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Strong modification of turbulent transport in fluid flows with chemical reactions or heterogene
phase transitions is analyzed. It is shown that turbulent diffusion may be strongly depleted in chemi
reacting flows or in flows with phase transitions. In addition, the existence of nondiffusive h
and mass fluxes of the components in the systems with chemical reactions or heterogeneous
transitions is demonstrated. These fluxes can be interpreted as “turbulent” analogs of the kn
cross-effects in irreversible thermodynamics. The mechanism of turbulent cross-effects is compl
different and is associated with turbulent transport in reacting flows. The analyzed effects may res
the excitation of a large-scale instability which causes formation of large-scale inhomogeneities in
spatial distributions of temperatures and number densities of admixtures. [S0031-9007(97)04944
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The problem of turbulent transport in flows with chemi
cal reactions (or phase transitions, e.g., evaporation
condensation) is of fundamental importance in view o
various applications (e.g., physics of turbulent atmo
spheres of the Earth and planets, environmental physi
turbulent combustion). In recent years transport of pa
sive scalar by turbulent fluid flow has been a subject
an active research. The nature of the intermittency a
anomalous scalings [1,2], and the mechanisms of fo
mation of inhomogeneous structures of scalar fields
turbulent fluid flows [3,4] were elucidated recently. In
particular, the inhomogeneous structures in scalar fie
(e.g., the number density of inertial particles or gase
are formed due to the effects of turbulent barodiffusio
and turbulent thermal diffusion which cause additiona
turbulent nondiffusive fluxes of particles [3,4]. At large
Reynolds and Peclet numbers these turbulent fluxes
much larger than the molecular fluxes. Inertial particle
and gases are concentrated in the vicinity of the minimu
of the mean temperature of the surrounding fluid.

However, turbulent transport in chemically reactin
flows and flows with heterogeneous phase transitio
remains poorly understood. In this Letter we sho
that turbulent diffusion can be strongly depleted b
chemical reactions or phase transitions. We have fou
that there exist additional turbulent fluxes of numbe
density of particles (effect of turbulent mutual diffusion
of admixtures) and additional turbulent heat flux which i
proportional to the gradient of number density of particle
in flows with chemical reactions or phase transition
Cross-effects (e.g., heat flux caused by concentrati
gradient, Dufour effect) are well known in irreversible
thermodynamics (see, e.g., [5]). Many of them wer
discovered more than 100 years ago. In this Letter w
show that similar effects can occur also in turbulen
reactive flows. Certainly the mechanism of “turbulent
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cross-effects is completely different and is associated w
turbulent transport in reacting flows.

Consider a mixture of reacting gases or droplets a
vected by a turbulent fluid flow. Reactions comprise eth
chemical reactions or heterogeneous phase transitions
the first kind (e.g., evaporation or condensation). It
assumed that densities of gaseous admixtures and sp
density of dropletssri ; nimid are much smaller than
the fluid densityrf , and that turbulent fluid flow is not
affected by chemical reactions or phase transitions. H
mi and ni are the mass and number density of drople
respectively. Temperatures of the fluid and gaseous
mixtures (or droplets) are assumed to be the same. T
number densitynist, rd of admixtures and the temperatur
field Tfst, rd are determined by equations

≠niy≠t 1 = ? snivid ­ aiIsn, Tfd 1 = ? ski=nid , (1)

≠Tfy≠t 1 sv ? =dTf 1 sg 2 1dTfs= ? vd

­ bIsn, Tfd 1 = ? skf=Tfd , (2)

where Tf is the fluid temperature, functionaiIsn, Tfd
is the source of gaseous admixtures (or droplets),n ­
sn1, n2, . . . , nkd are the number densities of admixtures,ai

are the stoichiometric coefficients with appropriate sig
for chemical reactions (ora ­ 21 in the equation for
evaporating droplets number density, anda is a number
of molecules in a droplet in the equation for vapor numb
density), b ­ DEyrfcp, DE is the energy release (or
absorption) in an elementary act (e.g., an amount
heat required for an evaporation of a droplet, or ener
released or absorbed during a chemical reaction),cp

is the specific heat of fluid at constant pressurePf ­
rfkBTfymm, mm is the mass of molecules of the fluid
kB is Boltzmann constant,vi is a random velocity field of
admixtures which they acquire in turbulent fluid velocit
field v , ki is the coefficient of molecular diffusion of
© 1997 The American Physical Society 69
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admixtures,kf is the coefficient of molecular therma
conductivity,bIsn, Tfd is the rate of energy release, an
g is the specific heats ratio. We consider a low-Mac
number compressible turbulent fluid flow. The velocityv
of the fluid satisfies the continuity equation

