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Three-dimensional slow Rossby waves in rotating spherical density-stratified convection
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We develop a theory of three-dimensional slow Rossby waves in rotating spherical density stratified convection.
The Rossby waves, with frequencies which are much smaller than the rotating frequency, are excited by a
nonaxisymmetric instability from the equilibrium based on the developed convection. These waves interact with
the inertial waves and the density stratified convection. The density stratification is taken into account using the
anelastic approximation for very low-Mach-number flows. We study long-term planetary Rossby waves with
periods which are larger than two years. We suggest that these waves are related to the southern oscillation and
El Niño. The El Niño is an irregularly periodical variation in winds and sea surface temperatures over the tropical
Pacific ocean, while the southern oscillation is an oscillation in surface air pressure between the tropical eastern
and the western Pacific ocean. The strength of the southern oscillation is characterized by the southern oscillation
index (SOI). The developed theory is applied for the interpretation of the observed periods of the SOI. This study
demonstrates a good agreement between the theoretical predictions and the observations.
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I. INTRODUCTION

Rossby waves [1,2], which are caused by the combined
effect of rotation and curvature of the surface, exist in various
hydrodynamic flows (see [3–5], and references therein).
Rossby waves have been found in different geophysical
phenomena (see [3,4,6–9], and references therein), e.g., they
are observed in the atmosphere as the large meanders of the
midlatitude jet stream that are responsible for the prevailing
seasonal weather patterns and their day-to-day variations (see
[3,6,7], and references therein). Mesoscale variability in the
ocean, in scales of tens to hundreds of km and tens to hundreds
of days, occurs as linear Rossby waves and as nonlinear
vortices or eddies (see [10–15], and references therein).

The nonlinear dynamics of Rossby waves can cause the
formation of zonal flows or zonal jets (see [5,16–18], and
references therein). Zonal flows are coherent structures with
a jetlike velocity profile in anisotropic flows due to the
large aspect ratio and planetary rotation. Zonal flows are
produced near the tropopause in the atmosphere (the polar
and subtropical jet streams) and in the oceans (the Antarctic
circumpolar current) [5,19]. The generation of zonal flows are
caused by the generation of small-scale meridional Rossby
waves by a modulational instability and nonlinear interaction
of the Rossby waves [5]. Generation of zonal flows in the
Earth’s atmosphere occurs in unstably stratified flows.

Rossby waves also can be important in solar and stellar
astrophysics, e.g., in the tachocline layer below the convection
zone of the sun and solarlike stars [20–22]. In plasma physics,
Rossby waves are analogous to the drift waves which are
caused by the combined effect of the drift motions perpendic-
ular to the electric and magnetic fields and large-scale density
gradient (see [5,18], and references therein).
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It was suggested that Rossby waves can be related to the
El Niño and southern oscillation (see [23–26], and references
therein). The El Niño is an irregularly periodical variation of
winds and sea surface temperatures over the tropical Pacific
ocean, while the southern oscillation is an oscillation of surface
air pressure between the tropical eastern and the western
Pacific ocean.

The strength of the southern oscillation is characterized by
the southern oscillation index (SOI), and is determined from
fluctuations of the surface air pressure difference between
Tahiti and Darwin, Australia (see [27,28], and references
therein). For example in Fig. 1 we show the time dependence
of the SOI after a five month window averaging, where the
time is measured in years, t = 0 corresponds to the year 1878,
and the total time interval of the observations of the SOI is 138
years. Although this function looks like a random signal, the
spectrum of the SOI shown in Fig. 2 contains several typical
periods which are larger than two years.

In spite of many observations of the SOI, it is not clear how
Rossby waves can explain these observations. The classical
two-dimensional Rossby waves are usually considered in the
β-plane approximation. In the framework of this approxi-
mation, the motions are studied in a quasi-two-dimensional
incompressible thin fluid layer of constant density with a
free surface in hydrostatic balance on the rotating plane
with a variable Coriolis parameter, that depends linearly on
the horizontal coordinate (see [3,4], and references therein).
However, the periods of the classical planetary Rossby waves
investigated in numerous studies do not exceed the time scales
of about 100 days. On the other hand, the periods of oscillations
related to the SOI are larger than two years [see Fig. 2].

