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Turbulent thermal diffusion in strongly stratified turbulence:
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Turbulent thermal diffusion is a combined effect of the temperature stratified turbulence
and inertia of small particles. It causes the appearance of a nondiffusive turbulent flux
of particles in the direction of the turbulent heat flux. This nondiffusive turbulent flux of
particles is proportional to the product of the mean particle number density and the effective
velocity of inertial particles. The theory of this effect has been previously developed only
for small temperature gradients and small Stokes numbers [Phys. Rev. Lett. 76, 224 (1996)].
In this study, a generalized theory of turbulent thermal diffusion for arbitrary temperature
gradients and Stokes numbers has been developed. The laboratory experiments in the
oscillating grid turbulence and in the multifan produced turbulence have been performed to
validate the theory of turbulent thermal diffusion in strongly stratified turbulent flows. It has
been shown that the ratio of the effective velocity of inertial particles to the characteristic
vertical turbulent velocity for large Reynolds numbers is less than 1. The effective velocity
of inertial particles as well as the effective coefficient of turbulent thermal diffusion increase
with Stokes numbers reaching the maximum at small Stokes numbers and decreases
for larger Stokes numbers. The effective coefficient of turbulent thermal diffusion also
decreases with the mean temperature gradient. It has been demonstrated that the developed
theory is in a good agreement with the results of the laboratory experiments.

DOI: 10.1103/PhysRevFluids.2.064605

I. INTRODUCTION

Turbulent transport of inertial particles has been a subject of many studies due to numerous
applications in geophysics and environmental sciences, astrophysics, and various industrial
applications (see, e.g., Refs. [1–13]). Different mechanisms of large-scale and small-scale clustering
of inertial particles have been proposed. The large-scale clustering occurs in scales that are much
larger than the integral scale of turbulence, while the small-scale clustering is observed in scales that
are much smaller than the integral turbulence scale.

The large-scale clustering of inertial particles in nonstratified inhomogeneous turbulence occurs
due to turbophoresis phenomenon (see, e.g., Refs. [14–19]), which is a combined effect of particle
inertia and inhomogeneity of turbulence. Turbophoresis results in the appearance of an additional
nondiffusive turbulent flux of inertial particles caused by the mean particle velocity proportional
to V turboph ∝ −f (St,Re) ∇〈u〉2, where u is the turbulent fluid velocity, St = τp/τη is the Stokes
number, τη = τ0/Re1/2 is the Kolmogorov time, τp = mp/(3πρ νd) is the Stokes time for the small
spherical particles of the diameter d and mass mp, Re = �0 u0/ν is the fluid Reynolds numbers,
u0 is the characteristic turbulent velocity at the integral scale �0 of turbulent motions, and ν is
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the kinematic fluid viscosity. As a result of turbophoresis, inertial particles are accumulated in the
vicinity of the minimum of the turbulent intensity.

Another example of the large-scale clustering of inertial particles in a temperature-stratified
turbulence is a phenomenon of turbulent thermal diffusion [20,21] that is a combined effect of
the stratified turbulence and inertia of small particles. This phenomenon causes the appearance of
a nondiffusive turbulent flux of particles in the direction of the turbulent heat flux, i.e., opposite
to the mean temperature gradient. Turbulent thermal diffusion results in accumulation of the
inertial particles in the vicinity of the mean temperature minimum and leads to the formation of
inhomogeneous spatial distributions of the mean particle number density. Turbulent thermal diffusion
has been intensively investigated analytically [17,20–26] using different theoretical approaches, in
laboratory experiments in oscillating grid turbulence [27–29] and in the multifan produced turbulence
[30]. This effect has also been detected in direct numerical simulations [31] and in atmospheric [32]
and astrophysical turbulence [33].

In spite of intensive studies of this phenomenon, however, turbulent thermal diffusion has been
investigated analytically only for small Stokes numbers and for a weak temperature stratification.
On the other hand, in laboratory experiments and in direct numerical simulations, these conditions
are not always satisfied. The goal of the present study is to investigate the phenomenon of turbulent
thermal diffusion for arbitrary temperature gradients and various Stokes numbers. The developed
theory is validated against the data obtained in laboratory experiments with different sources of the
turbulence production and also against the data obtained in the atmospheric measurements.

The paper is organized as follows. In Sec. II, we discuss the physics of turbulent thermal diffusion.
In Sec. III, we develop the theory of turbulent thermal diffusion for arbitrary stratifications and
Stokes numbers. In Sec. IV, we validate this theory in the laboratory experiments in oscillating grid
turbulence and in the multifan produced turbulence. In this section, we also discuss the validation
of the theory of turbulent thermal diffusion in the atmospheric observations. Conclusions are drawn
in Sec. V.

