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Tangling clustering of inertial particles in stably stratified turbulence

A. Eidelman,* T. Elperinf N. Kleeorin,i B. Melnik,§ and I. Rogachevskii"
The Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering,
Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
(Received 24 November 2009; revised manuscript received 8 March 2010; published 13 May 2010)

We have predicted theoretically and detected in laboratory experiments a tangling clustering of inertial
particles in a stably stratified turbulence with imposed mean vertical temperature gradient. In the stratified
turbulence a spatial distribution of the mean particle number density is nonuniform due to the phenomenon of
turbulent thermal diffusion, i.e., the inertial particles are accumulated in the vicinity of the minimum of the
mean temperature of the surrounding fluid, and a nonzero gradient of the mean particle number density, VN, is
formed. It causes generation of fluctuations of the particle number density by tangling of the large-scale
gradient VN by velocity fluctuations. In addition, the mean temperature gradient VT produces the temperature
fluctuations by tangling of the large-scale gradient VT by velocity fluctuations. The anisotropic temperature
fluctuations contribute to the two-point correlation function of the divergence of the particle velocity field, i.e.,
they increase the rate of formation of the particle clusters in small scales. We have demonstrated that in the
laboratory stratified turbulence this tangling clustering is much more effective than a pure inertial clustering
(preferential concentration) that has been observed in isothermal turbulence. In particular, in our experiments
in oscillating grid isothermal turbulence in air without imposed mean temperature gradient, the inertial clus-
tering is very weak for solid particles with the diameter of =10 wm and Reynolds numbers based on turbulent
length scale and rms velocity, Re=250. In the experiments the correlation function for the inertial clustering in
isothermal turbulence is much smaller than that for the tangling clustering in nonisothermal turbulence. The
size of the tangling clusters is on the order of several Kolmogorov length scales. The clustering described in
our study is found for inertial particles with small Stokes numbers and with the material density that is much
larger than the fluid density. Our theoretical predictions are in a good agreement with the obtained experimental

results.
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I. INTRODUCTION

Laboratory experiments [1-3], numerical simulations
[4-7], and atmospheric observations [8—14] revealed small-
scale long-living inhomogeneities (clusters) in spatial distri-
bution of particles in different turbulent flows. The origin of
these inhomogeneities is not always clear but their influence
on particle transport and mixing can be hardly overestimated.
In particular, turbulence causes formation of small-scale
droplet inhomogeneities, increases the relative droplet veloc-
ity, and affects the hydrodynamic droplet interactions. All
these effects can enhance the rate of droplet collisions (see
reviews [9,11,13]). It is known that atmospheric clouds are
regions with strong turbulence, and the turbulence effects are
of a great importance for understanding of rain formation in
atmospheric clouds, e.g., these effects can cause the droplet
spectrum broadening and acceleration of raindrop formation
[9,11,13,15]. Different kinds of particle clustering, i.e., the
preferential concentration of inertial particles, have been
studied in a number of numerical simulations [16-30], labo-
ratory experiments (see review [31], and [32-38]), and ana-
lytical investigations [39-53].

*eidel @bgu.ac.il

+http://www.bgu.ac.il/me/staff/tov; elperin@bgu.ac.il
inat@bgu.ac.il

§borism@bgu.alc.il

”http://www.bgu.ac.il/~gary; gary @bgu.ac.il

1539-3755/2010/81(5)/056313(14)

056313-1

PACS number(s): 47.27.tb, 47.55.Hd

Inertial clustering in isothermal and nearly isotropic tur-
bulence with the Reynolds numbers Re=uy{,/ v~ 10 pro-
duced by fans at the corners of the box has been observed in
laboratory experiments [36] with hollow glass spheres with a
mean diameter of 6 wm in air. Here, u is the characteristic
turbulent velocity in the maximum scale of turbulent motions
€y and v is the kinematic viscosity. The three-dimensional
(3D) radial distribution function (RDF), as a statistical mea-
sure of clustering, has been determined from the particle po-
sition field using three-dimensional digital holographic par-
ticle imaging. These experiments reveled inertial particle
clustering at the dissipation scales. The detailed comparisons
between experiments and direct numerical simulations of in-
ertial particle clustering in [36] have demonstrated a good
agreement.

