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Transition phenomena in unstably stratified turbulent flows
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We study experimentally and theoretically the transition phenomena caused by external forcing from Rayleigh-
Bénard convection with large-scale circulation (LSC) to the limiting regime of unstably stratified turbulent
flow without LSC, where the temperature field behaves like a passive scalar. In the experiments we use the
Rayleigh-Bénard apparatus with an additional source of turbulence produced by two oscillating grids located
near the sidewalls of the chamber. When the frequency of the grid oscillations is larger than 2 Hz, the LSC
in turbulent convection is destroyed, and the destruction of the LSC is accompanied by a strong change of
the mean temperature distribution. However, in all regimes of the unstably stratified turbulent flow the ratio
[,V T) + (€, V,T)* + (£,V.T)*1/(6?) varies slightly (even in the range of parameters where the behavior of
the temperature field is different from that of the passive scalar). Here ¢; are the integral scales of turbulence
along the x,y,z directions, and T and 6 are the mean and fluctuating parts of the fluid temperature. At all
frequencies of the grid oscillations we have detected long-term nonlinear oscillations of the mean temperature.
The theoretical predictions based on the budget equations for turbulent kinetic energy, turbulent temperature

fluctuations, and turbulent heat flux, are in agreement with the experimental results.

DOI: 10.1103/PhysRevE.83.036302

I. INTRODUCTION

Various aspects of the formation of large-scale circulation
(LSC) and other types of coherent structure in turbulent
convection at large Rayleigh numbers have been discussed in
a number of studies of atmospheric flows [1-4], in laboratory
experiments in the Rayleigh-Bénard apparatus [5-30], and in
direct numerical simulations [31-34]. A mean-field theory
[4,35,36] has been proposed to explain the formation of
coherent structures in turbulent convection. It is known from
laboratory experiments and numerical simulations [7,14,15,
21] that the coherent structures in Rayleigh-Bénard turbulent
convection are not driven by the turbulent Reynolds stresses
associated with the tilting plumes at the upper and the lower
horizontal walls. If a mean flow is established, the temperature
of the fluid is larger at one side of the LSC and smaller at the
other side, and the mean flow is driven by the mean buoyancy
force at the sidewalls of the chamber.

The effect of coherent structures (mean wind) on global
properties of turbulent convection is the subject of numerous
discussions (see, e.g., reviews [37-39]). It has been recently
found in laboratory experiments in [40] that in turbulent
convection with a mean wind the bulk production of turbulence
is due to the large-scale shear caused by the mean wind rather
than by buoyancy.

Numerous experiments demonstrate that the mean tem-
perature distribution in turbulent convection is strongly in-
homogeneous and anisotropic due to the mean wind (see,
e.g., [7,15,18,21,40]), and the mean temperature gradient in
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the horizontal direction inside the LSC can be significantly
larger than in the vertical direction, i.e., the vertical turbulent
heat flux inside the LSC is very small. The dependencies of the
dissipation rate (normalized by the molecular temperature dif-
fusion) of the temperature fluctuations (62) as a function of the
Rayleigh number and different statistical characteristics of this
normalized dissipation rate have been studied experimentally
for turbulent Rayleigh-Bénard convection in [29].

On the other hand, in a forced turbulent convection without
a mean wind (i.e., in unstably stratified turbulent flows) the
temperature field behaves like a passive scalar (see, e.g., [37,
41-43]). It is not clear why in turbulent convection with LSC
the vertical gradient of the mean temperature field is small
inside the LSC, and the vertical temperature gradient can even
change direction, i.e., it can be directed upward. A detailed
study of the transition from one regime with a mean wind to
another regime without it due to additional forcing in unstably
stratified turbulent flow can elucidate the effects of the mean
wind on turbulent convection.

Different effects in turbulent convection with a forcing have
been studied previously (see, e.g., [41,44—46]). In particular,
an experimental study of turbulent convection with forcing
in the form of periodical pulses has been performed in [44].
In these experiments, in spite of the forcing, the large-scale
circulatory flow was not destroyed, and the heat transfer in
this system was enhanced in comparison with constant and
sinusoidally modulated energy inputs. It was found in [44]
that the enhancement of the heat transfer depends on the
synchronization of the kicking period of energy input with
the intrinsic time scale of the turbulent flow. In other types
of experiments [45,46] a relation between convective heat
flux and temperature gradient was determined in a vertical
channel filled with water, the average vertical mass flux being
zero. It was shown in these experiments that when the LSC
is suppressed by physically blocking its path, there exists
a strong vertical temperature gradient in the bulk of the
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Rayleigh-Bénard apparatus and the temperature remains an
active rather than a passive field.

The goal of this paper is to study experimentally and
theoretically transition phenomena due to external forcing
from Rayleigh-Bénard convection with LSC to the limiting
regime of unstably stratified turbulent flow without LSC,
where the temperature field behaves like a passive scalar. In
the experimental study we use the Rayleigh-Bénard apparatus
with an additional source of turbulence produced by two
oscillating grids located near the sidewalls of the chamber.
Additional forcing for turbulence allows us to observe the
evolution of the mean temperature and velocity fields during
the transition from turbulent convection with LSC (for very
small frequencies of the grid oscillations) to the limiting
regime of unstably stratified flow without LSC (for very high
frequencies of the grid oscillations). In the experiments we use
particle image velocimetry (PIV) to determine the turbulent
and mean velocity fields, and a specially designed temperature
probe with sensitive thermocouples is employed to measure the
temperature field.

Note that this experimental setup with the turbulent con-
vection and the external forcing has been previously used in
studies of turbulent transport of particles (see, e.g., [47-50]).
A comprehensive investigation of turbulence structures, mean
velocity and temperature distributions, and velocity and
temperature fluctuations can elucidate the complicated physics
related to particle clustering and formation of large-scale
inhomogeneities in particle spatial distributions in unstably
stratified turbulent flows. Notably, turbulent convection with
external forcing is used in chemical industrial devices to
improve mixing (see, e.g., [51-53]). Another example of
turbulent convection with forcing is atmospheric wind super-
imposed on the turbulent convective boundary layer.