II. PHYSICS OF TURBULENT THERMAL DIFFUSION

The mechanism of the phenomenon of turbulent thermal diffusion of inertial particles with
material density that is much larger than the fluid density is as follows [20,21]. The particle inertia
(i.e., a centrifugal effect) results in a drift out of particles inside the turbulent eddies to the boundary
regions between eddies. In these regions, the fluid pressure fluctuations as well as strain rate are
maximum. On the other hand, there is an outflow of inertial particles from regions with minimum
fluid pressure fluctuations (maximum vorticity). In homogeneous and isotropic turbulence a drift
from regions with increased concentration of particles by a turbulent flow is equiprobable in all
directions, and the fluid pressure and temperature fluctuations are not correlated with the velocity
fluctuations.

In a temperature-stratified turbulence with a nonzero mean temperature gradient, the fluid
temperature and velocity fluctuations are correlated. Fluctuations of temperature result in the fluid
pressure fluctuations. Increase of the fluid pressure fluctuations is accompanied by an accumulation
of particles, so that the direction of the mean flux of particles coincides with the turbulent heat
flux, toward the minimum of the mean temperature. This causes the formation of large-scale
inhomogeneous distributions of inertial particles.

Let us discuss the phenomenon of turbulent thermal diffusion in more detail. The motion of
inertial particles with sizes that are much smaller than the fluid viscous scale and their material
density ρp is much larger than the fluid density ρ is determined by the following equation:

dv

dt
= −v − u

τp

+ g, (1)

where v is the particle velocity, u is the fluid velocity, and g is the acceler-
ation of gravity. The solution of Eq. (1) for small Stokes time is obtained by
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iterations [34]:

v = u − τp

[
∂u
∂t

+ (u·∇)u
]

+ τp g + O(St2), (2)

where Wg = τp g is the terminal fall velocity of particles caused by the gravity field. For large
Reynolds numbers, using Eq. (2), we obtain [20]

∇· v = ∇· u + τp

ρ
	p + O(St2), (3)

where p is the fluid pressure. This implies that the particle velocity field is compressible even in
an incompressible fluid velocity field due to the inertia effects. The instantaneous number density,
np(t,r), of inertial particles in a turbulent flow is determined by the following equation [35,36]:

∂np

∂t
+ ∇· (npv) = D	np, (4)

where D is the coefficient of Brownian diffusion of particles. For large Péclet numbers, Pe ≡
�0 u0/D � 1, when the molecular diffusion of particles in Eq. (4) can be neglected, we get ∇· v ∝
−d ln np/dt . Combining this equation with Eq. (3), we obtain that dnp/dt ∝ −np (τp/ρ) 	p > 0.
This implies that in the regions with maximum fluid pressure fluctuations, where 	p < 0, there
is accumulation of inertial particles, dnp/dt > 0. In a stratified turbulence, the fluid velocity
fluctuations are correlated with the fluid temperature and pressure fluctuations due to a nonzero
turbulent heat flux. This causes a nondiffusive particle turbulent flux towards the regions with
the minimum of the mean fluid temperature. This phenomenon results in the large-scale particle
clustering in a temperature stratified turbulence.

To investigate the formation of large-scale inhomogeneous structures in particle spatial
distribution, we apply a mean-field approach and use the Reynolds averaging. In particular, we
average Eq. (4) over the statistics of turbulent velocity field to obtain an equation for the mean
number density of particles N = 〈np〉:

∂N

∂t
+ ∇· [NWg + 〈n v〉 − D ∇N ] = 0, (5)

where 〈. . . 〉 denotes ensemble averaging. We assumed here for simplicity vanishing mean fluid
velocity. The turbulent flux of particles, 〈n v〉, in a temperature stratified turbulence has been
determined using different analytical methods, i.e., the dimensional analysis, the quasilinear
approach, the path-integral approach, the spectral τ approach, the functional multiscale turbulence
approach, etc. (see Refs. [17,20–26]). The turbulent flux of particles is given by the following
expression:

〈n v〉 = N V eff − DT ∇N, (6)

where V eff is the effective velocity of particles and DT is the turbulent diffusion tensor of particles.
The term −DT ∇N , in the flux of particles is caused by turbulent diffusion:

DT ∇N ≡ 〈τ vi vj 〉 ∇jN ≈ τ0 〈ui uj 〉 ∇jN. (7)

For large Peclet numbers, Pe ≡ �0 u0/D � 1, the turbulent diffusion tensor is

DT = τ0 〈ui uj 〉, (8)

where τ0 = �0/u0. To derive Eqs. (7) and (8), we took into account that for small Stokes numbers,
St 
 1, the particle velocity weakly deviates from the fluid velocity, v = u + O(St). For an
isotropic turbulence, the Reynolds stress, 〈ui uj 〉, is given by 〈ui uj 〉 = (1/3) 〈u2〉 δij . Substituting
this equation in Eq. (8), we obtain the expression for the turbulent diffusion tensor: DT = DT δij ,
where DT = τ0 〈u2〉/3 is the turbulent diffusion coefficient. For small Peclet numbers and large
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Reynolds numbers, the turbulent diffusion coefficient is DT = Pe τ0 〈u2〉/12 (see, e.g., Appendix A
in Ref. [32]).