≠rfy≠t 1 = ? srfvd ­ 0 . (3)

The velocity of gaseous admixture equals the fluid v
locity, whereas the velocity of particles (droplets)vi is
determined from the equation of motion for a particle
dviydt ­ sv 2 vidyti 1 f, whereti is the characteris-
tic time of momentum coupling between the particle an
surrounding fluid (Stokes time),f ­ Fymi, andF is the
external force. The fluid velocityv is determined by
Navier-Stokes equation. Equations (2) and (3) yield

≠Tfy≠t 1 sv ? =dTf ­ bIsn, Tfd 1 kfDTf , (4)

where we change notationsg21b ! b (see, e.g., [6]).
Consider homogeneous equilibrium withI ­ 0. This

equilibrium can exist in a turbulent medium when Pe­
u0l0ykf ¿ 1, wherel0 is the maximum scale of turbulent
fluid motions, u0 is the characteristic turbulent fluid
velocity in the scalel0. In this case in the equilibrium
= ? v ø 0, because for low Mach numbers andI ­
0 the fluid velocity divergence= ? v ~ Pe21DTfyTf

(see, e.g., [6]). Now we study deviation from thi
equilibrium. Linearizing Eqs. (1) and (4) in the vicinity
of the equilibrium we obtain a system of equations fo
small perturbations

≠aay≠t 1 sva
b ? =dab ­ Pa

b ab 1 ka
b Dab 1 Ga , (5)

where the notationCa
b ab assumes summation overb,

Pa
b ­ has≠Iy≠abd, andva

b ­ vb, if a ­ b andva
b ­ 0

if a fi b; similarly k
a
b ­ kb , if a ­ b, k

a
b ­ 0, if

a fi b,

aa ­

√
nh jj

Tf

!
, Ga ­

√
Gh jj

0

!
, vb ­

√
vh jj

v

!
,

kb ­

√
kh jj

kf

!
, ha ­

√
ah jj

b

!
,

the notation ch jj is the column of the elements

c1, c2, . . . , ck, Gi ­ 2n
s0d
i bi , bi ­ = ? v

s1d
i , v

s1d
i are

the perturbations of velocity, andvi is the velocity at the
equilibrium.

We study the large-scale dynamics and average Eq.
over an ensemble of random velocity fluctuations. F
this purpose we use the method of path integrals (s
e.g., [2–4,7,8]). The solution of Eq. (5) with an initia
condition att ­ t0 is given by a modified Feynman-Kac
formula,

aast, xd ­ MhGa
b st, t0d abft0, ĵst, t0dgj

1 M

(Z t

t0

Ga
b st, t0d Jbft0, ĵst, t0dg dt0

)
,

whereĵ ; $ja
b are Wiener paths,
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or
ee,
l

$ja
b st, t0d ­ xda

b 2
Z t2t0

0
va

b fts, ĵst, tsdg ds

1 s2ka
b d1y2wst 2 t0d ,

d
a
b ­ 1, if a ­ b, andd

a
b ­ 0, if a fi b, ts ­ t 2 s,

and Mh?j denotes the mathematical expectation ov
the Wiener paths. FunctionGa

b is determined by the
equation dGa

b ydt ­ Pa
g G

g
b with the initial condition

Ga
b st ­ t0, t0d ­ d

a
b . The solution of this equation is

given by Ga
b ­ d

a
b 2 tchexpf2st 2 t0dytcg 2 1jPa

b ,
where tc ­ 2l21 is the relaxation time related with
chemical processes (or phase transitions),l is the
eigenvalue of the equations:Pa

b Wb ­ lW a and
WaPa

b ­ lWb. Here the eigenvectorsWa and Wb

satisfy the identitiesPa
b ­ 2WaWb andWaWa ­ 2l.