The paper is organized as follows. Section II describes
the experimental setup, instrumentation, and the results of
a laboratory study of the transition phenomena in unstably
stratified turbulent flow. The theoretical analysis and compar-
ison with the experimental results are performed in Sec. III.
Finally, conclusions are drawn in Sec. IV. In the Appendix we
present the detailed derivation of the theoretical model for a
passive scalar that we used for the explanation of the observed
effects.

II. EXPERIMENTAL STUDY

Let us start with description of the experimental setup and
the results of laboratory study of the transition phenomena in
unstably stratified turbulent flow.

A. Experimental setup and instrumentation

The experiments on transition phenomena in unstably
stratified turbulence were conducted in a rectangular chamber
with dimensions 26 x 58 x 26 cm? in air flow with the Prandtl
number Pr = 0.71. The sidewalls of the chambers are made
of transparent Perspex with the thickness of 10 mm. In the
experiments we use the Rayleigh-Bénard apparatus with an
additional source of turbulence produced by two oscillating
grids. Pairs of vertically oriented grids with bars arranged in a
square array (with a mesh size 5 cm) are attached to the right
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FIG. 1. Experimental setup: (1) laser light sheet; (2) heat
exchangers; (3) grid driver; (4) digital CCD camera.

and left horizontal rods (see Fig. 1). The grids are positioned
at a distance of two grid meshes from the chamber walls and
are parallel to the sidewalls. Both grids are operated at the
same amplitude of 61 mm, at a random phase and at the same
frequency which is varied in the range from 0.5 to 16.5 Hz.
Here we use the following system of coordinates: z is the
vertical axis, the y axis is perpendicular to the grids, and the
xz plane is parallel to the grids.

A vertical mean temperature gradient in the turbulent air
flow was formed by attaching two aluminum heat exchangers
to the bottom and top walls of the test section (a heated bottom
and a cooled top wall of the chamber). In order to improve heat
transfer in the boundary layers at the bottom and top walls we
used heat exchangers with rectangular fins 3 x 3 x 15 mm?
(see Fig. 1) which allowed us to form a mean temperature
gradient up to 115 K/m at a mean temperature of about 308 K
when the frequency of the grid oscillations f > 10 Hz. The
thickness of the aluminum plates with the fins is 2.5 cm. The
top plate is the bottom wall of a tank with cooling water.
The temperature of water circulating through the tank and the
chiller is kept constant within 0.1 K. Cold water is pumped into
the cooling system through two inlets and flows out through
two outlets located at the sidewall of the cooling system. The
bottom plate is attached to an electrical heater that provides
constant and uniform heating. The voltage of a stable power
supply applied to the heater varies up to 200 V. The power of
the heater varies up to 300 W.

The temperature field was measured with a temperature
probe equipped with 12 thermocouples (with diameter of
0.13 mm and sensitivity of ~65 nV/K) attached to a vertical
rod with diameter 4 mm. The spacing between thermocouples
along the rod was 22 mm. Each thermocouple was inserted
into a 1-mm-diameter and 45-mm-long case. The tip of a
thermocouple protruded for a length of 15 mm out of the case.
The temperature was measured for 12 rod positions at 23 mm
intervals in the horizontal direction, i.e., at 144 locations in the
flow. The exact position of each thermocouple was measured
using images captured with the optical system employed in the
PIV measurements. A sequence of 600 temperature readings
for every thermocouple at every rod position was recorded and
processed using the developed software based on LABVIEW
7.0. Temperature maps were plotted using MATLAB 7.

In order to decrease the mean flow generated by the
oscillating grids and to increase the range of the homogeneous
and isotropic turbulence we use partitions located in the
xz plane between the grids and sidewalls of the chamber (of
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width 85 mm). The aspect ratio of the chamber, A = H,/H, =
1.52, where H, is the size of the chamber along the y axis
between partitions and H, is the height of the chamber on the
Z axis.

The velocity fields were measured using stereoscopic
particle image velocimetry; see [54-56]. In the experiments
we used a LaVision Flow Master III system. A double-pulsed
light sheet was provided by a Nd-YAG (yttrium aluminum
garnet) laser (Continuum Surelite 2 x 170 mJ). The light sheet
optics includes spherical and cylindrical Galilei telescopes
with tunable divergence and adjustable focal length. We used
two progressive-scan 12-bit digital CCD cameras (with pixel
size 6.7 x 6.7 um? and 1280 x 1024 pixels) with a dual-frame
technique for cross-correlation processing of captured images.
A programmable timing unit (PC interface card) generated
sequences of pulses to control the laser, camera, and data
acquisition rate. The software package LAVISION DAVIS 7 was
applied to control all hardware components and for 32-bit
image acquisition and visualization. This software package
comprises PIV software for calculating the flow fields using
cross-correlation analysis.

In order to obtain velocity maps in the central region of the
flow in the cross section parallel to the grids and perpendicular
to a front view plane, we used one camera with a single-axis
Scheimpflug adapter. The angle between the optical axis of the
camera and the front view plane as well as the angle between
the optical axis and the probed cross section was approximately
45°. The perspective distortion was compensated using a
stereoscopic PIV system calibration kit whereby the correction
was calculated for a recorded image of a calibration plate. The
corrections were introduced in the probed cross-section images
before their processing using a cross-correlation technique for
determining velocity fields.

An incense smoke with submicrometer particles (0,/p ~
10%) was used as a tracer for the PIV measurements. Smoke was
produced by high-temperature sublimation of solid incense
grains. Analysis of the smoke particles using a microscope
(Nikon, Epiphot with an amplification of 560) and a PM-300
portable laser particulate analyzer showed that these particles
have an approximately spherical shape and that their mean
diameter is of the order of 0.7 um. The probability density
function of the particle size measured with the PM300
particulate analyzer was independent of the location in the
flow for incense particle size of 0.5-1 um. The maximum
tracer particle displacement in the experiment was of the order
of 1/4 of the interrogation window. The average displacement
of tracer particles was of the order of 2.5 pixels. The average
accuracy of the velocity measurements was of the order of
4% for the accuracy of the correlation peak detection in an
interrogation window of the order of 0.1 pixel (see, e.g.,
[54-56]).