The first term, N V eff , in Eq. (6) determines the contribution to the turbulent flux of particles
caused by turbulent thermal diffusion in a stratified turbulence, where the effective velocity V eff of
inertial particles is [20,21]

V eff = −〈τ v (∇ · v)〉 = −αDT

∇T

T
. (9)

Here, T is the mean fluid temperature and α is the coefficient of the turbulent thermal diffusion.
For noninertial particles or gaseous admixtures, the parameter α = 1, while for inertial particles the
parameter α is a function of the Reynolds and Stokes numbers,

α = 1 + 2Wg LP ln(Re)

3DT

F (Re,d) = 1 + St ln(Re)

Re1/4

(
Leff

�0

)
F (Re,d), (10)

(see Refs. [17,22,37]), where L−1
P = |∇P |/P is the inverse scale of the mean fluid pressure

variations, Leff = 2c2
s τ

3/2
η /3ν1/2 is the effective length scale and cs is the sound speed. When

the particle diameter d � dcr, the function F (Re,d) is given by F (Re,d) = 1 − 3 ln(d/dcr)/ ln(Re),
where the critical particle diameter is dcr = 2�η(ρ/ρp)1/2, ρp is the material density of a particle, and
�η is the Kolmogorov viscous scale of turbulence. When the particle diameter d < dcr, the function
F (Re,d) = 1.

The effective particle velocity of inertial particles is directed opposite to the mean temperature
gradient as well as the mean heat flux, i.e., towards the mean temperature minimum. This causes
accumulation of particles in this region. This effect is called turbulent thermal diffusion because the
expression for the turbulent flux N V eff = −Nκ

T
∇T with the coefficient κ

T
= αDT /T is similar to

the formula for molecular flux caused by the molecular thermal diffusion. These two effects are of
statistical nature, whereby particle turbulent flux caused by turbulent thermal diffusion arises from
averaging over statistics of turbulent velocity field, while the molecular thermal diffusion flux arises
from solving the Boltzmann kinetic equation.

The expression for the effective velocity of inertial particles due to turbulent thermal diffusion
has been derived only for small Stokes numbers and for a weak stratification, �0 |∇T |/T 
 1
(see Refs. [17,20–24,32]). In the next section, we develop the theory of this effect for arbitrary
stratifications and Stokes numbers.

III. THEORY FOR ARBITRARY STRATIFICATIONS AND STOKES NUMBERS

A. Model of a turbulent particle velocity field

In this section, we discuss a model for the second moments, 〈vi(k) vj (−k)〉, of a particle velocity
field in a low-Mach-number homogeneous stratified turbulence with arbitrary gradients of the mean
temperature and arbitrary Stokes numbers. In the anelastic approximation, div u = λ · u, where
λ = −∇ρ/ρ and ρ is the mean fluid density. The second moments, 〈ui(k) uj (−k)〉, of a fluid
velocity field in the anelastic approximation in a Fourier space in a homogeneous turbulence with
arbitrary gradients of the mean temperature have the following form:

〈ui(k) uj (−k)〉 = 〈u2〉E(k)

8π (k2 + λ2)

[
δij − ki kj

k2
+ i

k2
(λi kj − λj ki) + λ2

k2

(
δij − λi λj

λ2

)]
(11)

(see derivation of this equation in Appendix A), where δij is the Kronecker tensor, E(k) is the
energy spectrum function, E(k) = (2/3) k−1

0 (k/k0)−5/3 with k0 � k � kν . This energy spectrum
function corresponds to the Kolmogorov turbulence, the wave number k0 = 1/�0, the wave number
kη = �−1

η , and �η = �0Re−3/4 is the Kolmogorov (viscous) scale. Equation (11) follows also from
the symmetry arguments (see, e.g., Appendix E in Ref. [38]). The first two terms in the quadratic
brackets of Eq. (11) determine the incompressible, isotropic, and homogeneous part of turbulence,
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FIG. 1. The function f (Y ).

while the other terms depend on λ and correspond to the anelastic approximation for arbitrary
gradients of the fluid density.

Now we generalize the model (11) to the case of a particle velocity field with arbitrary Stokes
numbers and for turbulence with arbitrary mean temperature gradient. In particular, we assume that
the second moments, 〈vi(k) vj (−k)〉, of a particle velocity field in the anelastic approximation in a
Fourier space in a homogeneous stratified turbulence have the following form:

〈vi(k) vj (−k)〉 = 〈v2〉E(k)

8π [k2 + (Bλ)2]

[
δij − ki kj

k2
+ iA

k2
(λi kj − λj ki) + (Bλ)2

k2

(
δij − λi λj

λ2

)]
,

(12)

where we introduced two free parameters, A and B, that are the functions of the Reynolds and Stokes
numbers to be determined in the next section.