Thereforel ; Pa
a ­ 2

Pk
j­1 t̃

21
j is the trace of the ten-

sorPa
b andPa

g P
g
b ­ lPa

b . Heret̃
21
j ­ 2ajs≠Iy≠njd 2

bs≠Iy≠T d.
The use of the technique of path integrals (see, e.g., [

allows one to derive equations for the mean fieldsAa

≠Aay≠t 1 $= ? sUa
b Abd ­ $= ? sB̂a

b
$=Abd

1 Pa
b Ab 2 $= ? Ja , (6)

where Aa ­ kaal, Ua
b ­ Va

b 1 sPa
g V

g
b , B̂a

b ­ sda
g 1

xPa
g dD̂g

b 1 k
a
b d̂, Ja ­ ktua

bGbl, d̂ ­ dmn, D̂a
b ­

ktsua
g dmsug

bdnl, s ­ tch1 1 tpfexps22ytpd 2 1gy2j, x ­
tcf1 2 tp 2 t2

p lnstp 1 Re2s
p dg, s ­ sq 2 1dys3 2 qd,

tp ­ tcyt0, t0 ­ l0yu0, Rep ­ minhRe, Peij, Re ­
l0u0yn is the Reynolds number,n is the kinematic
viscosity, Pei ­ l0u0yki are the Peclet numbers,vi ­
Vi 1 ui , Vi ­ kvil are the mean particles veloci
ties, ui are the fluctuations of the particles velocity
Va

b ­ kva
b l, va

b ­ Va
b 1 ua

b , and t is the momentum
relaxation time of random velocity fieldui , which de-
pends on scale of turbulent motion. We use here t
dependencetskd ­ t0skyk0d12p, where k is the wave
number,k0 ­ l21

0 , p is the exponent of the spectrum o
the kinetic turbulent energy of fluid, andq ­ 2p 2 1.
We use here for simplicity ad correlated in time random
process to describe a turbulent velocity field. Howeve
the results remain valid also for the velocity field wit
a finite correlation time, if the mean number density
particles varies slowly in comparison with the correlatio
time of the turbulent flow. For simplicity here we
consider the casekbil ­ 0. Notably, Eq. (6) shows that
an effective mean velocitysUa

b d of gaseous admixtures
does not coincide with a mean fluid velocitysVa

b d due to
chemical reactions or phase transitions.

The equation for the mean temperature reads

≠Ty≠t ­ = ?

√
B=T 1

nX
k­1

S̃k=Nk

!
1 b

nX
k­1

s≠Iy≠Nkd0Nk 1 bs≠Iy≠T d0T , (7)
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B ­ kT f1 1 xbs≠Iy≠T d0g 1 kf (8)
[see Eq. (6)], whereT ­ kTf l is the mean tempera-
ture, partial derivativess≠Iy≠Nd0 and s≠Iy≠T d0 are cal-
culated at the equilibrium,̃Sk ­ xbs≠Iy≠Nkd0Dk, and
kT ­ l0u0y3 is the turbulent thermal conductivity. For
simplicity, hereafter we consider the case of a zero me
velocity V ­ 0. The term which is proportional to=Nk

in Eq. (7) can be interpreted as a turbulent analog of t
effect of Dufour [5]; i.e., it describes turbulent transport o
heat due to the number density gradient of chemically r
acting admixtures. The second term in Eq. (8) describ
an effect of chemical reactions (or phase transitions)
the turbulent heat flux. Whenbs≠Iy≠T d0 , 0 the chemi-
cal reactions result in a reduction of the turbulent therm
conductivity.

Now we calculate the fluxJa . We use an equation
ktuibil ø ktubl 1 stiy

2
T yTpd ktuDul [3], where y

2
T ­

kBT0ymm, T0 is the temperature at the equilibrium,Tf ­
T 1 u, u are fluctuations of temperature, andu are
fluctuations of velocity of the surrounding fluid. This
equation follows from a solution of the equation o
motion for particles withrp ¿ rf and small Stokes
time, i.e., vi ­ v 2 tisdvydtd 1 Ost2

i d (see, e.g., [9]),
where rp is the material density of particles. Here we
use the equation of state and Navier-Stokes equation
fluid, and an equation for turbulent thermal fluxkuul ­
2sB 2 kf d=T 2

Pn
k­1 S̃k=Nk which is determined from

Eqs. (4) and (7). This yields the fluxJa and therefore
Eq. (6) for a mean number density of the particlesNi is
given by

≠Niy≠t ­ = ?