The goal of the present study is to develop a theory of slow
three-dimensional Rossby waves in rotating spherical density
stratified convection, and apply the theory to explain the
observations related to the southern oscillation. This paper is
organized as follows. In Sec. II, we consider the classical two-
dimensional Rossby waves in spherical geometry where we
do not use the β-plane approximation. In Sec. III, we explain
the basic ideas related to the theory of the three-dimensional

2470-0045/2017/96(3)/033106(7) 033106-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.96.033106


T. ELPERIN, N. KLEEORIN, AND I. ROGACHEVSKII PHYSICAL REVIEW E 96, 033106 (2017)

0 20 40 60 80 100 120

-30

-20

-10

0

10

20

SOI

t

FIG. 1. Time dependence of the southern oscillation index (SOI)
after 5 month window averaging, where the time is measured in years,
t = 0 corresponds to the year 1878, and the total time interval of the
observations of the SOI is 138 years. The data are taken from [29].

slow Rossby waves in rotating spherical density stratified
convection. In this section we also apply the developed theory
for the interpretation of the observed periods of the SOI. In
Sec. IV, we discuss our results and draw some conclusions. In
Appendices A and B we present detailed derivations related to
the developed theory.

II. TWO-DIMENSIONAL ROSSBY WAVES

We start with traditional two-dimensional Rossby waves. To
this end, we neglect viscosity in a Navier-Stokes equation for
the velocity field v(t,r) and consider incompressible rotating
flow:

∂v

∂t
+ (v·∇)v = −∇p

ρ
+ 2v × �, (1)

∇·v = 0, (2)

where � is the angular velocity, p is the fluid pressure, and
ρ is the fluid density. We use spherical geometry, (r,ϑ,ϕ),
and consider the two-dimensional (2D) flow with vr = 0.
This implies that we study the two-dimensional flow on the
spherical surface with the constant radius R. The equation for
the radial component of vorticity wr (ϑ,ϕ) is given by

∂wr

∂t
= −2(v·∇)�r , (3)
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FIG. 2. The spectrum ESOI(f ) of the SOI. The frequency is
measured in the units of inverse years. The shown periods of
oscillations (13.88; 6.61; 4.96; 3.96; 3.08; 2.57) are measured in
years.

where w=∇×v is the vorticity and �=�(cos ϑ,−sin ϑ,0).
Equation (3) can be rewritten as follows:

∂wr

∂t
= 2�

R
vϑ sin ϑ. (4)

For incompressible two-dimensional flow, we introduce the
stream function �(ϑ,ϕ) defined as

v = ∇×[er �(ϑ,ϕ) R]. (5)

Equations (4) and (5) yield the following equation for the
stream function �(t,ϑ,ϕ):

∂	�

∂t
= −2�

R2

∂�

∂ϕ
, (6)

where wr = −	� and vϑ = sin−1 ϑ (∂�/∂ϕ). We seek for a
solution of this equation in the following form:

�(t,ϑ,ϕ) = C
,m P m

 (ϑ) exp(iωt + imϕ), (7)

where P m

 (ϑ) is the associated Legendre function (spherical

harmonics) of the first kind, that is the eigenfunction of the
operator R2	, i.e.,

R2	P m

 (ϑ) = −
(
 + 1)P m


 (ϑ). (8)

Substituting Eq. (7) into Eq. (6) and using Eq. (8), we obtain
the well-known expression for the frequency of the classical
two-dimensional Rossby waves in the incompressible flow [3]:

ω
(2D)
R = 2�m


(
 + 1)
. (9)

III. THREE-DIMENSIONAL ROSSBY
WAVES IN CONVECTION

In this section we study an excitation of slow three-
dimensional (3D) Rossby waves with a frequency that is much
smaller than the rotation frequency. We consider a spherical
rotating layer with the radius R in the presence of a density
stratified convection, use the anelastic approximation for very
low-Mach-number flows, and neglect dissipative terms, for
simplicity. The governing equations written in a rotating frame
of reference read

∂v

∂t
+ (v·∇)v = −∇

(
p

ρ

)
− βθ + 2v × �, (10)

∂θ

∂t
+ (v·∇)θ = −(v·∇)θeq, (11)

∇·(ρ v) = 0, (12)

where β = g/T0 is the buoyancy parameter, g is the ac-
celeration due to the gravity, and θ = T (p0/p)1−1/γ is the
potential temperature with equilibrium value θeq. Here T is
the physical temperature with the reference value T0, p is the
fluid pressure with the reference value p0, ρ is the fluid density,
and γ = cp/cv is the ratio of specific heats.