B. The effective velocity of inertial particles

Using the model of a turbulent particle velocity field given by Eq. (12), we determine the effective
velocity of particles,

V eff = −〈τv divv〉 = i

∫
τ (k) kj 〈vi(k) vj (−k)〉 dk, (13)

where τ (k) = 2τ0(k/k0)−2/3 is the scale-dependent turbulent time that corresponds to the Kol-
mogorov turbulence. The details of the calculations of the particle effective velocity are given in
Appendix B, and the final expression for V eff has the following form:

V eff = −ADT f [(B �0λ)2/3] λ, (14)

where DT = τ0 〈v2〉/3, λ = |λ|, and the function f (Y ) is given by the following expression:

f (Y ) = 2√
3 Y 2

[
π

6
+ arctan

(
2Y − 1√

3

)
−

√
3

6
ln

(1 + Y )3

1 + Y 3

]
. (15)

For small Y 
 1, the function f (Y ) = 1 − Y/4 + O(Y 2), while for large Y � 1, this function
f (Y ) = 4π/(33/2Y 2) + O(Y−3), and for arbitrary values of the argument Y the function f (Y ) is
shown in Fig. 1.

The equation of state for a perfect gas yields

∇ρ

ρ
= ∇P

P
− ∇T

T
, (16)

where P and T are the mean fluid pressure and temperature, respectively. We assume for simplicity
that the gradient of the mean fluid pressure vanishes, ∇P = 0. In this case, Eq. (14) can be rewritten
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FIG. 2. Effective velocity V eff measured in the units of the r.m.s. (root-mean-square) turbulent vertical
velocity, u(rms)

z , vs the particle diameter d (μm) for atmospheric conditions where the parameter B/α = 1
(dashed-dotted) and for laboratory experiments conditions: the oscillating grid turbulence where the parameter
B/α = 30 (solid) and the multifan produced turbulence where the parameter B/α = 18 (dashed).

in the following form:

V eff = −ADT f [(B δ
T
)2/3]

∇T

T
, (17)

where the dimensionless parameter δ
T

is defined as

δ
T

= �0
|∇T |

T
. (18)

It follows from Eq. (17) that for a weak stratification, B δ
T


 1, the effective particle velocity is
given by the following expression:

V eff = −ADT

[
1 − 1

4
(B δ

T
)2/3

] ∇T

T
, (19)

while for a strong stratification, B δ
T

� 1, the effective particle velocity is given by the following
formula:

V eff = −4πADT

33/2
(B δ

T
)−4/3 ∇T

T
. (20)

To determine the function A, we compare Eq. (19) with Eq. (9) for the particle effective
velocity, V eff , derived for a small Stokes number, St 
 1, and a weak stratification, δ

T

 1

(see Refs. [20–24,37]). This comparison shows that A = α, where the function α is determined
by Eq. (10). Therefore the expression for the effective particle velocity can be written as follows:

V eff = − 2DT α√
3 (B δ

T
)4/3

{
π

6
+ arctan

(
2(B δ

T
)2/3 − 1√
3

)
−

√
3

6
ln

[1 + (B δ
T
)2/3]3

1 + (B δ
T
)2

}
∇T

T
, (21)

where we used Eq. (15). To determine the second function B, we assume that

B = αβ ϕ(St,Re), (22)

where the exponent β should be larger than 3/4. Indeed, when St → ∞, the effective velocity
should vanish, which occurs when β > 3/4 [see Eq. (20)]. We will see in the next section that
a good agreement of the results of laboratory experiments with the theoretical results is achieved
when β = 1 (see Sec. III D). The ratio B/α is a free parameter in the theory to be determined in our
laboratory experiments and atmospheric observations (see Sec. IV).

The effective velocity V eff versus the particle diameter d for conditions pertinent to our laboratory
experiments and the atmospheric turbulence is shown in Fig. 2. Note that the characteristic Reynolds
numbers based on the turbulent integral scale in the atmospheric turbulence vary from 106 to 107,
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and in our laboratory experiments the Reynolds numbers vary from 102 to 103. It follows from
Fig. 2 that the ratio of the effective velocity of inertial particles to the characteristic vertical turbulent
velocity for large Reynolds numbers is less than 1.

C. Turbulent diffusion of inertial particles

Equation (12) also allows us to determine the turbulent diffusion tensor for particles:

DT
ij =

∫
τ (k)〈vi(k) vj (−k)〉 dk. (23)

Using Eqs. (B4)–(B7) given in Appendix B, we obtain

DT
ij = 3DT

2

(
δij

{
1 − 2

3
f [(B δ

T
)2/3]

}
− λi λj

λ2
{1 − 2f [(B δ

T
)2/3]}

)
. (24)

It follows from Eq. (24) that for a weak stratification, B δ
T


 1, the turbulent diffusion tensor for
particles is given by the following expression:

DT
ij = DT

2

[
δij + 3

λi λj

λ2
+ 1

2

(
δij − 3

λi λj

λ2

)
(B δ

T
)2/3

]
, (25)

while for a strong stratification, B δ
T

� 1, it is given by the following formula:

DT
ij = 3DT

2

[
δij − λi λj

λ2
+ 8π

35/2

(
δij − 3

λi λj

λ2

)
(B δ

T
)−4/3

]
. (26)

Equations (24)–(26) show that turbulent diffusion tensor for particles is anisotropic for stratified
turbulence.