√
Bi=Ni 1

nX
k­1,kfii

Sk=Nk 1 Wi=T

!

1 ai

nX
k­1

s≠Iy≠Nkd0Nk 1 ais≠Iy≠T d0T , (9)

Bi ­ Dif1 1 s≠Iy≠Nid0zig 1 ki , (10)
where Sk ­ Dis≠Iy≠Nkd0z̃i , Wi ­ kT fsji 1 hidyT0 1

s≠Iy≠T d0zig, hi ­ 0 for gaseous admixtures,hi ­
s3N

s0d
i yPed smiymmd ln Rep for particles [3], N

s0d
i is

the mean number density at the equilibrium,ji ­
N

s0d
i DiykT , z̃i ­ xsaiDkyDi 1 bhiyT0d, and zi ­

z̃isk ­ id. The first term in Eq. (9) describes turbulen
diffusion, and the third term determines turbulent therm
diffusion. These processes are modified by chemical
actions (or phase transitions). The second term in Eq.
corresponds to a mutual turbulent diffusion of admixture
caused by chemical reactions (or phase transitions)
turbulent fluid flow.

Note that whenais≠Iy≠Nid0 , 0 the chemical equilib-
rium is stable. For gaseshi ­ 0. Thus it is seen from
Eq. (10) that the “effective” diffusion coefficientBi can
be much less than the coefficient of turbulent diffusio
Di when js≠Iy≠Nid0zij ! 1. This implies that chemi-
cal reactions (or phase transitions) can result in a stro
depletion of turbulent diffusion. Consider for simplic-
an
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ity a reactionA ! C when the inverse reactionC ! A
does not occur. The derivation of the equation for th
mean fields by method of path integrals shows that wh
t ¿ tc the turbulent diffusion coefficient is given by
Bi , tcku2l [see Eq. (10)]. Heretc is the characteris-
tic chemical time,t is the correlation time of the velocity
field. This expression for the turbulent diffusion coeffi
cient can be obtained by simple estimation. Indeed,
average linearized Eq. (1) over the ensemble of the tur
lent velocity fluctuations and subtract the obtained av
aged equation from Eq. (1). This yields an equation f
the turbulent componentQ of the number density of the
reagentA

≠Qy≠t 2 DDQ ­ 2su ? =dN 2 R 2 Qytc ,

wherenp ­ N 1 Q, R ­ su ? =dQ 2 ksu ? =dQl. For
simplicity we consider here the case= ? u ­ 0. The
magnitude of≠Qy≠t 2 DDQ 1 R in inertial range can
be estimated asQyt. Thus the turbulent fieldQ is of the
order ofQ , 2teffsu ? $=dN , wheret

21
eff ­ t21 1 t21

c .
Now we calculate the turbulent flux of reagentA: JT ­
kuQl , 2teffkuujl=jN. Sincet ¿ tc we obtain that
teff , tc. Therefore the turbulent diffusion coefficien
is given byBi , tcku2l. Without chemical reaction the
turbulent diffusion coefficient is given byB0 , tku2l.
This means thatBi ø B0; i.e., the turbulent diffusion
coefficient is strongly reduced due to chemical reaction
The above estimation shows that depletion of turbule
diffusion cannot be described simply as an additive si
term in the equation for the mean number density.

The physics of this phenomenon is as follows. Durin
transport of admixtureA by a turbulent fluid flow the
number density of the admixtureA decreases due to the
chemical reactionA ! C with a very short timetc ø t0.
Thus turbulent diffusion does not contribute to the ma
flux of a reagentA. The turbulent mixing is effective
only for the product of reactionC. The situation becomes
more complicated for a multicomponent chemical reacti
with the inverse reaction. The effect of depletion of th
turbulent diffusion is similar to that for the reactionA !