We linearize Eqs. (10)–(12), take twice the curl from the
equation of motion (10) to exclude the pressure term, use
spherical coordinates r,ϑ,ϕ, and write the obtained equations
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for the radial components of velocity and vorticity vr,wr :

(�·∇ − 	)
∂vr

∂t
= 2(� · ∇)wr + 2(� × ∇)r (�·v)

+ 2r−1 �ϑ ∇rvϕ − β	⊥θ, (13)

∂wr

∂t
= 2(� · ∇)vr − 2�r (�·v) − 2(v·∇)�r , (14)

∂θ

∂t
= −(v·∇)θeq, (15)

where � = −∇ρ/ρ = const, and the continuity equation (12)
reads ∇·v = �·v. Let us rewrite Eqs. (13)–(15) using new
variables: U = √

ρ v, W = √
ρ w and � = √

ρ θ :

(
�2

4
− 	

)
∂Ur

∂t
= (2� · ∇ + � · �)Wr + 2(� × ∇)r (�·U)

+ r−1 �θ (2∇r + �)Uϕ − β	⊥�, (16)

∂Wr

∂t
= (2� · ∇ − � · �)Ur + 2�

r
Uϑ sin ϑ, (17)

∂�

∂t
= −�2

b

β
Ur − Uϑ∇ϑ�eq, (18)

∇·U = 1

2
�·U, (19)

where �2
b = β∇r�eq and 	⊥ is the angular part of the

Laplacian 	. We seek for a solution of Eqs. (16) to (19) using
a basis of spherical vector functions that are eigenfunctions of
the operator curl in spherical coordinates. In particular, U is
given by the following expression:

U =
∑

,m

exp (λt − ik r)[ÂrY r + ÂpY p + ÂtY t], (20)

where the coefficients Âr,Âp,Ât depend on 
 and m, and the
vector basis functions (radial, poloidal, and toroidal) are given
by

Y r = erY
m

 (ϑ,ϕ), Y p = r ∇Ym


 (ϑ,ϕ),

Y t = (r×∇)Ym

 (ϑ,ϕ), (21)

and Ym

 (ϑ,ϕ) is the eigenfunction of the operator r2 	⊥ with

the eigenvalue −
(
 + 1).
Using the procedure described in Appendix A we obtain

the following dispersion equation:

(
λ − 2iω

(2D)
R

) (
λ + iω

(3D)
R

) + 2�2

(
1 + 3iσ


2 (1 + σ 2)

)

+ �2
bHρ

R

(
iω

(3D)
R

λ
+ 4
2 Hρ

R (1 + σ 2)

)

−ω
(2D)
R

(
ω

(2D)
R + ω

(3D)
R

) = 0, (22)

where 
2 � 1, σ = 2k Hρ , Hρ = 1/|�|,

ω
(3D)
R = 8m�Hρ

R (1 + σ 2)
, (23)

and ω
(2D)
R is the frequency of the two-dimensional Rossby

waves determined by Eq. (9). Equation (22) determines three
modes: the convective mode, the inertial waves, and the
three-dimensional Rossby waves. These Rossby waves are
due to the combined effect of rotation and the curvature of
the surface in density stratified developed convection. The
inertial waves are caused only by rotation and described by
the following dispersion relation: ωI = 2(� · k)/k, where k is
the wave vector.