We determined the mean and the rms velocities, two-point
correlation functions, and the integral scale of turbulence from
the measured velocity fields. Series of 520 pairs of images
acquired with a frequency of 1 Hz were stored for calculating
velocity maps and for ensemble and spatial averaging of
turbulence characteristics. The center of the measurement
region in the yz plane coincides with the center of the chamber.
We measured velocity in a flow domain 256 x 256 mm? with
a spatial resolution of 1024 x 1024 pixels. This corresponds
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to a spatial resolution 250 pum/pixel. The velocity field in
the probed region was analyzed with interrogation windows
of 32 x 32 or 16 x 16 pixels. In every interrogation window
a velocity vector was determined from which velocity maps
comprising 32 x 32 or 64 x 64 vectors were constructed. The
mean and rms velocities for every point of a velocity map were
calculated by averaging over 520 independent maps, and then
they were averaged over the central flow region.

The two-point correlation functions of the velocity field
were determined for every point of the central part of the
velocity map (with 16 x 16 vectors) by averaging over 520
independent velocity maps, which yields 16 correlation func-
tions in the y and z directions. Then the two-point correlation
function was obtained by averaging over the ensemble of these
correlation functions. The integral scale of turbulence ¢ was
determined from the two-point correlation functions of the
velocity field. In the experiments we evaluated the variability
between the first and the last 20 velocity maps of the series
of the measured velocity field. Since very small variability
was found, these tests showed that 520 velocity maps contain
enough data to obtain reliable statistical estimates. We found
also that the measured mean velocity field is stationary.

The characteristic turbulence time in the experiments is
7, = 0.28-0.62 s, while the characteristic time period for the
large-scale circulatory flow (~10 s) is larger than 7, by 1.5
orders of magnitude. These two characteristic times are much
smaller than the time during which the velocity fields are
measured (~600 s). The size of the probed region did not affect
our results. The temperature difference between the top and
bottom plates, AT, in all experiments was 50 K (i.e., the global
Rayleigh number based on molecular transport coefficients
was Ra = 0.73 x 10%). Similar experimental setup and data
processing procedure were used previously in the experimental
study of different aspects of turbulent convection [22,40] and
in [47-50] for investigating the phenomenon of turbulent
thermal diffusion [57,58].

B. Experimental results

Let us start the analysis of the obtained experimental
results with the dynamics of the mean velocity field. In
Fig. 2 we show the mean flow patterns obtained in the
experiments with unforced turbulent convection [Fig. 2(a)]
and with forced turbulent convection at different frequencies
of the grid oscillations [Figs. 2(b) and 2(c)]. The solid lines in
Fig. 2 are streamlines in the cental yz plane for x = 13 cm.
The center of Figs. 2(a), 2(b) and, 2(c), which has coordinates
y =10 cm and z = 10 cm, coincides with the center of the
chamber. When the frequency of the grid oscillations is larger
than 2 Hz, the large-scale circulation in turbulent convection
in the yz plane is not observed [see Figs. 2(b) and 2(c)]. On
the other hand, a complicated mean flow of spiral form in the
xz plane with a nonzero mean vorticity in the y direction exists
when the frequencies of the grid oscillations are in the range
2 < f <7Hz.

The destruction of the LSC is accompanied by a strong
change of the mean temperature distribution. The distribution
of the measured mean temperature field depends strongly on
the frequency f of the grid oscillations (see Figs. 3-5). In
particular, for very low frequency f the thermal structure
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FIG. 2. Mean flow patterns obtained in the experiments with
unforced turbulent convection (upper panel) and with forced turbulent
convection at the frequencies f = 2.2 Hz (middle panel) and f =
16.5 Hz (lower panel) of the grid oscillations for unstably stratified
turbulent flow at the temperature difference between the top and
bottom walls AT =50 K. Coordinates y and z are measured in
millimeters.

inside the LSC in turbulent convection is inhomogeneous
and anisotropic. The hot thermal plumes concentrate at one
side of the LSC, and cold plumes accumulate at the opposite
side [18,40]. In the central part of the flow the vertical mean
temperature gradient V,T changes its sign depending on the
frequency of the grid oscillations (see Fig. 3).

At all frequencies of the grid oscillations we have observed
long-term nonlinear oscillations of the mean temperature with
a period that is of the order of 10 s. Note that the temperature
was measured at 144 locations in the flow (the spacing between
thermocouples was 22 mm). We perform sliding averaging of
the instantaneous temperature field over a time of 3 s (the
characteristic turbulence time in the experiments was 0.3—
0.6 s) in order to determine the mean temperature field 7 at
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FIG. 3. Vertical gradient of the mean temperature V., T (squares)
and the amplitude of the nonlinear long-term oscillations of this
gradient (triangles) versus the frequency f of the grid oscillations
for unstably stratified turbulent flow. The mean temperature gradient
is measured in K cm™! and the frequency f is measured in hertz.

144 locations. Then we determine the long-term variations of
the vertical mean temperature gradient 8(V;T) = V;T — V;T
due to the nonlinear oscillations of the mean temperature,
where i = x,y,z. The overbar here denotes additional time
averaging. Note that the separation distance of 22 mm between
thermocouples is sufficient to measure the gradients of the
mean temperature. Indeed, the integral scale of turbulence is
about 2 cm and the characteristic length scale of the mean
temperature field is much larger than the integral scale of
turbulence. Note also that for large frequencies of the grid
oscillations the role of the thermal boundary layer in turbulent
convection diminishes. It must be emphasized that in all our
experiments rectangular fins were attached at the bottom and
top walls of the chamber in order to improve heat transfer in
the boundary layers.

In Fig. 6 we show time dependencies of the instantaneous
temperature 7' = T + 6, the long-term variations of mean
temperature 87 = T — T, and the long-term variations of
the vertical mean temperature gradient §(V,T) = V,T — V,T
due to the nonlinear oscillations of the mean temperature.
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FIG. 4. Horizontal gradient of the mean temperature V,T
(squares) and the amplitude of the nonlinear long-term oscillations of
this gradient (triangles) versus the frequency f of the grid oscillations
for unstably stratified turbulent flow. The mean temperature gradient
is measured in K cm™' and the frequency f is measured in hertz.
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FIG. 5. Horizontal gradient of the mean temperature V,T
(squares) and the amplitude of the nonlinear long-term oscillations of
this gradient (triangles) versus the frequency f of the grid oscillations
for unstably stratified turbulent flow. The mean temperature gradient
is measured in K cm™! and the frequency f is measured in hertz.

