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Generation of Magnetic Field by Combined Action of Turbulence and Shear
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The feasibility of a mean-field dynamo in nonhelical turbulence with a superimposed linear shear is
studied numerically in elongated shearing boxes. Exponential growth of the magnetic field at scales much

larger than the outer scale of the turbulence is found. The characteristic scale of the field is [z & S~

1/2 and

the growth rate is y o« S, where S is the shearing rate. This newly discovered shear dynamo effect
potentially represents a very generic mechanism for generating large-scale magnetic fields in a broad class
of astrophysical systems with spatially coherent mean flows.
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Introduction.—Understanding the origin of cosmic mag-
netism is one of the fundamental theoretical challenges in
astrophysics. The turbulent motions of the plasmas that
make up most astrophysical objects are believed to be
responsible for the generation of the magnetic field. In
particular, a generic property of the turbulence of conduct-
ing fluid is to amplify exponentially magnetic fluctuations
at the turbulence scales or smaller via the fluctuation
dynamo effect [1-3]. A distinct problem is to explain the
observed presence in most astrophysical bodies of mag-
netic fields spatially coherent at scales larger than the outer
scale of the turbulence (mean fields). Nonhelical homoge-
neous isotropic turbulence on its own cannot give rise to a
mean field. What are then the large-scale properties that
must be present in a turbulent system for such a field to be
generated? Mean-field dynamo theories [4] have identified
a number of amplification mechanisms. We know, e.g., that
a nonzero net helicity (often combined with rotation in real
systems) is sufficient to produce mean fields, but is it
necessary?

Perhaps the most common large-scale feature is a mean
velocity shear. It is present, e.g., in stellar interiors [5],
accretion disks [6], galaxies (in particular, irregular ones
[7]), and liquid-metal laboratory dynamos [8], all of which
host both large-scale (mean) and small-scale (fluctuating)
magnetic fields. A number of theories have proposed that a
mere combination of turbulence and shear could give rise
to a mean-field dynamo: e.g., the shear-current effect [9],
the stochastic « effect [10], shear amplification of small-
scale-dynamo-generated field [11], negative-diffusivity-
type theories [12]. Reference [9], which used the
T-approximation closure, provoked a particular debate be-
cause it seemed to contradict the rigorous mean-field the-
ory based on the second-order correlation approximation
(SOCA), which ruled out the shear dynamo [13]. However,
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the SOCA is only valid in the limit either of low hydro-
dynamic and magnetic Reynolds numbers, Re, Rm < 1, or
short velocity correlation times [4]. The real turbulent
systems are in neither of these limits, and the hope that
some of the results qualitatively carry over has had to be
backed up by numerical evidence [14] and by intuitive
physical field-amplification scenarios [15]. In the absence
of a compelling physical argument for or against the shear
dynamo or of a rigorous method for proceeding analyti-
cally, a numerical experiment is overdue. Here we report
the first such numerical experiment, which supports the
existence of the shear dynamo.

Numerical set up.—We consider the incompressible
magnetohydrodynamics (MHD) with a background linear
shear flow U = —Sx§ and a white-noise nonhelical ran-
dom homogeneous isotropic body force f:

du . Vp B-VB
— =u Sy ——+
dt p

+2V2u+f, (1)

41p

dB

dt
where u and B are the velocity and magnetic fields,
d/dt =9, — Sxd, + u-V, the density p =1, and the
pressure p is determined by the incompressibility condi-
tion V-u = 0. These equations are solved with shear-
periodic boundary conditions by a Lagrangian spectral
method [16]. When the imposed shear S is weak compared
to the turnover rate of the turbulent motions, the growth of
the mean (large-scale) field can only be detected if the size
of the computational domain is much larger than the
turbulence scale [,. In general, this, together with the
necessity to run the simulations for very long times, re-
quires unaffordable amounts of computing power. We
circumvent this problem by using computational boxes

