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A new physical effect, turbulent thermal diffusion, is discussed. This phenomenon is relat
the dynamics of small inertial particles in incompressible turbulent fluid flow. At large Reynolds
Peclet numbers the turbulent thermal diffusion is much stronger than the molecular thermal diff
It is shown that inertia of particles under certain conditions can cause a large-scale instability of s
distribution of particles. Inertial particles are concentrated in the vicinity of the minimum (or maxim
of the mean temperature of the surrounding fluid depending on the ratio of material particle den
that of the surrounding fluid.

PACS numbers: 47.27.Qb, 05.60.+w, 47.55.Kf
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The main purpose of this Letter is to discuss a n
physical effect, i.e., the turbulent thermal diffusion. Th
phenomenon of molecular thermal diffusion in gases w
predicted by Enskog and confirmed experimentally
Chapman and Dootson long ago [1] (see also [2]). T
equation for the number densitynp of particles taking
into account this effect reads≠npy≠t ­ 2 $= ? JM , where
the flux of particlesJM is given by JM ­ 2Df $=np 1

kt
$=TfyTf g. The first term in the formula for the flux o

particles describes molecular diffusion, while the seco
term accounts for the flux of particles caused by t
temperature gradient$=Tf (molecular thermal diffusion).
HereD is the coefficient of molecular diffusion,kt ~ np

is the thermal diffusion ratio, andDM ­ Dkt is the
coefficient of thermal diffusion.

When the velocity field of a surrounding fluid i
nonzero and turbulent, the nature of diffusion drastica
changes at large Reynolds and Peclet numbers. It
demonstrated by Taylor that turbulence results in a sh
increase of the effective diffusion coefficient [3]. Detaile
discussion of turbulent transport can be found in [
Recently it was shown that the contribution of molecu
thermal diffusion in gases into the total mass transfer r
can be significant even in a turbulent flow [5].

In this Letter it is shown that in a turbulent fluid flow
with a nonzero mean temperature gradient there app
an additional mean flux of particles in the directio
opposite to that of the mean temperature gradient.
large Reynolds and Peclet numbers the turbulent ther
diffusion is much stronger than the molecular therm
diffusion. Evolution of the number densitynpst, rd of
small particles in a turbulent flow is determined by

≠np

≠t
1 $= ? snpvpd ­ 2 $= ? JM , (1)

where vp is a random velocity field of the particle
which they acquire in a turbulent fluid velocity field. W
0031-9007y96y76(2)y224(4)$06.00
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consider the case of large Reynolds and Peclet numb
The velocity of particlesvp depends on the velocity o
the surrounding fluid, and it can be determined from t
equation of motion for a particle. This equation represe
a balance of particle inertia with the fluid drag forc
produced by the motion of the particle relative to th
surrounding fluid. Solution of the equation of motion fo
small particles withrp ¿ r yields [6]

vp ­ vssst, Ystdddd 2 tp

∑
≠v
≠t

1 sv ? $=dv
∏

1 Ost2
pd , (2)

wherev is the velocity of the surrounding fluid,Ystd is
the position of the particle,tp is the characteristic time
of coupling between the particle and surrounding flu
(Stokes time),rp is the material density of particles
and r is the density of the fluid. For instance, fo
spherical particles of radiusap the Stokes time istp ­
mpy6paprn, wheren is the kinematic viscosity of the
surrounding fluid andmp is the particle mass. The secon
term in (2) describes the difference between the local fl
velocity and particle velocity arising due to the small b
finite inertia of the particle.

