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Turbulent Thermal Diffusion of Small Inertial Particles
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A new physical effect, turbulent thermal diffusion, is discussed. This phenomenon is related to
the dynamics of small inertial particles in incompressible turbulent fluid flow. At large Reynolds and
Peclet numbers the turbulent thermal diffusion is much stronger than the molecular thermal diffusion.
It is shown that inertia of particles under certain conditions can cause a large-scale instability of spatial
distribution of particles. Inertial particles are concentrated in the vicinity of the minimum (or maximum)
of the mean temperature of the surrounding fluid depending on the ratio of material particle density to
that of the surrounding fluid.

PACS numbers: 47.27.Qb, 05.60.+w, 47.55.Kf

The main purpose of this Letter is to discuss a newconsider the case of large Reynolds and Peclet numbers.
physical effect, i.e., the turbulent thermal diffusion. TheThe velocity of particlesv, depends on the velocity of
phenomenon of molecular thermal diffusion in gases washe surrounding fluid, and it can be determined from the
predicted by Enskog and confirmed experimentally byequation of motion for a particle. This equation represents
Chapman and Dootson long ago [1] (see also [2]). The balance of particle inertia with the fluid drag force
equation for the number density, of particles taking produced by the motion of the particle relative to the
into account this effect reads:,, /ar = —V.- Ju, where  surrounding fluid. Solution of the equation of motion for

the flux of particles]Jy is given byJy = —D[Vn, + small particles withp, > p yields [6]

kﬁTf/Tf]. The first term in the formula for the flux of _ Y _ [a_V T (v-V } I 2 2
particles describes molecular diffusion, while the second vp = v, Y(0) = 7, at (v Vv 0(7,). ()
term accounts for the flux of particles caused by the

.= e wherev is the velocity of the surrounding fluid¥ (¢) is
temperature gradier¥7, (molecular thermal diffusion). . . . R
HereD is the coefficient of molecular diffusiort, = the position of the particler, is the characteristic time

. e . o . of coupling between the particle and surrounding fluid
IS th_e_thermal dn‘fusu_)n ratio, andy = Dk, is the (Stokes time),p, is the material density of particles,
coefficient of thermal diffusion.

L . ., ._and p is the density of the fluid. For instance, for
When the velocity field of a surrounding fluid is spherical particles of radiug. the Stokes time is, =

nonzero and turbulent, the nature of diffusion drastically . : P .
’ 6ma.pv, wherev is the kinematic viscosity of the
changes at large Reynolds and Peclet numbers. It Wm”/ TPy " y

d trated by Tavlor that turbul Its i h Burrounding fluid anah, is the particle mass. The second
demonstrated by Taylor that turbulence results in a sharpy ., i (2) describes the difference between the local fluid
increase of the effective diffusion coefficient [3]. Detailed

. ; . velocity and particle velocity arising due to the small but
discussion of turbulent transport can be found in [4]'finite ir¥ertia OF; the particle y 9

Recently it was shown tha_t the contribution of molecular In this study we consider incompressible turbulent flow
thermal diffusion in gases into the total mass transfer rat% v =0. However, the velocity field of particles is

can be significant even in a turbulent flow [5]. ) X

In this Letter it is shown that in a turbulent fluid flow @Ssumed to be compressible, i.€.; v, # 0. Indeed,
with a nonzero mean temperature gradient there appeard: (2) for the velocity of particles and Navier-Stokes
an additional mean flux of particles in the direction €quation for the fluid yieldV - v, = —7,V - dv/dt =
opposite to that of the mean temperature gradient. For,V - VP/p. We study the large-scale dynamics of small
large Reynolds and Peclet numbers the turbulent therméahertial particles and average Eq. (1) over an ensemble of
diffusion is much stronger than the molecular thermalrandom velocity fluctuations. For this purpose we use the
diffusion. Evolution of the number density,(r,r) of  stochastic calculus which has been previously employed in

small particles in a turbulent flow is determined by magnetohydrodynamics [7,8] and in the problems of pas-
an . . sive scalar transport in incompressible [7,9] and compress-
a—t” + V- (n,v,) =—V-Ju, (1) ible[10] turbulentflows. The main object of the stochastic

calculus is a Wiener random process defined by the proper-
where v, is a random velocity field of the particles tiesM{w} = 0 andM{w;w;} = t8;;, whereM{-} denotes
which they acquire in a turbulent fluid velocity field. We the mathematical expectation over the Wiener paths.
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Within the stochastic calculus the solution of Eq. (1) is Ty vz Ap %,; >
reduced to the analysis of the evolution of the concentra- o= T | ATy R Ty (_> - VT
tion field n, (7, r) along the Wiener patl'é: v, I
. 110 . ~ £ Tf}, (5)
§(t 1) = x — ]0 vplts, £(t,15)] ds p '

