particles
[2]. The turbulent thermal diffusion and turbulent baro- .
diffusion cause formation of large-scale inhomogeneou§ume that for fluctuationSP/p = 2v X Q, O > |W],
structures of particle concentration. The self-excitation ofBlndQ > |V X Vl'. We. also assume thiit| > |9U/4Z|,
fluctuations of the number density of particles results in\(/jvhere .the ?,X'SZ |'s|d|refctedhalor_19§2. V\r/]ge ;tUdy the h
the intermittency in spatial distribution of inertial particles. ynamics of particles for the times which are muc
Small-scale structures in particle distribution were Ob_larger _than Tp: Therefore we may ”eg"?Ct the time
served experimentally [3]. All these effects are caused b erivatives in Egs. (3) and (4) and obtain the steady

oo . , : . . “State solution of Egs. (3) and (4h = w - (V X v)/
:c?eelcrjtlgf ?JLE%ZSTZ] which results in a divergent veIOC|ty(1 + w?), W = —bw, wherew = 2Qr,. The velocity

In the present Letter we show that the fast rotationU can be presented as a sum of the vortical and the

results in very interesting dynamics of particles advecte(?Otentlal componzents, el =V X A J{ Vé. In k
by incompressible turbulent fluid flow. In particular, SPac€ b(k) = —k*¢(k) and W(k) = k*A(k), where
fast rotation causes both intermittency in the spatiaf,’ve use the conditior¥ - A = 0. Ih.'s yields U(k) =
distribution of particles and formation of the Iarge—scale’gk Tk X w)¢ k), where ¢(k) = ik X w) - v(k)/
inhomogeneous structures. k*(1 + o ).. Fast' rotation renders fluid flow to become
Governing equations—Consider particles advected by two-d;;nensm?]al In th_e plane rlmormal to the rgtat}loln
fast rotating turbulent incompressible fluid flow. The axes 2. In the 'two-d|mensE)na case we use t e_ ol-
equation of motion for particles is given by lowing identities: (e X k); = weijk;, kilw X k); =
- k wemP,,j(k), and (o X k);(@w X k)j—k w P,’j(k),
du/dt B (v = 1.1)/7?, +2u X Q- fl/mpf (1) where P;j(a) = 8;; — ajaj/a®, €11 = € =0, € =
where the fluid velocity is determined by equation —e€1, = 1, and §;; is the Kronecker tensor. Using the
dv/dt = =VP/p + vAv + 2v X Q + f2/p, (2) above solutions and the identities we derive the tensor
T, = m,/(6mpra.) is the Stokes timey is the velocity  for the second moment of the velocity field of particles
of particle of a massg:, and the sizeu., € is the angular advected by two-dimensional, homogeneous, isotropic,
velocity, v is the velocity of fluid of the densitp and the and reflectionary invariant turbulent incompressible
pressureP, v is the kinematic velocity, anfl, andf, are  fluid flow:

(see [5]), wherdl = u — v. For derivation of Egs. (3)
and (4) we consider the case of fast rotation; i.e., we as-
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(Tum(K)un(—K)) = D [K*Ppn(k) + @*kpnkn where D, = uj7o/2(1 + w?), up is the characteristic
— wlkyen + kyenki] turbulent velocity in the maximum scalg of turbulent
mens M motions, 7o = ly/uy, andk is measured in the unitg '.

X fok)/(1 + w?), (5) | In r space this tensor is given by
(Tum(X)up(x + 1)) = D {(F + Fe)8un + rF' Ppn(r) + (Fo/r)[rmrn — (rw€ns + ro€ms)rs/ol}, (6)
where F = —f! /r(1 + 0?), F. = 0’F, F' = dF/dr, | valid also for the velocity field with a finite correlation