— —B,S§ + B - Vu + nV?B, )
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TABLE I. Index of runs.
S L, Resolution v I3 B,/B.*
2 8 322 X 256 0.0161 3.7 6.54
2 16 322 X 512 0.021 3.8 6.49
1 8 32% X 256 0.0030 4.6 6.38
1 16 322 X 512 0.0124 5.4 6.50
1 32 322 X 1024 0.0092 52 6.43
1 64 32% X 2048 0.0121 5.1 6.35
0.5 16 322 X 512 0.0040 6.8 6.34
0.5 32 322 X 1024 0.0058 7.1 6.31
0.5 64 322 X 2048 0.0055 7.3 6.32
0.25 64 322 X 2048 0.0025 9.7 6.07
0.25 128 32% X 4096 0.0025 9.9 6.06
0.125 64 322 X 2048 0.00094 13.1 6.01
0.125 128 322 X 4096 0.00092 13.5 6.02

“This is the time average of [ [ dzB%(z)/ [ dzB(z)]'/>.

with large aspect ratios, L, X L, X L, where L, > L, =
L,. The units of length and time are fixed by setting L, =
L, = 1 and the mean forcing power € = (u - f) = 1 (this
can be controlled because the forcing is white noise). The
average forcing scale is [y = 1/3; i.e., the energy is in-
jected randomly in the wave-number shell centered at
ko/27r = 3. The resulting root-mean-square velocity field
is s = (u2)1/2 =~ 1 + 0.3, so the typical turnover rate of
the turbulent motions is u., /I, ~ 3. We study five values
of the shear S = 2,1, 1/2,1/4, 1/8 < uyy/1y [Weak shear
is used in order for the mean and fluctuating fields to be
clearly distinguishable from each other via small-scale
averaging; see Eq. (3) below]. The viscosity and magnetic
diffusivity are » = 7 = 1072, so Rm = Re = u,,;/kov ~
5. The resolution requirements are consequently not large:
it suffices to have 32 X 32 collocation points in the (x, y)
plane. In the z direction, we use resolutions between 256
and 4096 collocation points for L, = 8§, ..., 128, depend-
ing on S (Table I).

Strictly speaking, we cannot speak about turbulence
with such low Re. However, a developed inertial range is
not important for mean-field dynamos: it is sufficient that a
stochastic velocity field with Re = 1 is present [17]. In our
simulations, Rm is subcritical with respect to the fluctua-
tion dynamo [2,3], so any field growth we detect is due
purely to a mean-field dynamo. Note, however, that since
Rm > 1, turbulent tangling of the mean field generates
small-scale magnetic fluctuations whose energy is in gen-
eral not smaller than that of the mean field [3].

Results.—All runs are initialized with a random, zero-
mean, dynamically weak ((B>) = 10~2°) magnetic field.
The field grows exponentially with time at all values of §
studied, provided the computational box is sufficiently
long. For each S, we consider the growth rate y of B, =
(B?)'/2 to be converged if it stays approximately the same
when L, is doubled (Fig. 1). That we are able to find such
values means that y is asymptotically independent of L,
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FIG. 1 (color online). Evolution of u, (upper panel) and B,
(lower panel) for S = 1 and four values L, = 8, 16, 32, 64.

(the dependence on L, and L, should also be studied, but
that is currently too expensive computationally). The field
eventually grows to a dynamically strong saturated level.
Here we concentrate on the kinematic (weak-field) regime
and leave the properties of the saturated state to a future
study.

Figure 2 shows that, in the range of shears studied, the
growth rate of B,,, appears to increase linearly with S, y «
S. This is a somewhat unexpected result from the theoreti-
cal point of view because the shear-current effect [9], as
well as most other mean-field theories quoted above pre-
dict y o« §? for the fastest-growing mode. We cannot,
however, exclude the possibility that the S? scaling may
be asymptotically recovered at even smaller S.