+ 2D)" w(t — 1), (3) Where vi = kT./m,, m, is the mass of molecules of
surrounding fluid, andl’s(z,r) is the temperature field
wherer, = r — 5. Equation (3) describes a set of ran-with a characteristic valug,. Then we use Eq. (5)
dom trajectories which pass through the poinat time to calculate (rub) =~ (TuA@®) = (Tpv%/T*)<TﬁA®>,
t. Becausew(s) is a Wiener process, the initial co- where ® are fluctuations of temperature. We neglect
ordinates of every trajectory are random. It can be the second moments-(ip), since the mean turbulent
proved (see [7,10]) that the solution of Eq. (1) with flux of mass of the surrounding fluid vanishes in a
the initial conditionn,(r = fy,x) = no(x) is given by finite domain surrounded by solid boundaries. Here
n,(t,x) = M{G(t, to)no[g(t, 10)]}, where the Green func- # and are fluctuations of the density and velocity
tion is G(1, o) = exg— f; b*(a,g(t, o)) do] andb, = of the fluu_:i. On the cher hand, the mean turbulent
> 0 heat flux is nonzero in the presence of an external
fnean temperature gradieMT # 0 (see below). To
btain an equation fofrub), we take into account that
he fluctuating component of the particle velocity
can be expressed in terms of the turbulent velocity of

V - v,. Hereafter we neglect small molecular thermal dif-
fusion (see below). It can be taken into account in mea
velocity of particles. The use of the technique describe
in [7,10] allows us to derive equations for the mean field

N =) aN fluid @: uw=1a — 7,di/dr [see Eq. (2)]. Note that
— + V- [NVegs — DV,,N] =0, (4 V-u#0, whereasV - i = 0. Therefore the veloc-
ot ity Ve is given by Ve =V — (Tpv%/T*)<TﬁA®>,

where D =D,, = D8,, + (tu,u,), Vet =V —  where we neglect terms-O(r;). The latter formula

(rbu), andv, = V + u, V = (v,) is the mean velocity, shows thatV.s depends on the mean turbulent heat flux
u is the random component of the velocity of particles,(i®) that is determined by the well-known equation
b=V -u, and 7 is the momentum relaxation time (W(x)®(x)) = —x7VT (see, e.g., [4]), where the total
of random velocity fieldu, which depends on scale of temperature igy = T + O, T = (Ty) is the mean tem-
turbulent motion. We use here for simplicity th&  perature fieldyr ~ uolo/3 is the coefficient of turbulent
correlated in time random process to describe a turbulerithermal conductivity. Note that herein we do not con-
velocity field. However, the results remain valid also sider the situation with very high gradients when gradient
for the velocity field with a finite correlation time, if the transport assumption is violated. The above formula for
mean number density of the particles varies slowly inthe mean turbulent heat flux is written mspace. The
comparison with the correlation time of the turbulent flow corresponding second moment ki space is given by
(see, e.g., [11]). Equation (4) was derived forBel. It  (in(k)O(—k)) = —7(k) (@, (k)it,(—k))dT/dR,, where
can be shown that for P& 1 and arbitrary velocity field R is a large-scale variable and a spectrum of the turbulent
the equation for the mean field coincides with Eq. (4).velocity field and correlation time(k) can be chosen as
Now we derive an equation foN?. Multiplication of ~ Kolmogorov's spectrum:

Eq. (4) bylj and simple manipulations yield . ) < (2) >< k >—5/3 <5 kmk”>
> > UnpUUpy) = 7\ 5 5 " mn — " 15 |»
N L 8) = =NV - V) — I, 3ko \87k2 ) \ ko k2
ot -2/3
where S, = N2(Vest)w — DupV,N> and Ip = T(k) = 270(](_0) ’