In Figs. 3-5 we also show by triangles the amplitude

{[8(V;T)]?}'/? of the nonlinear long-term oscillations of the
gradients of the mean temperature, where i = x,y,z. The
dependencies shown in Figs. 3—-6 are obtained at the central
region of the chamber with the size 10 x 10 x 10 cm®.

In Fig. 7 we show the results of a Fourier analysis of the
signal 8T = T — T. Inspection of Fig. 7 shows that there
are two main maxima in the spectrum with the periods 12.5
and 20 s. Other smaller maxima in the spectrum are at
frequencies which are multiples of these main frequencies
or their sums and differences. These are typical features of
nonlinear oscillations. A theory that explains the mechanism of
these nonlinear oscillations of the mean temperature field has
not been developed yet. One may hypothesize that there are two
possible mechanisms for such oscillations. One mechanism
could be related to the large-scale Tollmien-Schlichting waves
in sheared turbulent flows (see [59]), which can cause

T(tm‘,)

315}, ‘ ‘ | ‘ 1
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FIG. 6. Time dependencies of the instantaneous temperature
T* = T 4 0, the variations of mean temperature 7 = T — T, and
the variations of the vertical mean temperature gradient 6(V,T) =
V.T — V.T due to the long-term nonlinear oscillations of the mean
temperature (with the period ~10 s). The overbar denotes additional
time averaging. These time dependencies are measured in the center
of the chamber at the frequency f = 10 Hz of the grid oscillations for
unstably stratified turbulent flow. These temperature characteristics
are measured in kelvin.
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FIG. 7. The  normalized  spectral  function E.(f)=
IST);1?/ [1ST);1>df of the signal 8T =T()—T, where
in the Fourier space (8T); = [ 8T exp[—ift]dt and f is the
frequency of the nonlinear long-term oscillations of the mean

temperature.

nonlinear oscillations of the mean temperature field. Another
mechanism of the nonlinear oscillations could be related to the
generation of small-scale kinetic helicity due to large-scale
shear flows in the system. The large-scale shear generates
large-scale helicity, and since the total helicity is conserved,
a nonzero small-scale helicity is produced. Our preliminary
analysis shows that the small-scale helicity can cause the
nonlinear oscillations of the mean temperature field.

In order to avoid side effects of the grids we present the
experimental results recorded in the central region of the
chamber with the size 10 x 10 x 10 cm®. In Figs. 8 and 9 we
show the frequency dependencies of the following measured
turbulence parameters: the rms velocity fluctuations +/ (ui) and
/(u?), and the corresponding integral scales of turbulence
along the horizontal y and vertical z directions (¢, and £.),
where u are the fluctuations of the fluid velocity. The mean
and rms velocities and the two-point correlation functions of
the velocity field have been calculated by averaging over 520
independent velocity maps, and then they have been averaged
over the central flow region. The integral scales of turbulence,
¢, and ., have been determined from the normalized two-
point longitudinal correlation functions of the velocity field,
e.g. Fy(5) = (u,(xo) u,(rg + ¥ e,))/{u(ro)) [and similarly
for F.(Z) after replacement of y by z in the above formula],
using the following expression: £, = (fOL Fy(¥)d¥y)s [and
similarly for ¢, after replacement of y by z in the above

A
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FIG. 8. Components u}™ = v/ (uﬁ) (triangles) and u!™ = /(u?)
(squares) of the rms velocity versus the frequency f of the grid
oscillations for unstably stratified turbulent flow. The turbulent
velocity is measured in cm s~ and the frequency f is measured
in hertz.
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FIG. 9. Horizontal and vertical integral scales of turbulence £,
(triangles) and £, (squares) versus the frequency f of the grid
oscillations for unstably stratified turbulent flow. The turbulent length
scales are measured in millimeters and the frequency f is measured
in hertz.

formula], where L = 10 cm is the linear size of the probed
flow region, e, is the unit vector in the y direction, and (- - )¢
is the additional averaging over the yz plane.

Inspection of Fig. 9 shows that the turbulent length
scales are weakly dependent on the frequency f of the
grid oscillations in the unstably stratified turbulent flow for
f > 3 Hz, while the turbulent velocities and turbulent time
scales vary strongly with the frequency f. Note that 7, f and
7, f tend to a constant (~3) for higher frequencies (f > 5 Hz)
of the forcing, where 7, = Zy/\/(ui) and 7, = EZ/,/(u§> are
the characteristic turbulent times in the horizontal and vertical
directions. Note also that the ratio of the characteristic values
of the mean velocity to the turbulent velocity in the central
part of the chamber varied from 1 at f = 0 to 0.5 when the
frequency f of the grid oscillations f > 2 Hz. In particular,
the characteristic values of the mean velocity at the frequencies
of the grid oscillations f = 0, 2.2, and 16 Hz are as follows:
7.5 cm/s, 3 cm/s, and 6 cm/s, respectively.

In Fig. 10 we show the frequency dependence of the ratio
u? /ui™, where u™ is the rms of the vertical component of the
velocity fluctuations in the unstably stratified turbulent flow
and u} is the rms of the vertical component of the velocity
fluctuations in the isothermal turbulence. In Fig. 10 along
with the ratios of the rms’s of the vertical component of
the velocity fluctuations, u;‘ /u™, in isothermal and unstably
stratified turbulent flows, we also plot the ratio u}/ii,,
where ii, is the vertical component of the effective turbulent
velocity,

i, = [(ul)* + 4L, B/ (02)1'2, (1)

B = g/ T, is the buoyancy parameter, T, is a reference value
of the mean absolute temperature, and g is the acceleration
of gravity. This definition of the effective velocity is derived
from the budget equation (8) for the turbulent kinetic energy
in Sec. III. This effective velocity takes into account the
production of the turbulence by buoyancy. Inspection of Fig. 10
shows that the values of these ratios are very close. The latter
implies that the measured turbulent velocity in the unstably
stratified turbulent flow, ™, is of the order of .