D. Effective coefficient of turbulent thermal diffusion

An equation for the mean number density N of inertial particles reads

∂N

∂t
+ ∇· [N (Wg + V eff) − (D + DT ) ∇N ] = 0 (27)

(see Refs. [17,20–24]), where we took into account the effect of gravity for inertial particles and
molecular Brownian diffusion. However, for simplicity we neglected the effects of stratification and
particle inertia on the particle turbulent diffusion coefficient. The steady-state solution of Eq. (27)
reads

∇N

N
= Wg + V eff

D + DT

. (28)

This implies that the dimensionless parameter, δ
N

≡ �0|∇N |/N , characterizing variations of the
mean particle number density, is given by the following formula:

δ
N

= �0

1 + D/DT

∣∣∣∣α f [(B δ
T
)2/3]

∇T

T
− τp g

DT

∣∣∣∣. (29)

When the gradient of the mean temperature, ∇T , is directed along (or opposite to) the vertical
direction, Eq. (29) yields the following ratio:

αeff

α
= 1

1 + D/DT

∣∣∣∣f [(B δ
T
)2/3] + τp g �0

α δ
T
DT

sgn(∇zT )

∣∣∣∣, (30)

where we introduced a new parameter αeff ≡ δ
N
/δ

T
. It follows from Eq. (30) that

for a weak stratification, B δ
T


 1, the ratio αeff/α is given by the following
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FIG. 3. Dependencies of the effective turbulent thermal diffusion coefficient αeff vs the particle diameter d

(μm) for atmospheric conditions where the parameter B/α = 1 (dashed-dotted), and for laboratory experiments
with oscillating grid turbulence where the parameter B/α = 30 (solid), and multifan produced turbulence where
the parameter B/α = 18 (dashed). Vertical line corresponds to the particle diameter d = 0.7 μm used in the
experiments (stars are values obtained from measurements).

formula:

αeff

α
= 1

1 + D/DT

∣∣∣∣1 − 1

4
(B δ

T
)2/3 + τp g �0

α δ
T
DT

sgn(∇zT )

∣∣∣∣, (31)

while for a strong stratification, B δ
T

� 1, it is given by the following expression:

αeff

α
= 1

1 + D/DT

∣∣∣∣ 4π

33/2
(B δ

T
)−4/3 + τp g �0

α δ
T
DT

sgn(∇zT )

∣∣∣∣. (32)

The dependencies of the effective turbulent thermal diffusion coefficient αeff versus the particle
diameter d for conditions pertinent for atmospheric turbulence and laboratory experiments are
shown in Fig. 3. To isolate turbulent thermal diffusion from other effects hereafter we do not take
into account the gravity effect. Inspection of Fig. 3 shows that for the conditions pertinent for our
laboratory experiments the effective turbulent thermal diffusion coefficient αeff increases for very
small particle size d, reaches the maximum at small d and slowly decreases for larger particle size.
In the atmospheric turbulence, the effective turbulent thermal diffusion coefficient αeff behaves in a
similar way, except that αeff reaches the maximum at much larger particle size d.

IV. VALIDATION OF THEORY IN LABORATORY EXPERIMENTS
AND ATMOSPHERIC TURBULENCE

To validate the theory of turbulent thermal diffusion in strongly stratified turbulent flows, we
perform laboratory experiments in different setups: in the oscillating grid turbulence (see, e.g.,
Refs. [27–29,39–41]) and in the multifan produced turbulence (see, e.g., Ref. [30]). We also validate
the theory of turbulent thermal diffusion against data of meteorological observations (see, e.g.,
Ref. [32]).

A. Particles in the oscillating grid turbulence

In this section, we describe very briefly the experimental set-up and measurement facilities
in the oscillating grid turbulence. The details of the experimental setup and measurements in the
oscillating grid turbulence can be found in Refs. [29,39–41]. The experiments in stratified turbulence
have been conducted in a rectangular chamber with dimensions 26 × 58 × 26 cm3 in air flow. In the
experiments, turbulence is produced by two oscillating vertically oriented grids with bars arranged
in a square array. The grids are parallel to the side walls and positioned at a distance of two grid
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meshes from the chamber walls. They are operated at the same amplitude, at a random phase and at
the same frequency up to 10.5 Hz.

A vertical mean temperature gradient in the turbulent air flow was formed by attaching two
aluminium heat exchangers to the bottom and top walls of the test section which allowed us to form
a mean temperature gradient up to 1.15 K cm−1 at a mean temperature of about 308 K when the
frequency of the grid oscillations f = 10.5 Hz. To improve heat transfer in the boundary layers
at the bottom and top walls, we used heat exchangers with rectangular fins 0.3 × 0.3 × 1.5 cm3.
The temperature field was measured with a temperature probe equipped with a vertical array of 12
E-thermocouples in the central part of the chamber in many locations.