In this study we consider incompressible turbulent flo
$= ? v ­ 0. However, the velocity field of particles is
assumed to be compressible, i.e.,$= ? vp fi 0. Indeed,
Eq. (2) for the velocity of particles and Navier-Stoke
equation for the fluid yield$= ? vp ­ 2tp

$= ? dvydt ­
tp

$= ? $=Pyr. We study the large-scale dynamics of sm
inertial particles and average Eq. (1) over an ensemble
random velocity fluctuations. For this purpose we use
stochastic calculus which has been previously employe
magnetohydrodynamics [7,8] and in the problems of p
sive scalar transport in incompressible [7,9] and compre
ible [10] turbulent flows. The main object of the stochas
calculus is a Wiener random process defined by the pro
tiesMhwj ­ 0 andMhwiwjj ­ tdij, whereMh?j denotes
the mathematical expectation over the Wiener paths.
© 1996 The American Physical Society
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Within the stochastic calculus the solution of Eq. (1)
reduced to the analysis of the evolution of the concen
tion field npst, rd along the Wiener path,$j:

$jst, t0d ­ x 2
Z t2t0

0
vpfts, $jst, tsdg ds

1 s2Dd1y2wst 2 t0d , (3)

where ts ­ t 2 s. Equation (3) describes a set of ra
dom trajectories which pass through the pointx at time
t. Becausewstd is a Wiener process, the initial co
ordinates of every trajectory$j are random. It can be
proved (see [7,10]) that the solution of Eq. (1) wi
the initial condition npst ­ t0, xd ­ n0sxd is given by
npst, xd ­ MhGst, t0dn0f $jst, t0dgj, where the Green func
tion is Gst, t0d ­ expf2

Rt
t0

bpssss, $jst, sdddd dsg andbp ;
$= ? vp. Hereafter we neglect small molecular thermal d
fusion (see below). It can be taken into account in me
velocity of particles. The use of the technique describ
in [7,10] allows us to derive equations for the mean fie
N ­ knpl:

≠N
≠t

1 $= ? fNVeff 2 D̂ $=mNg ­ 0 , (4)

where D̂ ; Dpm ­ Ddpm 1 ktupuml, Veff ­ V 2

ktbul, andvp ­ V 1 u, V ­ kvpl is the mean velocity,
u is the random component of the velocity of particle
b ­ $= ? u, and t is the momentum relaxation time
of random velocity fieldu, which depends on scale o
turbulent motion. We use here for simplicity thed
correlated in time random process to describe a turbu
velocity field. However, the results remain valid als
for the velocity field with a finite correlation time, if the
mean number density of the particles varies slowly
comparison with the correlation time of the turbulent flo
(see, e.g., [11]). Equation (4) was derived for Pe¿ 1. It
can be shown that for Peø 1 and arbitrary velocity field
the equation for the mean field coincides with Eq. (4
Now we derive an equation forN2. Multiplication of
Eq. (4) byN and simple manipulations yield

≠N2

≠t
1 s $= ? Sd ­ 2N2s $= ? Veffd 2 ID ,

where Sm ­ N2sVeffdm 2 Dmp
$=pN2 and ID ­

2Dmps $=mNd s $=pNd. The latter equation implies tha
if $= ? Veff , 0, a perturbation of the equilibrium dis
tribution of inertial particles can grow in time, i.e
s≠y≠td

R
N2d3r . 0. However, the total number o

particles is conserved. Therefore the growth ofN2

when $= ? Veff , 0 is accompanied by formation of a
inhomogeneous spatial distribution of the inertial partic
whereby regions with an increased concentration
particles coexist with regions depleted from particles.

Now we calculate the velocityVeff. Using the equation
of state P ­ kTf rymm we obtain the expression fo
bp ; $= ? vp:
-

n
d

,

nt

.

s
f

bp ­
tpy

2
T

Tp

"
DTf 1 Tf

Dr

r
1

√
$=r

r

!
? $=Tf

2

É
$=r

r

É2
Tf

#
, (5)

where y
2
T ­ kTpymm, mm is the mass of molecules o

surrounding fluid, andTfst, rd is the temperature field
with a characteristic valueTp. Then we use Eq. (5)
to calculate ktubl ø ktuDQl ­ stpy