2D,,,p(%mN) (%N). The latter equation implies that 3/
if V- Ve <0, a perturbation of the equilibrium dis- Where ko < k < kRe’" (see, e.g, [4]), Re=
tribution of inertial particles can grow in time, ie., MK{RePe}, Re= lpuo/v is the Reynolds number,
(a/a1) [ N2d®r > 0. However, the total number of Pe& = louo/x is the thermal Peclet numbels, = ko ' is
particles is conserved. Therefore the growth mf  the maximum scale of turbulent motionsg, is the char-
when V - V. < 0 is accompanied by formation of an acteristic velocity in this sc'al.e, angd is theT coefficient o_f
inhomogeneous spatial distribution of the inertial particlegnolecular thermal COI’]dl;CtIVIty. Multiplying the equation
whereby regions with an increased concentration of0F (#»(k)®(—k)) by —kr(k) and integrating irk space
particles coexist with regions depleted from particles. ~ We obtain (ri,,A®) = aIn(Re.)VT, where a = 2/3.
Now we calculate the velocity.. Using the equation Finally we arrive at the following equation for velocity:
of state P = «Typ/m, we obtain the expression for

b*EV'Vp:

2
aT,vT

Ve =V — In(Rek)%T.

*k
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Equation (4) with this effective velocit.; can be particles. Indeed, an increase (decrease) of the pressure of
rewritten in the form the surrounding fluid is accompanied by an accumulation
ON R (outflow) of the particles. Therefore the direction of mean
AV -NV) = =V T + T, (6) flux of particles coincides with that of heat flux, i.e.,
91t (an) = (@O®) « —VT. Therefore the mean flux of the
where inertial particles is directed to the minimum of the mean
o - ) temperature and the inertial particles are accumulated
Jr = _DT[_T VT + VN}, (7) in this region. This effect is more pronounced when
turbulent fluid flow is inhomogeneous in the direction of
3a the mean temperature gradient.
kr = N — <—> <T* )In Re., (8) Let us study this effect in more detail. Evolution of the
mean fieldN is determined by Eq. (6). Substitution
where Dy = ugly/3 is the coefficient of turbulent diffu-
sion, kr can be interpreted as turbulent thermal diffusion NG x) = N-Wo(Z) explyor)

ratio, andDrkr is the coefficient of turbulent thermal dif- 1 i K

fusion. We use here an identity xexp == | xo(Z)dZ + ik - xo | + No(r)
T,,v% _ L m,, reduces Eg. (6) to the eigenvalue problem for the
louy  Pe Schrédinger equation

and Pe= uyly/D. is the Peclet number and the molec- L Vi(Z) + [Wo — Ug(2)]Wo(2) = 0, 9)
mo

ular diffusion coefficientD. = kT./6ma.pv. Note that
for Re. > 1 and Pe>> 1 both turbulent diffusion coeffi-

B ,_ L
cients are much larger than the corresponding molecul vyhereWo Yo, A' = dA/dZ, and the potentiallo is

coefficients (i.e.Dy > D andDrkr > Dk,). ven by
Now we will show that turbulent thermal diffusion re- Uy = 1 <X0 i @ Tk )
sults in large-scale pattern formation, whereby initially mo \ 4 2
spatial distribution of particles in a turbulent incompress- and — ((2) + noexd—)T'(2). Ko = K2 —

ible flow of fluid evolves under certain conditions mtcz) o exp(= f)T” and my = exd—f(Z)].  Here the axis

is directed along mean temperature gradient, the wave
vectork is perpendicular to the axig, and

large-scale inhomogeneous distribution due to excitati
of an instability. One of the most important conditions
for the instability is inhomogeneous spatial distribution of
mean temperature of surrounding fluid. In particular, the 3a ST
instability can be excited in the vicinity of the minimum Mo = %( >< T,
in the mean temperature distribution.