The velocity fields were measured using a stereoscopic particle image velocimetry (PIV) with
LaVision Flow Master III system. We obtain velocity maps in the central region of the flow in the
cross-sections parallel and perpendicular to the grid plane. An incense smoke with submicrometer
particles (ρp/ρ ∼ 103) was used as a tracer for the PIV measurements. Smoke was produced by high
temperature sublimation of solid incense grains. These particles have an approximately spherical
shape and the mean diameter of 0.7 μm.

We determined the mean and the r.m.s. (root-mean-square) velocities, two-point correlation
functions, and an integral scale of turbulence from the measured velocity fields. Series of 520
pairs of images acquired with a frequency of 2 Hz, were stored for calculating velocity maps and
for ensemble and spatial averaging of turbulence characteristics. We measured velocity in a flow
domain 32.8 × 24.8 cm2 with a spatial resolution of 0.24 mm/pixel. The mean and r.m.s. velocities
for every point of a velocity map were calculated by averaging over 520 independent velocity maps,
and then they were spatially averaged over the central flow region. An integral scale of turbulence,
�, was determined from the two-point correlation functions of the velocity field. The characteristic
turbulence time in the experiments is much smaller than the time during which the velocity fields
are measured (260 s). We performed experiments for different temperature differences 	T between
the top and bottom plates.

Spatial distributions for 0.7 and 10 μm particles were determined by a PIV system using the
effect of Mie light scattering by particles in the flow [27–29]. In order to characterize the spatial
distribution of particle number density in the nonisothermal flow, the distribution of the scattered
light intensity measured in the isothermal case was used for the normalization of the scattered light
intensity obtained in a nonisothermal flow under the same conditions. The scattered light intensities
in each experiment were also normalized by corresponding scattered light intensities averaged over
the vertical coordinate.

For the experimental study of turbulent thermal diffusion of inertial particles, we used borosilicate
hollow glass particles having an approximately spherical shape, a mean diameter of 10 μm and
the material density ρp ≈ 1.4 g cm−3. These particles have been injected in the chamber using
an air jet in order to improve particle mixing and prevent from particle agglomeration. We used a
custom-made acoustic feeding device for injecting particles into the flow comprising an acrylic glass
chamber with a size of 9 × 9 × 4 cm3. Two plastic slabs inside the chamber are used as air guides to
achieve optimal flow with entrained particles. Particle dispensation zone (a disk of 25-mm diameter
and 5-mm thickness) is located at the bottom of the chamber. A standard woofer (oval 2 × 3.5”) at a
frequency of 220 Hz sways a latex membrane on which particles are loaded. A cylindrical cavity is
used to contain the particles on the latex membrane. The batch of particles on the membrane should
roughly fill the cavity. When the membrane vibrates, particles are entrained into air. The particle
feeding device has a pressurized air inlet with a bellow having a 8-mm diameter tube with a standard
quick release connector. The entrained particles leave the chamber with a stream of air through
the outlet.

The parameters in the oscillating grid turbulence are as follows: the integral length scales in
the vertical and horizontal directions are �z = 1.4 cm and �y = 2.2 cm; the characteristic turbulent
vertical and horizontal velocities (the root mean square velocity) are uz = 7.8 cm s−1 and uy =
17.3 cm s−1; the characteristic turbulent times in these directions are τz = 0.18 s and τy = 0.13 s;
the vertical and horizontal Reynolds numbers are Rez ≡ �zuz/ν = 73 and Rey ≡ �yuy/ν = 254.
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FIG. 4. Effective turbulent thermal diffusion coefficient αeff vs the parameter δ
T

for 0.7-μm particles with
the parameter B/α = 21 (solid) and for 10-μm particles with the parameter B/α = 18 (dashed). The laboratory
experiments with oscillating grid turbulence are performed with 0.7-μm particles (circle) and 10-μm particles
(star) for different temperature differences 	T between the top and bottom heat exchangers. For comparison,
the function αeff (δ

T
) is also shown for atmospheric turbulence (dashed-dotted) for 1-μm particles and the

parameter B/α = 1.

In Fig. 4, we show the effective turbulent thermal diffusion coefficient αeff versus the parameter
δ

T
for 0.7-μm particles with the parameter B/α = 21 and for 10-μm particles with the parameter

B/α = 18. The laboratory experiments with oscillating grid turbulence are performed with 0.7-μm
particles and 10-μm particles for different temperature differences 	T between the top and bottom
heat exchangers. For comparison we also show in Fig. 4 the function αeff(δ

T
) for atmospheric

turbulence for 1-μm particles, where the parameter B/α = 1. The measured values of αeff are in a
good agreement with theoretical predictions.

B. Particles in the multifan produced turbulence

In this section, we describe very briefly the experimental setup and measurement facilities in
the multifan produced turbulence. The details of the experimental setup and measurements in the
multifan produced turbulence can be found in Ref. [30]. Experiments were conducted in a multifan
turbulence generator that is the perspex cube box with dimensions 40 × 40 × 40 cm3. It includes
eight fans with rotation frequency of up to 2800 rpm mounted in the corners of the box and facing
the center of the box.