2
T yTpd ktũDQl,

where Q are fluctuations of temperature. We negle
the second moments,kũr̃l, since the mean turbulen
flux of mass of the surrounding fluid vanishes in
finite domain surrounded by solid boundaries. He
r̃ and ũ are fluctuations of the density and veloci
of the fluid. On the other hand, the mean turbule
heat flux is nonzero in the presence of an exter
mean temperature gradient$=T fi 0 (see below). To
obtain an equation forktubl, we take into account tha
the fluctuating component of the particle velocityu
can be expressed in terms of the turbulent velocity
fluid ũ: u ­ ũ 2 tpdũydt [see Eq. (2)]. Note that
$= ? u fi 0, whereas $= ? ũ ­ 0. Therefore the veloc-
ity Veff is given by Veff ­ V 2 stpy

2
T yTpd ktũDQl,

where we neglect terms,Ost2
pd. The latter formula

shows thatVeff depends on the mean turbulent heat fl
kũQl that is determined by the well-known equatio
kũsxdQsxdl ­ 2xT

$=T (see, e.g., [4]), where the tota
temperature isTf ­ T 1 Q, T ­ kTfl is the mean tem-
perature field,xT , u0l0y3 is the coefficient of turbulent
thermal conductivity. Note that herein we do not co
sider the situation with very high gradients when gradie
transport assumption is violated. The above formula
the mean turbulent heat flux is written inr space. The
corresponding second moment ink space is given by
kũmskdQs2kdl ­ 2tskd kũmskdũns2kdl≠Ty≠Rn, where
R is a large-scale variable and a spectrum of the turbu
velocity field and correlation timetskd can be chosen as
Kolmogorov’s spectrum:

kũmũnl ­
2

3k0

µ
kũ2l

8pk2

∂ µ
k
k0

∂
25y3 µ

dmn 2
kmkn

k2

∂
,

tskd ­ 2t0

µ
k
k0

∂22y3

,

where k0 , k , k0Re
3y4
p (see, e.g., [4]), Rep ­

minhRe, PeT j, Re ­ l0u0yn is the Reynolds number
PeT ­ l0u0yx is the thermal Peclet number,l0 ­ k21

0 is
the maximum scale of turbulent motions,u0 is the char-
acteristic velocity in this scale, andx is the coefficient of
molecular thermal conductivity. Multiplying the equatio
for kũmskdQs2kdl by 2k2tskd and integrating ink space
we obtain ktũmDQl ­ alnsRepd $=T , where a ­ 2y3.
Finally we arrive at the following equation for velocity:

Veff ­ V 2
atpy

2
T

Tp

lnsRepd $=T .
225
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Equation (4) with this effective velocityVeff can be
rewritten in the form

≠N
≠t

1 $= ? sNVd ­ 2 $= ? sJT 1 JMd , (6)

where

JT ­ 2DT

∑
kT

T
$=T 1 $=N

∏
, (7)

kT ­ N
3a

Pe

µ
mp

mm

∂ µ
T
Tp

∂
ln Rep , (8)

whereDT ­ u0l0y3 is the coefficient of turbulent diffu-
sion, kT can be interpreted as turbulent thermal diffusio
ratio, andDT kT is the coefficient of turbulent thermal dif-
fusion. We use here an identity

tpy
2
T

l0u0
­

1
Pe

µ
mp

mm

∂
,

and Pe­ u0l0yDp is the Peclet number and the molec
ular diffusion coefficientDp ­ kTpy6paprn. Note that
for Rep ¿ 1 and Pe¿ 1 both turbulent diffusion coeffi-
cients are much larger than the corresponding molecu
coefficients (i.e.,DT ¿ D andDT kT ¿ Dkt).

Now we will show that turbulent thermal diffusion re
sults in large-scale pattern formation, whereby initial
spatial distribution of particles in a turbulent incompres
ible flow of fluid evolves under certain conditions int
large-scale inhomogeneous distribution due to excitat
of an instability. One of the most important condition
for the instability is inhomogeneous spatial distribution
mean temperature of surrounding fluid. In particular, t
instability can be excited in the vicinity of the minimum
in the mean temperature distribution.