and r is measured in the unitg. The functionF.(r)  time, if all moments of the number density of the particles
describes the potential component, wher&4s) corre-  vary slowly in comparison with the correlation time of the
sponds to the vortical part of the turbulent velocity of par-turbulent velocity field (see, e.qg., [6]).
ticles. The degree of compressibilitydis= F./F = w?. Equation (7) forb = 0 was first derived by Kraichnan
Therefore the particle velocity field is compressible due(see [7]). In this particular casé, = 0, this equation
to both fast rotation and particle inertia, while the turbu-describes a relaxation of the second moment of particle
lent fluid flow is incompressible. Note that in the limit number density. On the other hand, when# 0, i.e.,
of very small particle inertia, i.ez, — 0, the degree of when the velocity of particle is divergent, Eq. (7) implies
compressibilityo — 0 and the particles velocity coincides both an effect of self-excitation of fluctuations of particle
with the fluid velocity. On the other hand, for very large number density caused by the second term in (7) and
particle inertia, i.e.r, > Q~!, the correlation function anomalous scalings for the fluctuations.
(tu,u,) — 0. The latter implies that very heavy particles We seek a solution to the equation for the functibrin
are not affected by the turbulence. Note that the externahe form
body force does not explicitly appear in the final expres- r
sion for the correlation functiofru,, (x)u,(x + r)) of the O(t,r) = W(r)rt -2 exp{—f X(x)dx}exp(yz),
particle velocity field because the parameters> 7, /. 0
However, the body force in the Navier-Stokes equation fowhered is the dimensionality of space, and the function
the fluid determines the spectrum of the fluid velocity field. ¥ (r) is determined by

Number density:,, (¢, r) of small particles in a turbulent U m(r) — [y + Us(r)]¥ =0, ®)

flow is determined by the equation
where Uy(r) =[(d — Dx/r + x>+ x' +(d — 1) X

on,/dat + V - (n,u) = DAn,, - 2 D) — el N = -
where D is the coefficient of molecular diffusion. We ;fl_ (3%)(/45/61),]/;1(5))= ml(<r() %1(3]41'/?(1))1?’ _2/5/(9:2?;1{/]/

study one-way coupling whereby particles are advected by k(r) = =2[(d® — DF'/r + 2d + DF" + rF"]/d
a prescribed turbulent velocity field. This approximation jistancer is measured in units o, time ¢ is measured
is valid whenm,n, < p. Particle-particle interactions i njts of r,, Pe= louo/D > 1 is the Peclet number,

become important only whem ,n, ~ p. and Re= lyuo/v > 1 is the Reynolds number for the
Small-scale fluctuations-We consider the case of turbulent flow.

large Reynolds and Peclet numbers. To study the fluc- \ye consider the case of large Schmidt numbers=Sc

tuations of particle number density we derive an €quas, /p > 1. The solution of Eq. (8) can be obtained using
tio_n for the second moment of particle goncentration. Foran asymptotic analysis (see, e.g., [2,6]). This analysis
this purpose we use a method of path integrals and modjy pased on the separation of scales. In particular, the
fied Feynman-Kac formula (for details see, e.g., [1.2,6])goytion of the Schrodinger equation (8) with a variable
The equation for the second-order correlation functionyn,ss has different regions where the form of the potential
® =(0(x)0(y)) is given by Uo(r), massm(r), and, therefore, eigenfunction®(r)

A — —2[Dyy(0) — Dy (r)] P are different. Solutions fo® and ®’ in these different
at " T 90X Oy, regions can be matched at their boundaries. Consider two-
dimensional turbulent fluid flowd = 2). The asymptotic
+2 ® o . ,
(rb(x)b(y)) ® analysis yields the growth rate of fluctuations of particle
_ 4<mm(x)b(y)>5_ + 1. 7 concentration
im _ i+ -aPP L Re
where® = n, — N, r =y — x, I = 2rb(x)b(y))N2, V=TG-, ™ Ree ) ()

Dpy = D&,y + (Tupun), N = (n,) is the mean number

density of particles, and is the momentum relaxation where Re> Ré) and the critical Reynolds number
time of random velocity fieldu, which depends on the Ré*” is given by Ré&Y =exp((3 — p)[wk +
scale of turbulent motion. We use here for simplicity arctan((1 — a)/b,) — arctan((¢ — a)/by)]/b>}. Herek =
the 6 correlated in the time random process to describd, 2,3, ..., b% =(q— 1)’M/4(1 + go)*>, M =—1+

a turbulent velocity field. However, the results remain2o(5 + 4¢g) — 029 + 8¢), ¢ =2p — 1, p is the