At the top and bottom walls of the Perspex box two heat exchangers with rectangular 0.3 × 0.3 ×
1.5 cm3 fins were installed to improve heat transfer in the boundary layers at the bottom and top
walls. The upper wall was heated up to 343 K, the bottom wall was cooled to 283 K. Two additional
fans were installed at the bottom and top walls of the chamber in order to produce a large mean
temperature gradient (∼0.92 K cm−1) in the core of the flow. The temperature was measured with
a high-frequency response thermocouple which was glued externally to a wire. Velocity fields and
particle spatial distribution were determined using a digital PIV system (see previous subsection).
The laboratory experiments with the multifan produced turbulence are performed with 0.7-μm
particles for 	T = 50 K.

The parameters of the multifan produced turbulence are as follows: the integral length scales
in the vertical and horizontal directions are �z = 1.64 cm and �y = 1.49 cm; the characteristic
turbulent vertical and horizontal velocities (the root mean square velocity) are uz = 80 cm s−1

and uy = 71 cm s−1; the characteristic turbulent times in these directions are τz = 2.05 × 10−2 s
and τy = 2.1 × 10−2 s; the vertical and horizontal Reynolds numbers are Rez ≡ �zuz/ν = 875 and
Rey ≡ �yuy/ν = 705.

Unfortunately, the region of isotropic and homogeneous turbulence in the multifan produced
turbulence is not large. The presence of 10 fans in this setup does not allow us to perform velocity
and temperature measurements, and to obtain spatial profiles of particle number density in many

064605-10



TURBULENT THERMAL DIFFUSION IN STRONGLY . . .

0.002 0.006 0.01
0

1

2

3

δ
T

α
eff

FIG. 5. Effective turbulent thermal diffusion coefficient αeff vs the parameter δ
T

for 0.7-μm particles (solid)
and for 10-μm particles (dashed) for the parameter B/α = 18. The laboratory experiments with the multifan
produced turbulence are performed with 0.7-μm particles for the temperature difference 	T = 50 K between
the top and bottom heat exchangers (square).

locations. This is the reason why we performed only several experiments in the multifan produced
turbulence.

In Fig. 5, we show the effective turbulent thermal diffusion coefficient αeff versus the parameter δ
T

for 0.7-μm particles (solid line) and for 10-μm particles (dashed line) for the parameter B/α = 18.
The measured value of αeff is in an agreement with theoretical predictions.

C. Particles in the atmospheric turbulence

Tropopause in the atmosphere is a well-known region with strong gradients of temperature
and also with substantial amount of aerosol particles, which remain there over long time (see,
e.g., Ref. [42]). The theory of turbulent thermal diffusion for small temperature stratifications and
small Stokes numbers has been previously applied in Ref. [32] to the GOMOS (Global ozone
monitoring by occultation of stars) aerosol observations near the tropopause in order to explain the
shape of aerosol vertical profiles with elevated concentrations located almost symmetrically with
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FIG. 6. Effective turbulent thermal diffusion coefficient αeff vs the parameter δ
T

for 1-μm particles and
B/α = 1 (solid) and for 10-μm particles and different values of the parameter B/α: B/α = 1 (dashed), 2
(dashed-dotted), 5 (dotted), and other parameters corresponds to the atmospheric turbulence conditions.
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respect to the temperature profile. The altitude of the GOMOS measurements is in the range from
5 to 20 km. Analysis of data of simultaneous observations of the vertically resolved aerosol
concentrations and mean temperature in the vicinity of the tropopause shows that the aerosol
concentration and temperature profiles are often anticorrelated [32]. These observations are explained
using the effect of turbulent thermal diffusion, where the turbulent flux of particles is directed to the
mean temperature minimum.

In Fig. 6, we show the effective turbulent thermal diffusion coefficient αeff obtained from the
generalized theory versus the parameter δ

T
for 1 μm particles and B/α = 1, and for 10-μm particles

and different values of the parameter B/α. It is seen in Fig. 6 that αeff depends strongly on the particle
size. Note that in the atmospheric turbulent flows the parameter δ

T
varies in the range from 10−3

to 10−2 (see, e.g., Ref. [32]). This implies that αeff/α is of the order of 1 in this range of the mean
temperature variations. For example, for aerosols having the diameter of 1–3 μm, the coefficient
αeff ≈ α exceeds 1 when the turbulent diffusion coefficient DT ∼ 104 cm2 s−1 or less. This is in
agreement with the data obtained from the GOMOS aerosol observations near the tropopause [32].

V. DISCUSSION AND CONCLUSIONS

In the present study, we have investigated the turbulent thermal diffusion of small inertial particles
in temperature stratified turbulence. This effect results in the appearance of a nondiffusive turbulent
flux of particles directed along the turbulent heat flux.

The theory of turbulent thermal diffusion has been previously developed only for small
temperature gradients and small Stokes numbers [20–26]. In the present study, we have generalized
the theory of turbulent thermal diffusion for arbitrary temperature gradients and Stokes numbers.
We have also performed laboratory experiments in the oscillating grid turbulence and in the multifan
produced turbulence to validate the theory of turbulent thermal diffusion in strongly stratified
turbulent flows.