Now let us discuss the mechanism of the instabilit
The inertia effect results in$= ? vp ~ tpDP fi 0. On the
other hand, for large Peclet numbers$= ? vp ~ 2dnpydt.
This means that in regions with maximum pressure
turbulent fluid (i.e., whereDP , 0) there is an accu-
mulation of inertial particles (i.e.,dnpydt . 0). Simi-
larly there is an outflow of inertial particles from region
with minimum pressure of fluid. In a homogeneous an
isotropic turbulence without large-scale external gradie
of temperature a drift from regions with increased (d
creased) concentration of inertial particles by a turbule
flow of fluid is equiprobable in all directions. Location
of these regions is not correlated with turbulent veloci
field. Therefore they do not contribute in large-scale flo
of inertial particles.

The situation is drastically changed when there
a large-scale inhomogeneity of the temperature of t
turbulent flow. In this case the mean heat fluxkũQl fi 0.
Therefore fluctuations of both temperature and veloc
of fluid are correlated. Fluctuations of temperature cau
fluctuations of pressure of fluid. The pressure fluctuatio
result in fluctuations of the concentration of inertia
226
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particles. Indeed, an increase (decrease) of the pressu
the surrounding fluid is accompanied by an accumulati
(outflow) of the particles. Therefore the direction of mea
flux of particles coincides with that of heat flux, i.e
kũnl ~ kũQl ~ 2 $=T . Therefore the mean flux of the
inertial particles is directed to the minimum of the mea
temperature and the inertial particles are accumula
in this region. This effect is more pronounced whe
turbulent fluid flow is inhomogeneous in the direction o
the mean temperature gradient.

Let us study this effect in more detail. Evolution of th
mean fieldN is determined by Eq. (6). Substitution

Nst, rd ­ NpC0sZd expsg0td

3 exp

∑
2

1
2

Z
x0sZd dZ 1 ik ? r'

∏
1 N0srd

reduces Eq. (6) to the eigenvalue problem for th
Schrödinger equation

1
m0

C00
0 sZd 1 fW0 2 U0sZdgC0sZd ­ 0 , (9)

whereW0 ­ 2g0, A0 ­ dAydZ, and the potentialU0 is
given by

U0 ­
1

m0

µ
x

2
0

4
1

x
0
0

2
1 k0

∂
,

and x0 ­ f 0sZd 1 h0 exps2fdT 0sZd, k0 ­ k2 2

h0 exps2fdT 00, and m0 ­ expf2fsZdg. Here the axis
Z is directed along mean temperature gradient, the wa
vectork is perpendicular to the axisZ, and

h0 ­
3a

Pe

µ
mp

mm

∂ µ
dT
Tp

∂
ln Rep .

In the derivation of Eq. (9) we take into account that fo
an isotropic turbulencekymsxdynsxdl ­ u2

0 exps fddmny3.
The equilibrium distribution of the mean number den
sity N0srd is determined by equation̂D $=mN0 ­ VeffN0.
Equation (9) is written in dimensionless form, the coord
nate is measured in unitsLT , time t is measured in units
L

2
T yDT , wave numberk is measured in unitsL21

T , the
temperatureT is measured in units of temperature diffe
encedT in the scaleLT , and concentrationN is measured
in unitsNp.