Let us justify the assumption behind the condition 
2 �1;
m2 that is used for the derivation of Eqs. (22) and (23). We
study excitation of the three-dimensional slow Rossby waves
from the equilibrium based on the developed convection.
According to the observations (see, e.g., [7]), six large-scale
convective cells are observed in the Earth’s atmospheric
large-scale circulation (the Hadley cell, the midlatitude cell,
and the polar cell, i.e., there are three convective cells in the
northern hemisphere and three convective cells in the southern
hemisphere). These cells can be interpreted in terms of the
solution of Eqs. (16) to (19) in the form of the spherical
functions Ym


 with 
 = 6 and m = 0 (i.e., the axisymmetric
modes). The solutions for the slow three-dimensional Rossby
waves are not axisymmetric, and they have m = 1 or m = 2.
This is the reason for the assumption that 
(
 + 1) � 1; m2.

Let us determine the conditions for the existence
of the slow 3D Rossby waves. The balance 2�2 +
(�2

bHρ/R) (iω(3D)
R /λ) = 0 with λ = −iω

(3D)
R determines the

Brunt-Väisälä frequency:

�b = �

(
2 R

Hρ

)1/2

, (24)

so the frequency of the three-dimensional slow Rossby waves
is given by

ωR = −ω
(3D)
R . (25)

The frequencies of the slow three-dimensional Rossby waves,
ω

(3D)
R , are smaller than some typical frequencies in the system:

ω
(3D)
R � ω

(2D)
R � � � |�b|. In particular, since 
 � m the

frequency of the 2D Rossby waves ω
(2D)
R is much smaller

than the angular velocity � [see Eq. (9)]. Since Hρ � R, the
frequency of the 3D Rossby waves ω

(3D)
R is much less than

the angular velocity �. The period of rotation, T� = 2π/�,
is 24 h; the periods of the classical planetary two-dimensional
Rossby waves T

(2D)
R = 2π/ω

(2D)
R do not exceed the time scales

of the order of 100 days. In the Earth’s atmosphere, the periods
of the slow three-dimensional Rossby waves, TR = 2π/ω

(3D)
R ,

vary in the range from 3 to 14 years (see below).
In Fig. 3 we show the period TR = 2π/|ω(3D)

R | of the slow
Rossby waves as a function of the normalized characteristic
scale Lz/Hρ , where Lz = π/k. Let us invoke the three-
dimensional slow Rossby waves for the interpretation of the
observed periods of the southern oscillation. The southern
oscillation is characterized by the SOI (see Fig. 2), that
contains several typical periods which are larger than two
years. For example, the period TR = 2π/|ω(3D)

R | = 13.88 years
is obtained for Lz = 7.3 km, where in Eqs. (23) and (25) we
took into account that m = 1, Hρ = 8.3 km, � = 2.27×103

rad/years, and R = 6400 km. Here k = π/Lz corresponds
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FIG. 3. The period TR = 2π/|ω(3D)
R | (measured in years) of the

slow 3D Rossby waves vs the characteristic scale Lz/Hρ , where
Lz =π/k for m=1 (solid) and m=2 (dashed). The stars (for m=1)
and squares (for m = 2) correspond to the observed periods of
the SOI; see Fig. 2. The vertical sizes of these observed modes,
Lz = 7.3; 10.6; 12.4; 16.3 km, determine the wave numbers k of the
slow 3D Rossby waves; see Eqs. (23) and (25).

to the boundary conditions: vr (r = R) = vr (r = R + Lz) = 0
and vϑ (r = R) ≈ −vϑ (r = R + Lz). Similarly, for m = 1, the
period equals TR = 6.61 years for Lz = 10.6 km; TR = 4.96
years is obtained for Lz = 12.4 km; and TR = 3.96 years is
obtained for Lz = 16.3 km. On the other hand, for m = 2,
we obtain that the period equals TR = 3.96 years for Lz =
9.69 km and TR = 2.57 years is obtained for Lz = 12.1 km.
Note that the vertical scales Lz are of the order of the height
of the tropopause. These estimates and Fig. 3 show that the
three-dimensional slow Rossby waves are able to describe the
observed periods of the SOI.