Turbulent flux of inertial particles caused by turbulent thermal diffusion is proportional to
the product of the effective velocity of inertial particles and the mean particle number density.
We have shown that the ratio of the effective velocity of inertial particles to the characteristic
vertical turbulent velocity for large Reynolds numbers is less than 1. We demonstrated that the
effective velocity of inertial particles increases with the increase of the Stokes numbers, reaches
the maximum at small Stokes numbers, and decreases for larger Stokes numbers. In the laboratory
experiments, the effective velocity of inertial particles reaches the maximum at St = 10−4, while
for the atmospheric turbulence it reaches the maximum at St = 0.05. The effective coefficient of
turbulent thermal diffusion decreases with the mean temperature gradient. For very large Reynolds
numbers, this dependence on the mean temperature gradient is very weak. The obtained results
of the laboratory experiments are in a good agreement with the theoretical predictions. However,
the results obtained in our laboratory experiments clearly indicate the difficulty associated with the
experimental observation of the phenomenon of turbulent thermal diffusion, i.e., this effect is quite
strong only in a certain range of values of Stokes number, flow Reynolds number and temperature
gradient.
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APPENDIX A: MODEL OF TURBULENT VELOCITY FIELD

The anelastic condition div u = u · λ in the k space implies that k
(i)
1 〈ui(k1) uj (k2)〉 = 0 and

k
(j )
2 〈ui(k1) uj (k2)〉 = 0, where k

(i)
1 = ki + iλi and k

(i)
2 = −ki + iλi . We consider the model of the
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turbulent velocity field in the following form:

〈ui(k1) uj (k2)〉 = −〈u2〉�(k)
[
δij (k1 · k2) − k

(i)
1 k

(j )
2

]
, (A1)

where k1 · k2 = −(k2 + λ2) and k
(i)
1 k

(j )
2 = −(ki kj − iλi kj + iλj ki + λi λj ), so that

〈ui(k1) uj (k2)〉 = 〈u2〉�(k) k2

[
δij − ki kj

k2
+ i

k2
(λi kj − λj ki) + λ2

k2

(
δij − λi λj

λ2

)]
. (A2)

Here, �(k) is unknown function to be determined below. Integrating the correlation function
〈ui(k1) ui(k2)〉 over k, we obtain∫

〈ui(k1) ui(k2)〉 dk = 2〈u2〉
∫

�(k) (k2 + λ2) dk = 8π〈u2〉
∫

�(k) (k2 + λ2) k2 dk. (A3)

On the other hand, ∫
〈ui(k1) ui(k2)〉 dk ≡ 〈u2〉

∫
E(k) k2 dk, (A4)

where E(k) is the spectrum function of the turbulent velocity field. Comparing Eqs. (A3) and (A4),
we obtain the function �(k):

�(k) = E(k)

8π (k2 + λ2)
. (A5)

Substituting this function into Eq. (A1), we obtain Eq. (11).

APPENDIX B: DERIVATION OF EQUATION FOR THE EFFECTIVE VELOCITY

In this Appendix, we derive equation for the effective velocity of particles. Using Eqs. (12) and
(13), we obtain

V eff = −〈τv divv〉 = i

∫
τ (k) kj 〈vi(k) vj (−k)〉 dk = −2DT Aλ

∫ 1

0

τ̄ dτ̄

1 + aτ̄ 3
, (B1)

where a = (B �0λ)2, �0 = k−1
0 and τ (k) = 2τ0τ̄ (k). For the integration over angles in k space in

Eq. (B1), we used the following integrals:

∫ 2π

0
dϕ

∫ π

0
sin ϑ dϑ = 4π, (B2)

∫ 2π

0
dϕ

∫ π

0
sin ϑ dϑ

ki kj

k2
= 4π

3
δij . (B3)

Now let us calculate the integral over τ̄ in Eq. (B1):

f (a)=2
∫ 1

0

τ̄ dτ̄

1 + aτ̄ 3
= 2

a2/3

∫ a1/3

0

X dX

1 + X3
= 2

a2/3

(∫ a1/3

0

dX

1−X + X2
−

∫ a1/3

0

dX

1 + X3

)
, (B4)

where X = a1/3τ̄ , and

∫
dX

1 + X3
= 1

6
ln

(1 + X)3

1 + X3
+ 1√

3
arctan

2X − 1√
3

, (B5)

∫
dX

1 − X + X2
= 2√

3
arctan

2X − 1√
3

. (B6)
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Substituting Eqs. (B5) and (B6) into Eq. (B4), we obtain the expression for the function f (a):

f (a) = 2√
3 a2/3

[
π

6
+ arctan

(
2a1/3 − 1√

3

)
−

√
3

6
ln

(1 + a1/3)3

1 + a

]
. (B7)

Therefore the effective velocity of particles caused by turbulent thermal diffusion is V eff =
−ADT f [(B �0λ)2] λ.
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