Now let us discuss the mechanism of the instability.|n the derivation of Eq. (9) we take |nto account that for
The inertia effect results iV - v, * T,,AP # 0. Onthe an isotropic turbulencéu,,(x)v,(x)) = ud exp( £)8 /3.
other hand, for large Peclet numbéts i —dn,/dt. The equilibrium distribution of the mean number den-
This means that in regions with maximum pressure okity Ny(r) is determined by equaﬂoDVmNo Vet No.
turbulent fluid (i.e., whereAP < 0) there is an accu- Equation (9) is written in dimensionless form, the coordi-
mulation of inertial particles (i.e.dn,/dt > 0). Simi-  nate is measured in unit§;, time t is measured |n units
larly there is an outflow of inertial particles from regions A% /D7, wave numberk is measured in units\z', the
with minimum pressure of fluid. In a homogeneous andemperaturel is measured in units of temperature differ-
isotropic turbulence without large-scale external gradientences T in the scaleA 7, and concentratiolN is measured
of temperature a drift from regions with increased (de-in unitsN..
creased) concentration of inertial particles by a turbulent Now we use the quantum mechanical analogy for the
flow of fluid is equiprobable in all directions. Location analysis of the large-scale pattern formation in the concen-
of these regions is not correlated with turbulent velocitytration fieldN of the inertial particles. The instability can
field. Therefore they do not contribute in large-scale flowbe excited(y, > 0) if there is a region of potential well
of inertial particles. whereU, < 0. A positive value ofW, corresponds to tur-

The situation is drastically changed when there isbulent diffusion, whereas a negative valugif results in
a large-scale inhomogeneity of the temperature of théhe excitation of the instability. The condition when the
turbulent flow. In this case the mean heat l@®) # 0.  potentialU, can be negative is given by}/2 + «o < 0.
Therefore fluctuations of both temperature and velocityFor instance, this condition can be satisfied in the vicin-
of fluid are correlated. Fluctuations of temperature causéy of both the temperature minimug¥”” > 0) and the
fluctuations of pressure of fluid. The pressure fluctuationsnaximum in(u?) ( f” < 0). Expansion of function®(Z)
result in fluctuations of the concentration of inertial andf(Z) in the Taylor serie§(Z) ~ T,, + Z*> + --- and
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f(Z) ~ —apZ? + ---inthe vicinity of Z = O reduces the (see, e.g., [13]). This is in agreement with the neces-
problem to that of a harmonic oscillator in quantum me-sary condition T” > 0, i.e., the temperature inversion)
chanics. For simplicity we assume that the minimum tem+for the instability considered in the present study. Us-
perature at the poinf = 0 coincides with the maximum ing the parameters of the atmospheric turbulent boundary
f(Z), and the value ku?) is measured in the units of value layer uy ~ 30-100 cm/s, I, ~ 10°~10* cm and of the
f at the pointZ = 0. Discrete levels of energy of the os- temperature inversioh; ~ 3 X 10* cm and 87T /T, ~
cillator are determined by conditioA — 1 =2p (p = (1 — 3) X 1072 (see, e.g., [13]), we obtain that the chara-
0,1,2,...). This yields the growth rate of the instability cteristic time of excitation of the instability of concen-
forp = 0: 0 12 tration distribution of aerosols witp, ~ 2 g/cm® and
_ S 2 2 2 2 _ 2 a. = 10 um varies in the range from 0.3 to 3 h. Note

Yo = Mo F 2 90 [770 TG0 T ok } k. that this time~a, 2. This value is in compliance with the
The solution for¥, can be expressed in terms of the Her-characteristic time of growth of inhomogeneous structures
mite polynomials. Thus the initially spatial distribution in atmosphere.
of the concentration of the inertial particles evolves into a In summary, we have analyzed a new phenomenon of
pattern containing regions with increased (decreased) comdrbulent thermal diffusion. This phenomenon is caused
centration of particles. The characteristic vertical size oby the correlation between temperature and velocity

the inhomogeneity wheny = qq is of the order of fluctuations of the surrounding fluid and leads to relatively
3a (my\ (ST —1/2 strong mean flux of small inertial particles in regions with
l; ~ Ar[ﬁe <—p> < T )In Rek} mean temperature gradients. It is conceivable that similar
M * phenomena can occur in deterministic flows with chaotic
Remarkablyl, — o« when Pe— <; i.e., this effect exists behavior.
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