Now we use the quantum mechanical analogy for t
analysis of the large-scale pattern formation in the conc
tration fieldN of the inertial particles. The instability can
be excitedsg0 . 0d if there is a region of potential well
whereU0 , 0. A positive value ofW0 corresponds to tur-
bulent diffusion, whereas a negative value ofW0 results in
the excitation of the instability. The condition when th
potentialU0 can be negative is given byx 0

0y2 1 k0 , 0.
For instance, this condition can be satisfied in the vici
ity of both the temperature minimumsT 00 . 0d and the
maximum inku2l s f 00 , 0d. Expansion of functionsTsZd
andfsZd in the Taylor seriesT sZd , Tm 1 Z2 1 · · · and
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fsZd , 2a0Z2 1 · · · in the vicinity ofZ ­ 0 reduces the
problem to that of a harmonic oscillator in quantum m
chanics. For simplicity we assume that the minimum tem
perature at the pointZ ­ 0 coincides with the maximum
fsZd, and the value lnku2l is measured in the units of value
f at the pointZ ­ 0. Discrete levels of energy of the os
cillator are determined by conditionE 2 1 ­ 2p sp ­
0, 1, 2, . . .d. This yields the growth rate of the instability
for p ­ 0:

g0 ­ h0 1
3
2

a0 2

∑
h2

0 1
9
4

a2
0 2 a0k2

∏1y2

2 k2.

The solution forC0 can be expressed in terms of the He
mite polynomials. Thus the initially spatial distribution
of the concentration of the inertial particles evolves into
pattern containing regions with increased (decreased) c
centration of particles. The characteristic vertical size
the inhomogeneity whenh0 $ a0 is of the order of

lz , LT

∑
3a

Pe

µ
mp

mm

∂ µ
dT
Tp

∂
ln Rep

∏21y2

.

Remarkablylz ! ` when Pe! `; i.e., this effect exists
for large but finite Peclet numbers.

The obtained results are valid in the case when t
density of the surrounding fluid is much less than th
material density of particlessr ø rpd. However, the
results of this study can be easily generalized to inclu
the caser $ rp using the equation of motion of particle
in fluid flow presented in [4,12]. This equation of motio
takes into account contributions due to the pressu
gradient in the fluid surrounding the particle (caused
acceleration of the fluid) and the virtual (“added”) mas
of the particles relative to the ambient fluid. The solutio
of this equation coincides with Eq. (2) except for th
transformationtp ! btp , where

b ­

√
1 1

r

rp

! √
1 2

3r

2rp 1 r

!
.

For r $ rp the turbulent thermal diffusion ratiokT

in Eq. (8) must be multiplied byb. Therefore the
additional mass flux of particles is directed towards t
mean temperature gradient [see Eq. (7)], and particles
accumulated in the vicinity of the maximum of mea
temperature of surrounding fluid sinceb , 0. In the
opposite case whenr ø rp , b . 1 and particles are
accumulated in the vicinity of the mean temperatu
minimum.

The analyzed effect of turbulent thermal diffusio
may be of relevance in some atmospheric pheno
ena (e.g., atmospheric aerosols, cloud formation, a
smog formation) and combustion. Most aerosol par
cles are trapped in the vicinity of mean temperatu
minimum. Observations of the vertical distributions o
aerosols in the atmosphere show that maximum conc
trations can occur within temperature inversion laye
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(see, e.g., [13]). This is in agreement with the nece
sary condition (T 00 . 0, i.e., the temperature inversion
for the instability considered in the present study. U
ing the parameters of the atmospheric turbulent bound
layer u0 , 30 100 cmys, l0 , 103 104 cm and of the
temperature inversionLT , 3 3 104 cm anddTyTp ,
s1 2 3d 3 1022 (see, e.g., [13]), we obtain that the char
cteristic time of excitation of the instability of concen
tration distribution of aerosols withrp , 2 gycm3 and
ap ­ 10 mm varies in the range from 0.3 to 3 h. Not
that this time,a22

p . This value is in compliance with the
characteristic time of growth of inhomogeneous structu
in atmosphere.

In summary, we have analyzed a new phenomenon
turbulent thermal diffusion. This phenomenon is caus
by the correlation between temperature and veloc
fluctuations of the surrounding fluid and leads to relative
strong mean flux of small inertial particles in regions wi
mean temperature gradients. It is conceivable that sim
phenomena can occur in deterministic flows with chao
behavior.

We have benefited from stimulating discussions w
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