The quantitative measurements of inertial clustering have
been also performed in [33,38]. In particular, the two-
dimensional RDF of particles suspended in a turbulence flow
with the Reynolds numbers Re~ 10° has been measured in
[33] by shining a laser sheet at the particles (the glass par-
ticles with sizes of 20 and 50 um and the lycopodium par-
ticles with the size of 25 wm), whereby particle locations
have been determined by a charge-coupled device (CCD)
camera. The experiments have been conducted in the spheri-
cal turbulence chamber with eight synthetic jet actuators
which create homogeneous and isotropic turbulence with no
mean flow at the center of the chamber. The experiments
conducted in [33] have shown that the inertial clustering is
most effective for particles with Stokes numbers near unity
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and the size of the clusters is on the order of ten Kolmogorov
length scales.

A one-dimensional RDF has been measured in [38] by
sampling droplet arrivals at a fixed volume in a wind tunnel,
whereby the arrival statistics of water droplets with the mean
size of 22 um in turbulence with the Reynolds numbers
Re~ 10* has been used to determine the one-dimensional
RDF. In the experiments described in [38] a phase Doppler
interferometer downstream of the active grid and a spray
system have been used, and strong inertial clustering has
been observed. Remarkably, the similar experimental find-
ings have been reported in [33,36] using completely different
experimental setups.

The mechanism of inertial clustering of particles in iso-
thermal turbulence is as follows [54]. The particles inside the
turbulent eddies are carried out to the boundary regions be-
tween the eddies by the inertial forces. This mechanism of
the inertial clustering acts in all scales of turbulence and is
more pronounced in small scales.

The goal of this study is to investigate experimentally and
theoretically a type of particle clustering, namely, tangling
clustering of inertial particles in stably stratified turbulence
with imposed mean vertical temperature gradient. In experi-
mental study of particle clustering we use particle image ve-
locimetry (PIV) to determine the turbulent velocity field, an
image processing technique to determine the spatial distribu-
tion of particles, and a specially designed temperature probe
with 12 sensitive thermocouples for measurements of the
temperature field. The clustering described in our study is
found for inertial particles with small Stokes numbers and
with material density that is much larger than the fluid den-
sity.

In the stratified turbulence a spatial distribution of the
mean particle number density is nonuniform due to phenom-
enon of turbulent thermal diffusion [55,56]. In particular, the
inertial particles are accumulated in the vicinity of the mini-
mum of the mean temperature of the surrounding fluid,
which causes formation a nonzero gradient of the mean par-
ticle number density, VN. The phenomenon of turbulent ther-
mal diffusion has been predicted theoretically in [55], de-
tected in the laboratory experiments in stably and unstably
stratified turbulent flows in [57-60], and observed in atmo-
spheric turbulence in [61].

Fluctuations of the particle number density can be gener-
ated by tangling of the gradient VN of the mean particle
number density by velocity fluctuations [62]. On the other
hand, the imposed mean temperature gradient VT results in
generation of the anisotropic temperature fluctuations by tan-
gling of this large-scale gradient VT by velocity fluctuations.
These temperature fluctuations may contribute to the two-
point correlation function of the divergence of the particle
velocity field. The latter enhances the rate of formation of
particle clusters in small scales by the tangling mechanism.

The tangling mechanism is universal and independent of
the way of generation of turbulence for large Reynolds num-
bers. For instance, tangling of the gradient of the large-scale
velocity shear produces anisotropic velocity fluctuations
[63,64], which are responsible for different phenomena: for-
mation of large-scale coherent structures in a turbulent con-
vection [65], excitation of the large-scale inertial waves in a
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FIG. 1. Experimental setup: (1) laser light sheet; (2) heat ex-
changers; (3) grid driver; (4) digital CCD camera.

rotating inhomogeneous turbulence [66], generation of large-
scale vorticity [67], and large-scale magnetic field [68] in a
sheared turbulence.