Note that the frequency of the classical Rossby waves,

ω = − βf kx

k2
x + k2

y + R−2
d

, (26)

is obtained, e.g., using the β-plane approximation and as-
suming that the Coriolis parameter f = f0 + βf y (see [3,4],
and references therein). Here f0 = 2� sin φ, Rd = √

gH/f0

is the Rossby deformation radius, H is the average depth of
the layer, φ is the contact point latitude, the coordinate y

is in the meridional direction (northward in the geophysical
context), the coordinate x is in the zonal direction (eastward),
and the vertical coordinate z is in the direction normal to the
tangent plane, i.e. opposite to the effective gravity g, which
includes a small correction due to the centrifugal acceleration.
When βf is small (i.e., the slope of a rotating container is
sufficiently small), the frequency of the Rossby waves is small,
i.e., the period of the Rossby waves is large. However, when
Eq. (26) is applied to the Earth’s atmosphere, it does not yield
the time scales ranging from 3 to 14 years (which are the
typical time scales for the SOI). In particular, the periods
of the classical Rossby waves described by Eq. (26) do not
exceed the time scales of the order of 100 days in the Earth’s
atmosphere.

Let us discuss the mechanism of excitation of the slow
Rossby waves. The dispersion equation (22) allows us to
determine the growth rate of the instability that excites the

1 1.5 2 2.5 3
0

100

200

300

400

Lz/Hρ

γ
−1

FIG. 4. The characteristic time Tinst = γ −1
R (measured in years)

of the excitation of the 3D Rossby waves vs the characteristic scale
Lz/Hρ of the convective cells for m = 1 (solid) and m = 2 (dashed).

slow Rossby waves:

γR = 3σω
(3D)
R


2(1 + σ 2)
. (27)

In Fig. 4 we show the characteristic time Tinst = γ −1
R of

the excitation of the three-dimensional slow Rossby waves
vs the characteristic scale Lz/Hρ . This instability is a non-
axisymmetric instability modified by rotation in a density
stratified convection. The instability causes excitation of the
3D Rossby waves interacting with the convective mode and the
inertial wave mode. The energy of this instability is supplied
by thermal energy of convective motions. This instability is
different from the convective instability in unstably stratified
flows. In particular, the convective instability can be excited in
the axisymmetric flows.

IV. DISCUSSION

In the present study we propose a theory of three-
dimensional slow Rossby waves in rotating spherical density
stratified convection. The frequency of these waves [see
Eq. (23)] is approximately determined by the following
balance in Eq. (16):(

�2

4
− 	

)
∂Ur

∂t
∼ 2(� × ∇)r (�·U). (28)

This implies that the slow Rossby waves exist only in three-
dimensional density stratified flows, while in the incompress-
ible flows there occur classical two-dimensional Rossby waves
(with vanishing radial velocity) which exist even without
convection. The slow three-dimensional Rossby waves emerge
when the convective mode is approximately balanced by the
inertial mode, i.e., there is a balance between the Coriolis and
buoyancy forces. The slow Rossby waves are excited by a
nonaxisymmetric instability with the characteristic time that
is much larger than the period of these waves. In this study
we have not taken into account the effects of turbulence, e.g.,
turbulence causes dissipation of waves. In atmospheric flows,
the strongest turbulence is located at the turbulent boundary
layer at the height that is of the order of 1 km.
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We apply the developed theory for the three-dimensional
slow Rossby waves to interpret the observations of the
southern oscillation characterized by the SOI. We found a good
agreement between the theoretical results and observations of
the SOI.
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APPENDIX A: DERIVATION OF THE DISPERSION
EQUATION (22)

We seek for a solution of Eqs. (16) to (19) using a basis
of spherical vector functions that are the eigenfunctions of
the operator curl in spherical coordinates. The function U
is given by U = ∑


,m exp(λt − ik r)[ÂrY r + ÂpY p + ÂtY t],
where the coefficients Âr,Âp,Ât depend on 
 and m, and Y r =
erY

m

 (ϑ,ϕ), Y p = r ∇Ym


 (ϑ, ϕ), Y t = (r × ∇)Ym

 (ϑ,ϕ), and

Ym

 (ϑ,ϕ) is given by Eq. (B1). The properties of these functions

are given in Appendix B. Using Eqs. (B17) and (B18) given
in Appendix B, we obtain

Wr = −r−1
∑

,m


(
 + 1) Ât (er · Y r) exp (λt − ik r). (A1)