The dependence of the rms of the temperature fluctuations
V/(6?) versus the frequency f of the grid oscillations is shown
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FIG. 10. Ratios u?/u_™ (squares) and u} /i (circles) versus the
frequency f of the grid oscillations. Here u™ is the rms of the
vertical component of the velocity fluctuations in unstably stratified
turbulent flow, u? is the rms of the vertical component of the velocity
fluctuations in isothermal turbulence, i, is the vertical component of
the effective turbulent velocity @, = [(uZ)* + 4¢€, B /(62)]1'/?, which
takes into account the production of the turbulence by buoyancy. The
velocity is measured in cm s~! and the frequency f is measured in
hertz.

inFig. 11. This dependence is caused by the nontrivial behavior
of the mean temperature gradients along x,y,z axes (see
Figs. 3-5), where 6 are fluctuations of the fluid temperature.
We have also analyzed the experimental results obtained at
the smaller temperature difference AT = 25 K between the
top and bottom walls (i.e., smaller Ra), and found only minor
changes in the final results. In the next section we analyze the
obtained experimental results.

III. THEORETICAL ANALYSIS AND COMPARISON
WITH EXPERIMENTAL RESULTS

Let us first analyze the frequency dependence of the
temperature fluctuations. To this end we consider the budget
equation for (2):

D(6?)
Dt
(see, e.g., [60—63]), where D/Dt = d/dt + U-V, u are the
fluctuations of the fluid velocity, U is the mean velocity

that describes the coherent structures, ®, = (uf?) is
the third-order moment that determines the flux of (62),

+div®y = —2(F-V)T — 2¢,, 2)

1 a o o
0.8f &= =
@ L o
£ 06f
S S
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FIG. 11. The rms of temperature fluctuations 6,,, = /(0?) ver-
sus the frequency f of the grid oscillations for unstably stratified
turbulent flow.
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F; = (u;0) is the turbulent heat flux, 6 are the temperature
fluctuations, T is the mean temperature, and &g = D((V6)?)
is the dissipation rate of (#?), where D is the coefficient of
molecular temperature diffusion.

Let us wuse the Kolmogorov-Obukhov hypothesis
which allows estimation of the dissipation rate &y of
6%), as ey ~ (6%)/19 (see, e.g., [64,65]), where 1) =
l/uy is the characteristic turbulent time and wug is
the characteristic turbulent velocity at the scale £.
Indeed, ey = D((V0)?) = D (6%) [, k* Eo(k) dk ~ (6%) /0,
where Ey(k) = (¢ — D ky ! (k/ko)~? is the spectral function
of the temperature fluctuations, g is the exponent of the
spectrum of the temperature fluctuations (e.g., ¢ =5/3 for
the Corrsin-Obukhov spectrum), ko = el k= éb_], Ly =
£/Pe!/C=D and Pe = ug £/ D is the Péclet number. The latter
estimate implies that the main contribution to the dissipation
rate gy arises from very small molecular temperature diffusion
scales £,. The Kolmogorov-Obukhov hypothesis has been
widely used in atmospheric turbulence in a number of studies
including investigations of atmospheric stably stratified and
convective boundary layers. In a steady state Eq. (2) yields

0% ~ =21y (F-V)T
~ 2[(L VT + (6, VT + (V. T (3)

In deriving Eq. (3) we take into account that the components
of the turbulent heat flux and turbulent temperature diffusion
coefficients in an anisotropic turbulence are given by
F,=—-DI'V,T and DI = C, ¢, /(u?), and similarly for
other components F,,F, of the turbulent heat flux and the
turbulent temperature diffusion coefficients DyT ,DZT with the
replacement in the above formulas of x by y or by z. We
also neglected the small term div®y in Eq. (2) for nearly
homogeneous turbulent convection. When the horizontal
gradients of the mean temperature are much smaller than
the vertical gradients, |V, ,T| < |V.T|, Eq. (3) yields the
following nondimensional ratio:

¢, |V.T|

V(6?)

Kraichnan derived Eq. (4) for a passive scalar regime using the
Lagrangian-history direct-interaction approximation for small
Péclet numbers [66]. Equation (4) is in agreement with the
corresponding equation derived by means of the path integral
approach in [67] for a passive scalar advected by a Gaussian
smooth velocity field § correlated in time. Equation (4)
can also be derived using the spectrum of temperature
fluctuations found by dimensional arguments in [68] and
by the renormalization procedure in [69]. In the Appendix
we also derive Eqgs. (3) and (4) using other procedures,
namely, a quasilinear approach (or a second-order correlation
approximation) that is valid for small Péclet numbers and the
spectral T approximation that is valid for large Péclet numbers.

Now let us discuss the generalization of Eq. (4). To this
end we use the budget equation for the turbulent heat flux
Fi = (u;0):

DF;
Dt

= const. €]

V0 = B (0% + L (0Vip) — wiu ) V; T
+V; @, =pi( )+p( ip) — (wiuj) Vv,

—(F-V)U; — &7, (5)
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where B; = Be,, p are the pressure fluctuations, p is the fluid
density, U is the mean velocity, sfF) is the dissipation rate of
the turbulent heat flux, and ®{;’ = (u;u;60) + 8;;0~" (0 p)/2
is a term that includes the third-order moments. According to
the estimate made in [62], B; (6%) + p~ ' (6 V; p) ~ 28; (9?).
In a steady-state case Eqgs. (2) and (5) yield
I
02y  2CoCr

= const, (6)

where
[6. VLT = [(€V.T) + (¢, V,T) + (£.V.T)*]
x [1 4+ 4CyCrBr(V. T, (7)

Cr and Cy are empirical constant. Here ¢y = (02)/ Cy1p, WE
take into account that the dissipation rate of the turbulent heat
flux is sfm = F;/Crrpand 7, = 1, ~ 1, = 79. In Egs. (6) and
(7) we also have neglected the terms ~O[€3/L3.; €3 /(L. Ly)],
where L7 and Ly are the characteristic spatial scales of the
mean temperature and velocity field variations. Equation (6) is
valid in the general case including the passive scalar regime.
In the case of the passive scalar regime where there is only the
vertical gradient of the mean temperature, Eq. (6) coincides
with Eq. (4).