The paper is organized as follows. Section II describes the
experimental setup for a laboratory study of the tangling
clustering of inertial particles in stably stratified turbulence.
The data processing and experimental results are presented in
Sec. III. The theoretical analysis and comparison with ex-
perimental results are performed in Sec. IV. Finally, conclu-
sions are drawn in Sec. V.

II. EXPERIMENTAL SETUP

The experiments were carried out in a turbulence gener-
ated by oscillating grids in air. The test section of the oscil-
lating grid turbulence generator was constructed as a rectan-
gular chamber with dimensions of 29X 58X29 cm® (see
Fig. 1). Pairs of vertically oriented grids with bars arranged
in a square array (with a mesh size of 5 cm) are attached to
the right and left horizontal rods driven by speed-controlled
motors. The grids are positioned at a distance of two grid
meshes from the chamber walls parallel to them. Both grids
are operated at the same amplitude of 61 mm, at a random
phase and at the same frequency varied in the range from 2.2
to 16.5 Hz. Here, we use the following system of coordi-
nates: Z is the vertical axis, the Y axis is perpendicular to the
grids, and the XZ plane is parallel to the grids.

A mean temperature gradient in the turbulent flow was
formed with two aluminum heat exchangers attached to the
bottom and top walls of the chamber. We performed experi-
ments in stably stratified fluid flow (the cold bottom and hot
top walls of the chamber). In order to improve heat transfer
in the boundary layers at the walls we used two heat ex-
changers with rectangular fins (3 X3 X 15 mm?, see Fig. 1)
which affords a mean temperature gradient of 118 K/m at a
mean temperature of about 308 K. All experiments were con-
ducted at the same temperature difference between the top
and bottom walls AT=50 K (e.g., the bottom wall tempera-
ture was 283 K and the top wall temperature was 333 K).

The temperature field was measured with a temperature
probe equipped with 12 E thermocouples (with the diameter
of 0.13 mm and the sensitivity of 65 wV/K) attached to a
vertical rod with a diameter 4 mm. The spacing between
thermocouples along the rod was 22 mm. Each thermocouple
was inserted into a 1-mm-diameter and 45-mm-long case. A
tip of a thermocouple protruded at the length of 15 mm out
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of the case. The mean temperature was measured for five rod
positions with 50 mm intervals in the horizontal direction,
i.e., at 60 locations in a flow. The exact position of each
thermocouple was measured using images captured with the
optical system employed in PIV measurements. A sequence
of 1024 temperature readings (each reading was averaged
over 15 instantaneous measurements) for every thermo-
couple at every rod position was recorded and processed us-
ing the developed software based on LABVIEW 7.0.

The turbulent velocity field was measured using a digital
PIV system with LaVision Flow Master Il (see, e.g.,
[69-71]). A double-pulsed Nd:YAG laser (Continuum Sure-
lite, 2X 170 mJ) is used for light sheet formation. Light
sheet optics comprises spherical and cylindrical Galilei tele-
scopes with tunable divergence and adjustable focus length.
We employed a progressive-scan 12 bit digital CCD camera
(pixels with a size of 6.7X 6.7 um? each) with dual frame
technique for cross-correlation processing of captured im-
ages. The tracer used for PIV measurements was incense
smoke with submicron particles (with the material density
pe=1 g/cm?), which was produced by high-temperature
sublimation of solid incense particles. Analysis of smoke
particles using a microscope (Nikon, Epiphot with an ampli-
fication 560) and PM-300 portable laser particulate analyzer
showed that these particles have an approximately spherical
shape with a mean diameter of 0.7 um.

We determined the mean and the rms velocities, two-point
correlation functions, and an integral scale of turbulence
from the measured velocity fields. Series of 130 pairs of
images, acquired with a frequency of 4 Hz, were stored for
calculating velocity maps and for ensemble and spatial aver-
aging of turbulence characteristics. The center of the mea-
surement region coincides with the center of the chamber.
We measured velocity for flow areas from 50 X 50 mm? up
to 212X212 mm? with a spatial resolution of 1024
X 1024 pixels. This corresponds to a spatial resolution from
48 um/pixel up to 207 um/pixel. These measurement re-
gions were analyzed with interrogation windows of 32X 32
or 16 X 16 pixels, respectively.