Using Eqs. (20), (A1), and (B15) we get

Uϑ =
[(

�

2
− ∇r − 2

r

)
∇ϑ	−1

⊥ Ur − ∇ϕ	−1
⊥ Wr

]
, (A2)

Uϕ =
[(

�

2
− ∇r − 2

r

)
∇ϕ	−1

⊥ Ur + ∇ϑ	−1
⊥ Wr

]
. (A3)

Using Eqs. (A2) and (A3), we rewrite Eqs. (16) and (17) in the
following form:

L̂Wr = �̂(−)Ur, (A4)

M̂Ur = �̂(+)Wr − β	⊥�, (A5)

where

M̂ =
(

�2

4
− 	

)
∂

∂t
+ 2�

r2

[(
�2

4
− ∇2

r

)
	−1

⊥ + �r

]
∂

∂ϕ
,

(A6)

L̂ = ∂

∂t
+ 2�

r2

∂

∂ϕ
	−1

⊥ , (A7)

�̂(±) = 2(� · ∇)

±
[
−2� sin ϑ

r

(
∇r + �

2

)
∇ϑ	−1

⊥ + � · �

]
. (A8)

The system of Eqs. (A4) and (A5) is reduced to the following
equation: [(

L̂M̂ − �2
b 	⊥ Ĥ − �̂(+) �̂(−)

) ∂

∂t

−�2
b Ĥ

2�

r2

∂

∂ϕ
− �2

bϑ �̂(−) ∇ϕ

]
ζr = 0, (A9)

where Ur = ∂ζr/∂t implies the definition of ζr ,

Ĥ = 1 +
(

�2
bϑ

�2
b

)(
−∇r + �

2

)
∇ϑ 	−1

⊥ , (A10)

and �2
bϑ = β (eϑ · ∇ϑ ) �eq. Using Eqs. (A9), we arrive at the

dispersion equation (22) for 
2 � 1.
Using Eqs. (A2)–(A4), we determine the components of

the function U and the radial component of the function W for
the three-dimensional slow Rossby waves:

Ur = iV0 exp(γRt) exp [i(ωRt − k r)] Ym

 , (A11)

Uθ = R V0 exp(γRt)

4Hρ sin θ
exp [i(ωRt − k r)] (i − σ )

×(
Ym


−1 + Ym

+1

)
, (A12)

Uϕ = R V0 exp(γRt)

8m Hρ sin θ
exp[i(ωRt − k r)]

{
(3iσ − 1) Ym




+ [iσ (
 − 1) + 
 + 1] Ym

−2 − [iσ (
 + 2) + 
] Ym


+2

}
,

(A13)

Wr = V0 exp(γRt)

4m Hρ

exp[i(ωRt − k r)]
{
(
 − 1) [iσ (
 − 1)

+ 
 + 1] Ym

−1 + (
 + 2) [iσ (
 + 2) + 
] Ym


+1

}
, (A14)

where V0 = −iÂr. The equation for the function P = √
ρ p

is obtained by calculating the divergence of Eq. (10) and using
Eq. (A14):

P = −ρV0 �Hρ exp(γRt)

m (σ + i)2
exp [i(ωRt − k r)]

×{
(
 − 1) [iσ (
 − 1) + 
 + 1]

(
Ym


−2 + Ym



)
+ (
 + 2) [iσ (
 + 2) + 
]

(
Ym


+2 + Ym



)}
. (A15)

APPENDIX B: PROPERTIES OF THE SPHERICAL
VECTOR FUNCTIONS

The spherical vector functions are the eigenfunctions of the
operator curl in spherical coordinates. These functions can be
presented as

Ym

 (ϑ,ϕ) = A
,m P

|m|

 (ϑ) exp(imϕ), (B1)

where the coefficient A
,m is determined by the normaliza-
tion condition,

∫
Ym


 (ϑ,ϕ) Y−m
n (ϑ,ϕ) sin ϑ dϑ dϕ = δ
n, and

is given by

A
,m = 1

2

[
(
 − |m|)!
(
 + |m|)!