In Fig. 12 we plot the nondimensional ratio £, V, T /+/{62)
versus the frequency f of the grid oscillations for the unstably
stratified turbulent flow obtained in our experiments, where we
assumed that £, = £, and CyCr = 1/12. Inspection of Fig. 12
shows that this nondimensional ratio varies slightly even in the
range of parameters where the behavior of the temperature field
is different from that of the passive scalar. Small deviations
of the experimental results from the theoretical predictions
[see Eq. (6)] may be caused by a nonzero term, div®y
and deviations from the steady state due to the long-term
oscillations of the mean temperature.

Now let us derive Eq. (1) for the measured turbulent velocity
in the unstably stratified turbulent flow. We use the budget
equation for the turbulent kinetic energy E; = (u?)/2:

DE; )
Dr +div® = —(uju;) VU + B F. + (ufy) —er, (8)

where ®; = p~!'(u p) + (1/2)(uu?) is a term that includes the
third-order moments, (u-fy) is the production of turbulence
caused by the grid oscillations, and ¢ is the dissipation rate of
the turbulent kinetic energy. In the steady state Eq. (8) yields

3 —
T .
<2 :
~
&

B> qf
<
0 5 10

f

FIG. 12. The nondimensional ratio ¢, V.T /6, versus the fre-
quency f of the grid oscillations for unstably stratified turbulent

flow, where 0, = /(62).
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(w?) =279 [v, S* + (uf;) + B F.], where v, is the turbulent
viscosity. Let us introduce the characteristic velocity for
isothermal turbulence, (u*)* = 27y [v, Sf + (u-fy)], where S,
is the large-scale shear that can appear in isothermal oscillating
grid turbulence. Note that for large frequencies of the grid
oscillations the large-scale circulations caused by turbulent
convection disappear and S — S,. Since the vertical turbulent
heat flux F, = — D7V, T and for large frequencies of the grid
oscillations |V, T| ~ 1/(02) /¢, [see Eq. (4)], we arrive at the
following equation:

U™ ~ [+ 4L, BV (6], 9)

where we take into account that the rms of the horizontal
component of velocity fluctuations in unstably stratified
turbulent flow is v/(u}) ~u} and u} = [(u*)? — (u)*]'/2.
This is the reason that the frequency dependencies of the ratios
uy /u7™ and u /i, obtained in our experiments (see Fig. 10)
are close.

Using Eq. (2) we obtain the evolutionary equation for the
turbulent potential energy E, = (8%/2N?) (62):

DE,
7+le¢p=PP—ﬂFZ—SP, (10)

(see, e.g., [62,63]), where N> = BV, T, ®, = (B*/2N?) @y,
P, = —(ﬂz/Nz) (F,-V)T is the source (or sink) of the
turbulent potential energy caused by the horizontal turbulent
heat flux F;, = (u, 8), u, is the horizontal component of the
velocity fluctuations, and ¢, = (B*/2N?)gg. The turbulent
potential energy is analogous to the available potential energy
introduced by Lorenz [70]: the available potential energy and
the turbulent potential energy are proportional to the squared
temperature fluctuations. The principal difference between
these two quantities is that the available potential energy is
an integral property of the entire flow domain (e.g., of the
atmosphere as a whole), whereas the turbulent potential energy
is a local quantity, i.e., it is determined at each point of the
turbulent flow. The buoyancy term 8 F, appears in Eqs. (8) and
(10) with opposite signs and describes the energy exchange
between the turbulent kinetic energy and the turbulent potential
energy. These two terms cancel in the budget equation for the
total turbulent energy E = E; + E;:

DE
E+div<l>=Pp—(uiuj) VjUi—I-(ll-ff')—S, (11)

FIG. 13. The nondimensional ratio |E,|/E; of the potential to
kinetic energies versus the frequency f of the grid oscillations for
unstably stratified turbulent flow. The horizontal line corresponds to
|Ep|/Er =0.1.
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10}
2
W
>~
Q‘& 5t
QLo et ey
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FIG. 14. The nondimensional ratio | P, |/ & of the source (or sink)
of the turbulent potential energy caused by the horizontal turbulent
heat flux to the dissipation rate of the turbulent kinetic energy versus
the frequency f of the grid oscillations for unstably stratified turbulent
flow. The horizontal line corresponds to | P, /e, = 1.

where @ = ®; + @, and ¢ = & + ¢,. The concept of the total
turbulent energy is very useful in analysis of stratified turbulent
flows. In particular, it allows us to explain the physical
mechanism for the existence of turbulence for arbitrary values
of the Richardson number, and abolish the paradigm of the
critical Richardson number in stably stratified atmospheric
turbulence (see [62,63]).

For very small horizontal mean temperature gradients, the
source term P, is much smaller than other terms in the
right hand side of Eq. (11). In Figs. 13 and 14 we show
the non dimensional ratios |E,|/E; and |P,|/e; versus the
frequency f of the grid oscillations for the unstably stratified
turbulent flow. Inspection of Figs. 13 and 14 shows that the
temperature fluctuations affect the turbulent kinetic energy
only in the vicinities of f =0 and 5.2 Hz. Note that in the
vicinity of f = 5.2 Hz, the sign of V,T changes from positive
to negative (see Fig. 3).

In view of the above analysis, we consider the passivelike
scalar behavior of the temperature field in the kinematic sense.
In particular, if the temperature fluctuations (62) do not affect
the turbulent kinetic energy, the temperature field can be
considered as a passive scalar. In this case the evolution of
the temperature field in a given turbulent velocity field is
a kinematic problem, where there is no dynamic coupling
between the temperature fluctuations (92) and the turbulent
kinetic energy in spite of a nonzero turbulent heat flux,
i.e., nonzero correlations of the velocity and temperature
fluctuations. When the effect of the temperature fluctuations
on the turbulent kinetic energy cannot be neglected, the
temperature is considered as an active field. This understanding
of the passive or active behavior of the temperature field
is different from that based on the scaling behavior of the
temperature structure function (see [43]).