In every interrogation window a velocity vector was de-
termined from which velocity maps comprising 32X 32 or
64 X 64 vectors were constructed. The mean and rms veloci-
ties for every point of a velocity map (1024 points) were
calculated by averaging over 130 independent maps, and
then they were averaged over 1024 points. The two-point
correlation functions of the velocity field were calculated for
every point of the central part of the velocity map (with 16
X 16 vectors) by averaging over 130 independent velocity
maps, and then they were averaged over 256 points. An in-
tegral scale €, of turbulence was determined from the two-
point correlation functions of the velocity field.

Particle spatial distribution was determined using digital
PIV system. In particular, the effect of Mie light scattering
by particles was used to determine the particle spatial distri-
bution in the flow (see, e.g., [72]). In the experiments we
probed the central 212X 212 mm? region in the chamber.
The mean intensity of scattered light was determined in 32
X 16 interrogation windows with the size of 32X 64 pixels.
The vertical distribution of the intensity of the scattered light
was determined in 16 vertical strips composed of 32 interro-
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gation windows. The light radiation energy flux scattered by
small particles is E;* EgW(md,/\;ay;N), where Ej> wd,z,/4
is the energy flux incident on the particle, d, is the particle
diameter, \ is the wavelength, a, is the index of refraction,
and W is the scattering function. For wavelengths N\ which
are larger than the particle perimeter (\> 7d,), the function
W is given by Rayleigh’s law, \I’%d4 If the wavelength is
small, the function W tends to be 1ndependent of d, and \. In
the general case the function WV is given by Mie’s equations
(see, e.g., [73], Chap. 4). The scattered light energy flux in-
cident on the CCD camera probe (producing proportional
charge in every CCD pixel) is proportional to the particle
number density n, i.e., ESOCEOYL(WdIZ,/4).

In order to characterize the spatial distribution of particle
number density n<ET/E in the nonisothermal flow, the dis-
tribution of the scattered light intensity £ measured in the
isothermal case was used for the normalization of the scat-
tered light intensity ET obtained in a nonisothermal flow un-
der the same conditions. The scattered light intensities ET
and E in each experiment were normalized by corresponding
scattered light intensities averaged over the vertical coordi-
nate. Mie scattering is not affected by temperature change
because it depends on the electric permittivity of particles,
the particle size, and the laser light wavelength. The tem-
perature effect on these characteristics is negligibly small.
Similar experimental setup and data processing procedure
were used in experimental study of different aspects of tur-
bulent convection [74,75] and in [57-60] for investigating
the phenomenon of turbulent thermal diffusion [55,56].

For experimental study of particle clustering we used hol-
low borosilicate glass particles having an approximately
spherical shape, a mean diameter of 10 um, and the material
density p,~1.4 g/ cm?’. These particles have been injected
in the chamber using an air jet in order to improve particle
mixing and prevent from particle agglomeration.

II1. DATA PROCESSING AND EXPERIMENTAL RESULTS

All experiments for study of the particle clustering have
been performed at the frequency of grid oscillations f
=10.4 Hz. The turbulent flow parameters in the oscillating
grid turbulence generator at f=10.4 Hz are as follows: the
rms velocity is ug= \<u2> 12 cm/s, the integral (maximum)
scale of turbulence is €;=3.2 cm, the Reynolds number is
Re=uyt(/v=250, the Kolmogorov length scale is €,
={,/Re’*=510 um, and the Kolmogorov time scale is 7',7
=17 /Re”2 1.7X 1072 s, where 7,=£y/u,. The Stokes time
for the particles with the diameter d,=10 wm is 7,=10" 3
the Stokes number is St=7,/7,=5.9 >< 1072, the coefficient of
molecular diffusion is D,,=1. 4 %1078 c¢m?/s, and the Peclet
number is Pe=uy/D,,=3 X 10°.