(
2
 + 1

π

)]1/2

, (B2)

(see [30,31], and references therein). Equation (B2) yields the
following identity:

A
,m

A
+1,m

[

 + 1 − |m|

2
 + 1

]
=

[
(
 + 1)2 − m2

4(
 + 1)2 − 1

]1/2

. (B3)
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The associated Legendre function (spherical harmonics) of the
first kind, P m


 (ϑ), is determined by the following equation:[
(1 − Z2)

d2

dZ2
− 2Z

d

dZ
+

(

(
 + 1) − m2

1 − Z2

)]
P m


 (Z)

= 0, (B4)

where Z = cos ϑ . The function P m

 (Z) has the following

properties:

(2
 + 1)ZP m

 (Z) = (l − m + 1)P m


+1(Z) + (
 + m)P m

−1(Z),

(B5)

Z2P m

 (Z) = I
,mP m


 (Z) + J
,mP m

+2(Z) + L
,mP m


−2(Z),

(B6)

where

I
,m = 
2 − m2

4
2 − 1
+ (
 + 1)2 − m2

4(
 + 1)2 − 1
. (B7)

When 
2 � 1; m2, the function I
,m ≈ 1/2. We also took into
account that

∫ π

0
sin2 ϑ cos ϑ P m


 (ϑ)
∂

∂ϑ
P m


 (ϑ) dϑ

= 1

2

∫ 1

−1
(Z3 − Z)

∂

∂Z
[P m


 (Z)]2 dZ = −1

4
, (B8)

∫ π

0
sin3 ϑ P m


 (ϑ)
∂2

∂ϑ2
P m


 (ϑ) dϑ

= 1

2
[2m2 − 
(
 + 1) − 1]. (B9)

Using Eqs. (B3) and (B5) we obtain the following identities
for 
2 � 1; m2:

ZYm

 =

[

2 − m2

4
2 − 1

]1/2

Ym

−1 +

[
(
 + 1)2 − m2

4(
 + 1)2 − 1

]1/2

Ym

+1

≈ 1

2

(
Ym


−1 + Ym

+1

)
, (B10)

(Z2 − 1)
dYm




dZ
≡ r sin ϑ ∇ϑ Ym


 =
[

(
 + 1)2 − m2

4(
 + 1)2 − 1

]1/2

×
 Ym

+1 −

[

2 − m2

4
2 − 1

]1/2

(
 + 1) Ym

−1

≈ 1

2

(

 Ym


+1 − (
 + 1) Ym

−1

)
, (B11)

Z2Ym

 ≈ 1

4

(
Ym


−2 + 2Ym

 + Ym


+2

)
, (B12)

(sin ϑ ∇ϑ 	−1
⊥ ) Ym


 ≈ r

2


(
Ym


 − 



 + 1
Ym


+1

)
, (B13)

(sin ϑ ∇ϑ 	−1
⊥ ) (sin ϑ ∇ϑ 	−1

⊥ )Ym



≈ r2

4

[
Ym


−2


(
 − 1)
+ Ym


+2

(
 + 1)(
 + 2)

−Ym

 [
−2 + (
 + 1)−2]

]
. (B14)

Since ∇·(ρ v) = 0, the coefficient Âp is related with the
coefficient Âr:

Âp = − ikr − 2 + r�/2


(
 + 1)
Âr, (B15)

where we used the following properties of the spherical
functions:

∇·Y r = 2

r
(er · Y r), ∇·Y p = −
(
 + 1)

r
(er · Y r),

∇·Y t = 0. (B16)

To derive Eq. (A1) we took into account that

∇ × Y r = −∇ × Y p = −1

r
Y t,

∇ × Y t = −1

r
[
(
 + 1) Y r + Y p], (B17)

Y p = −er × Y t, Y t = er × Y p. (B18)

Using Eqs. (B16)–(B18) we obtain:

∇·U = −1

r

∑

,m

exp(λ
,mt − ik r)[(ikr − 2)Âr

+ 
(
 + 1) Âp] (er · Y r) , (B19)

∇ × U = −1

r

∑

,m

exp(λ
,mt − ik r)[(Âr − ikr Âp)Y t

+ (ikr + 1) ÂtY p + 
(
 + 1) r−1 ÂtY r]. (B20)
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