Note that the turbulent convection studied in our exper-
iments is non-Boussinesq, i.e., diva # 0. In the theoretical
analysis we use the anelastic approximation, div(pu) = 0.
It should be noted that the deviation from the Boussinesq
approximation in our experiments is less than 10% (i.e., spatial
variations of the fluid density are §p/p < 0.1).

IV. CONCLUSIONS

In the present study we have investigated transition phe-
nomena caused by external forcing from Rayleigh-Bénard
convection with LSC to the limiting regime of unstably
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stratified turbulent flow without LSC, where the temperature
field behaves like a passive scalar. The external forcing of
turbulence is produced by two oscillating grids. When the
frequency of the grid oscillations is larger than 2 Hz, the
large-scale circulation in the yz plane in turbulent convection
is destroyed. On the other hand, a complicated mean flow of
spiral form in the xz plane with a nonzero mean vorticity in the
y direction exists when the frequencies of the grid oscillations
2 < f < 7 Hz. The destruction of the LSC is accompanied by
a strong change of the mean temperature distribution. In the
central part of the flow the vertical mean temperature gradient
changes its direction depending on the frequency of the grid
oscillations. We have shown that for all regimes of unstably
stratified turbulent flow the ratio [(€,V,T)*+ (£,V,T)* +
(£.V.T)?]/(6?) varies slightly even in the range of parameters
where the behavior of the temperature field is different from
that of the passive scalar. The experimental results obtained
in this study are in agreement with the theoretical predictions
based on the budget equations for turbulent kinetic energy,
turbulent potential energy, and turbulent heat flux.

We have also found that in unstably stratified turbulent
flow the vertical component of the turbulent velocity field is
determined by Eq. (9). The latter equation is derived from the
budget equation for the turbulent kinetic energy. This implies
that the buoyancy heat flux contributes to the production
of the turbulent kinetic energy in turbulent convection in
the absence of LSC. However, the turbulent kinetic energy
in large-Rayleigh-number turbulent convection with coherent
structures (LSC) is produced by shear, rather than by buoyancy
(see [40]).

Long-term nonlinear oscillations of the mean temperature
have been detected for all regimes, from turbulent convection
with LSC to the passive scalar regime, at all frequencies of the
grid oscillations.
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APPENDIX: TEMPERATURE FLUCTUATIONS

Evolution of the instantaneous temperature field Ty (¢,r) in
a turbulent flow is determined by the following equation:

9Tt
at
where T (t,r) =T + 6, D is the coefficient of molecular
temperature diffusion, y = ¢, /c, is the ratio of specific heats,
¥V is the velocity field that satisfies the continuity equation in
the anelastic approximation for a low-Mach-number flow:

+ @V T+ (y = D(V) Tior = DV T, (Al)

V.(p¥) = 0. (A2)

Combining Eq. (Al) and (A2) we obtain the following
equation:
0Trot
ot

+ (v-V) Tiot = D VT , (A3)
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where v =y¥V and we take into account that for a low-
Mach-number flow without imposed external pressure gradient
Vp/lo ~ _VTtol/Ttot-

Averaging Eq. (A3) over the ensemble of the turbulent
velocity field we obtain the equation for the evolution of the
mean temperature field 7'(z,r):

T ,
— +U-V)T+V-F=DVT,

at (A4

where U = yU, U is the mean fluid velocity, F = (u#) is the
heat flux, u = y1, and 1 are the velocity fluctuations.

A. Temperature fluctuations for small Péclet numbers

In order to study temperature fluctuations for small
Péclet numbers we use a quasilinear approach or a second-
order correlation approximation (see, e.g., [71]). Subtracting
Eq. (A4) from Eq. (A3) yields the equation for the temperature
fluctuations:

20

—+4+Q0-DV¥ =1,

ot (A9

where I = —(u-V)T is the source term and Q = V- [uf —
(ud)] +6@-V)p/p is the nonlinear term. In the expression
for O we neglected the term (fu)-V p/p which is quadratic in
the large-scale spatial derivative. Let us neglect the nonlinear
term but keep the molecular diffusion term in Eq. (AS). For
this reason this approach is called a quasilinear or perturbation
approach. This approximation for a given velocity field is valid
only for small Péclet numbers (Pe « 1), where Pe = u( ¢/D.
Let us rewrite Eq. (AS) in the Fourier space. Then the solution
of Eq. (AS) is given by 6(w,.k) = Gp(w,k)I(w,k), where
Gp(w,kK) = (Dk* +iw)~ L.

Let us apply a standard two-scale approach, whereby the
noninstantaneous two-point second-order correlation function
is written as follows:

(ui(t1,x) 0(12,y))
= /(“i(wl,kl)e(wzakﬂ) expli(k;-x + Kka-y)
+i(wit; + watr)] dwy dw, dk; dk,

=/E(w,k)exp[ik-r+ia)f]dwdk, (A6)

where we use large-scale variables R = (x +y)/2, K =k; +
ky, t =(t +1)/2, and Q = w; 4+ w;, and small-scale vari-
ablesr=x—-y, k=(k; -ky)/2, T=tH —t, w= (0] —
®)/2,

Fi(w,k) = /(u[(wl,kl)e(wz,kz)) expliQt + iK-R]dQ dK
(A7)

w1 =w+R/2, wvy=—-w+2/2, ki =k +K/2, and k, =
—k+K/2 (see, e.g., [72]). We assume here that there
exists a separation of scales, i.e., the maximum scale of
random motions ¢ is much smaller than the characteristic
scales of inhomogeneities of the mean temperature and fluid
density.
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The turbulent heat flux F; and the function E, = (6%)/2 are
given by the following relations:

F; =/<u,~(w,k)1(—w, —K)Ghdwdk,  (A8)

E, = % / (i@ K) 1t ;(~w, — K)) Gp G d dk(VT) (V;T).