That the growing field is large scale is obvious already
from the visualization of the field: the large-scale
z-dependent modulation is evident against the turbulence-
scale structure (Fig. 3). We isolate this large-scale depen-
dence on z by low-pass filtering in Fourier space:

B(z) = B(k,
|k./2m|<1

=0,k, =0, k,)e'=. 3)

Note that since V- B = 0, B, = 0. This procedure aver-
ages out the small-scale structure and brings out the grow-
ing large-scale field in a clear way (Fig. 3). In all cases, the
root-mean-square values of B, and By grow exponentially
with the same rate y as B,,. We find |B,| > |B,|, which is
expected because the shear systematically converts B, into
B, [Eq. (2)]. The ratio |B,/B,| ~ S/vy is approximately
constant in time and its average is independent of S
(Table I), which is consistent with y « § established above.

Examining Fig. 3, we see that the magnetic field grows
in large random patches. In time, they move around (in z)
and change shape in an apparently random fashion. This
means that the mean field is not strictly speaking an
“eigenmode” with a spatial profile constant in time,
although we found the correlation time scale of its evolu-
tion to be much longer than either the turnover time
(ly/ tys) OF the shear time (S~!). In order to describe the
spatial structure of the mean field in a systematic way, we
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FIG. 2 (color online). Growth rates y of B, for all runs
(Table I). The dotted line shows the slope corresponding to
y o« S.

define the time-averaged characteristic scale /j:

1 1 2 dz(0B,/0z)*71/2
- = f[ d[[M} . 4)
lg th =t J¢ deBy

1

Here and in all other cases, the time average is taken over
the exponential-growth (kinematic) period (¢, #,) of the
field evolution. The derivatives are calculated in Fourier
space. The values of /5 are given in Table I and plotted vs S
in Fig. 4. As the shear is decreased, /3 increases and is well
matched by the scaling [z & §~1/2.

This scaling is again at odds with the mean-field-theory
prediction [z « S~! [9], but the following simple argument
shows that it is consistent with y « § and suggests the
possible form that a mean-field theory of the dynamo
reported here may take. Let us conjecture the mean-field
equations in the following (standard) model form

atgx = _nTkgéx - AByJ (5)

3,B, = —nk2B, — SB,, 6)

where 17 ~ u,lo is the turbulent diffusivity and A is
some operator that closes the dynamo loop. (The challenge
of mean-field theory is to find A.) The growth rate is y =
VSA — nyk2. For the fastest-growing mode, the two terms
in this expression are comparable, so, if k, ~ lgl ~

FIG. 3 (color online). Snapshots of u, (upper panel) and B,
(lower panel) taken in an (y, z) cross-section of the L, = 16 run
for S = 1 (the forcing scale is [, = 1/3). Underneath the snap-
shots are plots of ii,(z), ii,(z) (upper panel) and B,(z), B,(z)
(lower panel). Here #i(z) is defined similarly to B(z) [Eq. (3)].
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FIG. 4 (color online). The characteristic scale of the magnetic
field [Eq. (4)] for all runs. The dotted line shows the slope S~1/2.

15" (Sly/tems)'/?, then A~S and y ~ S (in contrast,
some mean-field theories predict A ~ SI3k2 [9,10], so k.
S and y o« §?).

Finally, in Fig. 5, we show the spectrum of magnetic
energy during the growth stage. It is strongly peaked at
large scales (k,ly << 1), but also shows that the mean field
is tangled by the turbulence to produce a significant
amount of magnetic energy at the turbulence scales. The
presence of this tangled component is likely to be essential
in the shear dynamo effect in that the small-scale field
could be continuously resupplying the field B, for ampli-
fication by shear [11]. The key to a successful theory of the
shear dynamo may be to find the way in which the sym-
metry is broken to make this resupply systematically fa-
vorable to the exponential growth of the mean field (as,
e.g., implicitly attempted in Ref. [9]).