2899



VOLUME 81, NUMBER 14 PHYSICAL REVIEW LETTERS 5 @TOBER 1998

exponent in the energy spectrum of the turbulent fluid.e., when Re< Ré*", and fluctuations are sustained by
flow, a= (¢ — D[l — B + 2¢9)/2(1 + go)], and a sourcel(r). We study a zero mode for Eq. (7), i.e.,
&= (1 —-90)/( + o). Therefore, the fluctuations of the mode withy = 0. The external source is chosen as
particle number density can be excited without an externdollows: I(r) = Iy(1 — r*), where0 = r = 1 ands > 0,
source. The mechanism of excitation of these fluctuaand for r > 1,1(r) = 0. The second momentb(r)
tions is associated with the fact that the Coriolis forcein scalesl, = r < 1 is given by ® = r~9(A3rl>2l +
concentrates the particles either at boundaries of turbulent,r ~122) — 1,-379/c_ [for 1/33 < o < min(oy,1/9)],
eddies or at their centers; i.e., it causes formation ofind ® = Asr~“ cogb, In r + ¢5) — Iyr’"/cy [for
small-scale inhomogeneities in partlcle distribution. Thismax1/33,01) < o < mln(0'2, 1/9)], where c. =
effect acts in a wide range of scales of turbulent motions23,,[(3 — ¢ + a)> * bz] o1, are the roots of the
Scale-dependent turbulent diffusion causes relaxation afquationM = 0, and 8,, = (1 + go)/3(1 + o). The
clusters of particles. Since in small scales the turbulenterm «*~¢ in these equations corresponds to a normal
diffusion is weak, the fluctuations of particle numberscaling for the second moment of particle concentration,
density are localized in small scales. The scale of localwhereas the termcr~*2I corresponds to the anomalous
ization of fluctuations is given by, ~ I, exp(wk/b,),  scaling. When ma{/33,01) < o < min(o», 1/9) the
wherel, ~ Re '/G3-7) s the viscous dissipation scale of anomalous scaling in the randg < r < 1 is complex
a fluid flow. It was found in [2] that the growth rate of ~ (ccr—@=il2l),
the s-order correlation function of particle number density Note that Egs. (7)—(9) in the cage= 2 describe also
is given byy, « s?vy, for s > 1 (wherey, = y is the formation of particle clusters on the surface of water (e.g.,
growth rate of the second-order correlation function).scum on the sea surface). In this case the horizontal
This implies that whery > 0 (i.e., fluctuations of particle motions of the surface of water are compressible, i.e.,
number density are excited), higher moments grow faste¥ - v, = —dvz/dZ, wherevy is the vertical component
than lower moments, i.ey; > y,—; and vy, > sy,/2. of water velocity in the vicinity of the surface. The degree
This results in intermittency, i.e., the appearance of sharpf compressibility is determined by the surface waves.
peaks in which the main part of the field intensity is Large-scale effects=Now we consider the large-scale
concentrated. dynamics of particles in a fast rotating turbulent fluid flow.
Anomalous scalings for a passive scalar advected by &he equation for the mean field = (n,,) reads
turbulent fluid flow are a subject of active research in re-
cent years. For an _incompressible_turbulent velocity field ON/dt + V - [NVt — DV,,N] =0
the anomalous scalings for scalar field can occur only be-
ginning with a fourth-order correlation function (see, e.g.,
[8]). Here we have shown that the anomalous scalings arﬁsee [1]), whereD =D, Ver =V — (rbu), and
pear already in the second moment of the number density — (@) iS the mean velocity. Usmg the expression
of inertial particles due to the effects of rotation and inertia.[0f » We calculate the effective velocityVerr); =

2 —
Now we consider the case when there is no self-excitatioff/ T @i@ij/(1 + %), where a;; = (7u;(V X v);).
of the fluctuations of the number density of particleis,cons'd_er the f(_)lloyvmg model of three-dimensional turbu-
lent fluid velocity field:

<Tvm(x)vn(y)> = DJ_[Fa(p»R) ((Smn - )‘m/\n) + ch/z(amn — Ay — pmpn/pz) + M(p’R)Smnkpk]
+ Dyn(p, R)Au Ay, (10)

where g,,.x is the LeV| Civita tensor,r =y — x = | particles has a component in the direction of the rotation
p t (rmAn)A, D = v210, A is the unit vector in the d|- axis. The latter can result in the large-scale instability
rection ofQ, R = (y + x)/2,andF), = dF,/dp. When and formation of large-scale inhomogeneities in particle
Dy = 0andu = 0, Eq. (10) recovers a well-known equa- spatial distribution.