(A9)

Hereafter we use the simple model for the second moments
of a random velocity field (u;(w,k)u ;(—w, — k)) in Fourier
space:

(ilw,Kuj(—o, —K) =

2,2
V4 MOE(k) ”_kikj
e Ul L
(A10)

where 8(w) is the Dirac delta function, §;; is the Kronecker
tensor, P;;j(k) = 8;; — kik;/ k?, the energy spectrum function
is E(k) = ky ' (¢ — 1) (k/ ko)™, the exponent 1 < g < 3, the
wave number ky = 1/¢, the length £ is the maximum scale of
random motions, and u is the characteristic velocity in the
maximum scale of random motions. Note that contributions
due to the density stratification in the random velocity field
(ui(w,K)uj(—w, — k)) to the turbulent heat flux F; and the
temperature fluctuations (6?) vanish.

After integration in o space and in k space, Egs. (A8)
and (A9) yield formulas for the turbulent heat flux F; and
the temperature fluctuations (92) in an isotropic background
turbulence:

(u; 0) = —DrV;T, Dy =Cpupyt, (A11)
(0%) = —C. 2 (VT)?,
, , (A12)
D:(q—l)yP :(q—l)ypz
3(g+1) T 3(g +3) ’

where Dy is the turbulent temperature diffusion coefficient.
Equations (A11) and (A12) also can be obtained using the
spectrum of temperature fluctuations for small Péclet numbers
found by means of dimensional arguments in [73] and by the
Lagrangian-history direct-interaction approximation applied
in [66].

B. Temperature fluctuations for large Péclet numbers

In this section we derive formulas for the turbulent heat
flux F; and the temperature fluctuation function Ey using
the T approach that is valid for large Péclet and Reynolds
numbers. Using Eq. (A5) written in Fourier space we derive
an equation for the instantaneous two-point second-order cor-
relation functions F;(t,K) = (u;(t,k) 6(¢, — K)) and Ey(¢,k) =
(1/2) (0(t,k) 0(t, — k)):

% = i,k I(t, —K)) + MF" k), (A13)
E ~
dd—f = Iy(t.k) + ME{D k), (A14)

where  MF""P(k) = —[(u; Q) + ((du; /31)0) — D(u; V>
0)x and MES (k) = —(1/2)[(6 Q) — D(0 V?0)]y are the
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third-order moment terms appearing due to the nonlinear
terms which include also a molecular diffusion term, and

Iy(t.k) = 5 [(1(1, k) 0(1, — K)) + (0. k) I (1, — K))].

The equation for the second moment includes the first-order
spatial differential operators M applied to the third-order
moments FUY/D. A problem arises of how to close the
system, i.e., how to express the third-order terms M FU!D
through the lower moments FUD (see, e.g., [64,65,74]).
We use the spectral T approximation which postulates that
the deviations of the third-moment terms, M F!/D(k), from
the contributions to these terms afforded by the background
turbulence, M FU/1-0(K), can be expressed through the similar
deviations of the second moments, FUD (k) — FU1.0(K):

MF(III)(k) _MF(III,O)(k)

_ b ung  pano

=0 [F7 (k) — Fo(k)]
(see, e.g., [74-76]), where t,(k) is the scale-dependent re-
laxation time, which can be identified with the correlation
time 7(k) of the turbulent velocity field for large Reynolds
and Péclet numbers. The functions with the superscript (0)
correspond to the background turbulence with a zero gradient
of the mean temperature. Validation of the t approximation for
different situations has been performed in numerous numerical
simulations and analytical studies (see, e.g., the review [77];
and also the discussion in [76], Sec. 6).

Note that the contributions of the terms with the superscript
(0) vanish because when the gradient of the mean temper-
ature is zero, the turbulent heat flux and the temperature
fluctuations vanish. Consequently, Eq. (A15) for ME(”I)(k)
reduces to MF" (k) = —F;(k)/t(k) and MEJ"" (k) =
—Ey(k)/t(k). We also assume that the characteristic times
of variation of the second moments F;(k) and Ey(k) are
substantially larger than the correlation time t(k) for all
turbulence scales. Therefore, in a steady state Eqgs. (A13) and
(A14) yield the following formulas for the turbulent heat flux
F; and the function Ej:

(A15)

F, = /‘L’(k) (ui(t,k) 1(t, — k)) dKk, (A16)

Ey =/r(k) Iy(t,k) dk. (A17)
Now we use the following simple model for the second
moments of the turbulent velocity field, (u;(k)u;(—k)), in
k space:

y2uj E(k) ki k;

8 k2 [” k2 ] (A13)
Contributions due to the fluid density stratification in the
random velocity field (u;(K)u;(—Kk)) to the turbulent heat
flux F; and the temperature fluctuations (6%) vanish. After
integration of Egs. (A16) and (A17) in k space, we arrive at
equations for the turbulent heat flux F; and the temperature

fluctuations Ej in an isotropic background turbulence:

(ui(k)uj(=Kk)) =

(u;0) = —D7rV,T, Dr =Cpupt,
(6%) = —(8/9) > (VT)?,

(A19)
(A20)
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where Cp = y?/3. In the derivation we used the follow-
ing expression for the turbulent correlation time: t(k) =
21y (k/ ko) 9, where 79 = £/u is the characteristic turbulent
time. Therefore, the formulas for the turbulent heat flux F; and
the function Ey are similar for small and large Péclet numbers,
while the coefficients are different in these two cases. Notably,
the theoretical predictions for large Péclet number (which
correspond to the laboratory experiments) are in agrement with
experimental results and with the estimate based on the balance
equation for Ey [see Eq. (3)]. Equations (A19) and (A20) are
in agreement with the corresponding equations derived by
means of the path integral approach in [67] for a passive scalar
advected by a Gaussian smooth velocity field § correlated in

PHYSICAL REVIEW E 83, 036302 (2011)

time. Equations (A19) and (A20) also can be obtained using
the spectrum of temperature fluctuations found by means of
dimensional arguments in [68] and by the renormalization
procedure for large Péclet numbers performed in [69].

Note that in our experiments with large frequencies of
the grid oscillations, i.e., in the limiting regime of unstably
stratified turbulent flow without LSC, where the temperature
field behaves like a passive scalar, the constant Cp is nearly
independent of the molecular heat transport coefficients for
large Péclet numbers (which correspond to the conditions
of our experiments). The constant Cp depends on the
molecular heat transport coefficients only for small Péclet
numbers.
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