Effect of shear on velocity field. —It has been suggested
that a mechanism similar to the shear dynamo may also
produce large-scale velocity structures (“vorticity dy-
namo’’ [18]). The velocity does indeed develop large fluc-
tuations that are energetically comparable to the small-
scale turbulence, last for long times (Fig. 1) and are spa-
tially coherent on scales similar to those of the magnetic
field (Fig. 3). The large-scale structure forms mainly in u,
(corresponding to large-scale vorticity, @, = —aﬁy/ 9z2).
As the forcing always seeds some large-scale vorticity that
is not infinitesimally small, the “vorticity dynamo™ always

100 ———rT ————T
10-' F 3
~ 1002 F E
o)
~
= 1073 F ; E
L.=8 rms forcing
. LN - 16 wave number ' .
1074 F__ L: =32 kpmerom= V3 3
— L. =64 ' W
10-5 L L \tY
0.01 0.1 1 10

k.l 2w

FIG. 5 (color online). Normalized one-dimensional spectra of
the magnetic energy, M(k,) = ka’k)_IB(kx, ky, k)I?/(B?) (time
averaged over the growth stage) for S =1 and L, = 8, 16, 32,
64. The four graphs demonstrate that, as L, is increased, a large-
scale spatial structure independent of the box length emerges.
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operates in the nonlinear regime. Its detailed study is out-
side the scope of this Letter.

The growth of the magnetic field does not seem to be
strongly correlated with the evolution of the shear-
generated large-scale velocity structures (compare, e.g.,
the time evolution of u,,, and B, in Fig. 1).

It is well known that the presence of shear can lead to
nonlinear destabilization of finite velocity fluctuations and
formation of shear-driven turbulence whose outer scale is
the scale of the shear (in simulations with a linear shear, the
box scale). This does indeed happen in our simulations
when S is too strong or the box is too long. The quantitative
signature of this regime is that the power input from the
shear in Eq. (1), (u,u,)S, exceeds the forcing power € =
(u-f). We avoid this regime to isolate the mean-field
generation effect, which requires a scale separation be-
tween the turbulence and the mean field. In all runs re-
ported here, |(u,u,)S| < €. We note that the large upward
fluctuations of u,,, [Fig. 1] are not accompanied by a
significant change in (u,u,)S, so the large-scale velocity
structures appear to feed on the forcing power, not on the
power extracted from the shear.

Discussion.—We have found that a large-scale magnetic
field grows exponentially in long sheared boxes with
forced small-scale nonhelical turbulence. In the parameter
range we have studied, the growth rate appears to scale as
y o S, the spatial scale of the field /3 o S~'/? and B, /B, =
const > 1. These properties do not seem to fit any of the
existing theories. Our results do, however, lend credence to
the concept of a shear dynamo and thus provide motivation
for further theoretical effort.

To our knowledge, this is the first demonstration of the
shear dynamo effect in a dedicated numerical experiment.
In an earlier unpublished study we obtained similar results
using PENCIL code (a compressible finite-difference code in
contrast to the spectral one used above), so the amplifica-
tion effect appears to be numerically robust. We note that
there have been earlier indications of nonhelical turbulence
amplifying large-scale magnetic field in the presence of a
large-scale shear associated with mean flows in numerical
experiments that used constant-in-time sinusoidal forcing
functions [19,20]. Another example of large-scale mag-
netic fields generated by a combination of nonhelical tur-
bulence and a mean flow is the numerical experiments with
Taylor-Green forcing [21]. One might speculate that the
shear provided by the mean flow in such systems could act
in a way qualitatively similar to a linear shear and give rise
to mean-field amplification.

Another context in which the shear dynamo may be
important is accretion disks, where turbulence is driven
by the magnetorotational instability (MRI) [6]. The MRI
requires a (weak) large-scale field and gives rise to velocity
and magnetic fluctuations at small scales. This turbulence
could then conceivably couple to the large-scale Keplerian

shear and amplify the large-scale field, thus closing the
loop. While the feasibility of such an MRI-dynamo mecha-
nism will be the object of a separate study, we have verified
already that the shear dynamo continues to work in the
presence of rotation.
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