C. The total chemical relaxation timetc is determined by
an equationt21

c ­
Pk

j­1 t̃
21
j , wheret̃j is the relaxation

time of the j component. The components with th
time ti ¿ tc have the turbulent diffusion coefficien
,B0, whereas turbulent diffusion coefficients for th
components withti , tc are strongly reduced.

Now we discuss the mechanism of the mutual turbule
diffusion of admixtures. Note that the mutual molecula
diffusion of admixtures is caused by interaction betwee
gaseous admixtures due to collisions of molecules of
gaseous admixtures. In turbulent flow with chemical r
actions inhomogeneities of the number density of one
the reagents causes fast change (on the chemical reac
time scaletc) of the number density of other componen
due to the shift from the chemical equilibrium. Similarly
71
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the inhomogeneities of the number density of the admi
ture cause heat release (or absorption) due to the therm
effects of the chemical reactions, i.e., additional nondiffu
sive turbulent heat fluxes. These fluxes can be interpret
as turbulent analogs of the known cross-effects in irr
versible thermodynamics.

Now we show that the equilibrium state is unstable wit
respect to large-scale perturbations (in scales are mu
larger than the maximum scale of turbulent motions). Th
mechanism of the instability is as follows. Large-scal
temperature perturbations of the mean temperature (e
mean temperature reduction in some region) result in a
cumulation of droplets in the regions with temperatur
minimum due to the effect of turbulent thermal diffu-
sion. Evaporation of droplets causes further temperatu
decrease in this region. The latter results in the increa
of the droplets number density and temperature reductio
Therefore the instability is excited. This simple mecha
nism is complicated by the effect of chemical reaction
on turbulent transport: reduction of turbulent diffusion an
turbulent analogs of cross-effects. Large-scale perturb
tions of the temperatureT and the number density of ad-
mixturesNi result in the appearance of the additional flow
with = ? v s1d fi 0. It is conceivable to suggest that releas
(or absorption) of energy during exothermic (or endothe
mic) chemical reactions in the vicinity of the large-scal
inhomogeneities increases, and the temperature of s
rounding fluid increases (or decreases). Therefore t
large-scale perturbations of the temperature and the nu
ber density of admixtures can grow, and under certa
conditions the large-scale instability can be excited. Th
instability causes formation of large-scale inhomogeneiti
of the temperature and number density of droplets a
gaseous admixtures.

Now we study this instability which is described by
Eqs. (7) and (9). Consider an example of phase tran
tion, e.g., the evaporation of droplets. In the case of th
evaporation of dropletsh ¿ j. The source functionI
for the phase transition is given byI ­ fsTdN0 2 Ip, and
a ­ 21, whereIp is the external source of the droplets
and functionfsT d is determined by the evaporation time
of the droplets. The growth rate of the large-scale pertu
bations of the temperature and droplets number density
given by ge ­ sbphpL 2 1dk2DT , where hp ­ hyN0,
N0 is the droplets number density at the equilibrium,L ­
s≠Iy≠Nd0tc, bp ­ 2bN0yT0 ­ mQrdysg2ET rfd, the
droplets spatial densityrd ­ mdN0, md is the mass of
a droplet,Q is the latent heat of evaporation per one mol
of water, ET is the thermal energy per mole, andm is
72
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the molecular weight of the surrounding fluid. For ex
ample, whenrd , 1021 gym3, T , 300 K, and Re ,
105 we find that the minimum size of droplets for which
the instability is excited must be larger than20 mm. This
instability is completely different from that studied in
[3,4] since it is accompanied by the change of the tem
perature distribution. In addition, this instability strongly
depends on the latent heatQ of the phase transition, and
it can be excited even for homogeneous distribution
the equilibrium mean temperature of fluid. On the othe
hand, the instability studied in [3,4] is not excited whe
fluid temperature is homogeneous.

The similar instability can exist in chemically reacting
flows. However, the mechanism of the instability is
complicated by the additional factors, e.g., photochemic
and electrochemical processes. These effects are
subject of an ongoing study.

In summary, coupling between chemical reactions (o
phase transitions) and turbulent transport yields a numb
of new effects: depletion of turbulent diffusion and
turbulent analogs of cross-effects known in irreversib
thermodynamics. The discovered effects have a stro
influence on the dynamics of turbulent mixing.
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