tion for two-dimensional incompressible turbulent flow. The mechanism for the appearance of an additional
WhenD # 0 andu # 0, Eq. (10) describes nearly two- mean turbulent flux of particles along the rotation axis
dimensional homogeneous and isotropic helical turbulencs as follows. The Coriolis force concentrates particles
with slow vertical (along(2) mot|ons ?g fluid(v, > vz) at the centers of eddies when they rotate in the direction

Now we calculate a;; = a,/ (w: a;;’, where a,j = which is opposite to the vector of main rotatiéd, i.e.,
(tv;{(V X v);) = apd;j, and «;;" =(rU;(V X v);) =  for those eddies where the vorticiy X v and Q are
aolw?Pij(®) — &ijpw,]/2(1 + w?), where ag= —(7v - antiparallel. On the other hand, the eddies which rotate

(V X v))/3 is the a effect (see, e.g., [9]). Here we use with  do not contain particles because the Coriolis force
Eqg. (10) and the equation fdf(k) which is rewritten in  carries out particles to the boundaries of the eddies. The
r space. The derived formula far;; yields the effective particles containing eddies which move in the direction
velocity of particlesVes = V + agw/(1 + w?). This  opposite toQ (i.e., along the vorticityV X v) have the
formula implies that the large-scale turbulent flux of positive helicity, while the eddies which move alogy
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have the negative helicity. When the mean helicity ismogeneities of particle distribution. The typical parame-
zero, the numbers of eddies with positive and negativéers of the protosolar nebula aig~ 10" cm, uy ~ 4 X
helicities are the same, and the additional mean turbulert)® cm/s, andQ) ~ 4 X 1077 s~!, the Reynolds number
flux of particles vanishes. When the mean helicity isRe ~ 10'°. A value w = 2Q7, = 0.2 corresponds to
negative (i.e., thea effect is positive) the number of a. ~ 10 cm, the Stokes time in accretion protoplanetary
eddies with negative helicity (which move in the directiondisks 7, = a. because the mean free path of molecules
of Q) is larger than that with positive helicity. This the protosolar nebula is much larger than the size of
results in the appearance of an additional mean turbulemarticles. Particles of the size. ~ 10-20 cm can be
flux of particles along the rotation axis. On the otheraccumulated in planetesimals. The characteristic size of
hand, when the mean helicity is positive (i.e., theffect  planetesimals for the first mod& = 1) is /; ~ 10* cm
is negative) the number of eddies with positive helicityand for the second modé = 2) is [, ~ 10° cm. There
(which move in the direction opposite 1) is larger is also a possibility for the change of a settling velocity
than that with negative helicity. This causes an additionatiue to the large-scale effective velocity. For the protoso-
mean turbulent flux of particles in the direction which is lar nebula the effective velocity 8. ~ 2 X 10° cm/s.
opposite to the rotation ax®. Thus, the nonzero mean  An additional application of these effects is the in-
helicity breaks a symmetry between particle containingdustrial rotating turbulent flows, e.g., the cyclone dust
eddies which move in the direction d2 and in the collectors (see, e.g., [11]). The typical flow parame-
opposite direction. ters in the cyclone dust collectors aig~ 10 cm and
Applications—The analyzed effects of formation of 0 ~ 50-75s™!, the Reynolds number Re 3 X 10°.
small-scale and large-scale inhomogeneities of particleSherefore particles with the size. ~ 10-25 wm can be
distribution in fast rotating turbulent fluid flow are im- accumulated in small-scale clusters of about 2 cm during
portant in atmospheric turbulence (e.g., dynamics of para time interval of order of 10 sec. The latter can explain
ticles and hydrometeors in the atmospheric tornadoes arsbme peculiarities observed in the cyclone dust collectors
dust storms), in astrophysical turbulence (e.g., formatiorfsee, e.g., [11]).
of planetesimals in accretion protoplanetary disks), and in We are indebted to A. Brandenburg for stimulating
industrial turbulent rotating flows (e.g., cyclone dust col-discussions. This work was partially supported by The
lectors and vortex chambers). Indeed, characteristic paserman-Israeli Foundation for Scientific Research (Grant
rameters in the atmospheric tornado &e~ (3-10) X No. 1-008-303.06/95) and the Israel Ministry of Science
10° cm, uy ~ 30-100 cm/s, andQ ~ 1 s~! (see, e.g., (Grant No. 8429-1-96).
[10]). The condition(2Q+/33)"! < 7, < (6Q)~! im-
plies that the particles of the size ~ 90-170 um can
be accumulated in the small-scale clusters. The typi-
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