The velocity measurements have shown that there is a
slight difference in the velocity components (about 9%)
caused by an anisotropy of forcing of the grid oscillating
turbulence. The inhomogeneity of turbulence in the core of
fluid flow is weak. We have found a weak mean flow in the
form of two large toroidal structures parallel and adjacent to
the grids. The interaction of these structures results in a sym-
metric mean flow that is sensitive to the parameters of grid
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adjustment. We studied the parameters that affect the mean
flow, e.g., the grid distance to the walls of the chamber and
the angles of the grid planes with the axes of their oscilla-
tion. This study allowed us to expand the central region with
homogeneous turbulence by inserting partitions behind the
grids. The measured rms velocity was five times higher than
the characteristic mean velocity in the core of the flow.

For analysis of particle clustering we use the RDF,
G(R)={n(t,x)n(t,y))/N(t,x)N(t,y), which is the conditional
probability density of finding a second particle at a given
separation distance from a test particle (see, e.g., [76]),
where n(7,x) is the instantaneous number density of par-
ticles, N(¢,x)=(n(z,x)) is the mean number density of par-
ticles, the angular brackets denote ensemble averaging, and
R=y-x. The RDF can be estimated from a field of M par-
ticles by binning the particle pairs according to their separa-
tion distance, so that the function G(R) is estimated as fol-
lows:

1IN
N1

G(R) = (1)
(see, e.g., [77]), where N(Ap‘)/ is the number of particle pairs
separated by a distance R+ AR/2, AV is the volume of the
spherical ~ shell located between R*AR/2, NV
=M(M-1)/2 is the total number of pairs, and V is the total
volume of the probed region.

In our experiments we employ the PIV system in order to
determine the particle spatial distribution. Since we use the
two-dimensional images, Eq. (1) is modified as follows:

NYYAS
N(Sp)/S ’ (2)

where AS=7{(R+AR/2)*>—(R—AR/2)?] is the area of the
annular domain located between R+ AR/2, and S is the area
of the part of the image with the radius R, that was used in
data processing in order to exclude the edge effects. In our
experiments with the image sizes of 20X 20 and 5X 5 cm?,
the maximum radii are R,,=0.8 and 0.2 cm, respectively.
The total number of particles in the image 5X5 cm? is on
the order of M~2X10* Using the thickness of the laser
light sheet d=0.2 cm we can estimate the effective 3D par-
ticle mean number density in the experiments as N~4
X 10° cm™.

The measured radial distribution function has been used
for determining the two-point correlation function of the par-
ticle number density ®(r,R)=(0O(z,x)O(s,x+R)), where
O(t,x)=n(t,x)—N(z,x) is the deviation of the instantaneous
number density of particles n(z,x) from the mean number
density of particles N(¢,x). The two-point correlation func-
tion of the particle number density is given by

®(1,R) =N’ [G(1,R) - 1] (3)

G(R) =

(see, e.g., [76]). Note that in our experiments the correlation
function has been normalized by squared mean number den-
sity of particles in every image. We perform the double av-
eraging over all particles in the image and then over en-
semble of 50 images, which allows us to increase the
accuracy of determining the two-point correlation function of
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FIG. 2. Normalized two-point second-order correlation function
®(R) determined in our experiments (filled squares) and the least-
squares fit for the experimental results (dashed line). Normalized
two- point second-order correlation function ®(R) determined from
our model for =1, a,=1 (solid line).

the particle number density. Therefore, particle clustering in
our study is understood in the statistical sense by applying an
ensemble averaging over many images with the instanta-
neous particle distributions.

Since a typical size of a particle cluster is on the order of
several Kolmogorov length scales of turbulence (see, e.g.,
[33,39,42]), we have to use a subpixel resolution in the data
analysis. In our experiments one pixel is on the order of 1/3
of the Kolmogorov length scale of turbulence. On the other
hand, the size of the analyzed region in the image cannot be
reduced strongly, because a number of particles in the ana-
lyzed region of the image should be large in order to provide
a good statistics.

In order to attain the subpixel resolution we employ the
following method: (i) we determine the response function for
the CCD camera used in the PIV system by analyzing the
light intensity distribution in the image for single particles
located at the center of the pixel in the form of the Gaussian
distribution with ¢,=0.81 pixels, (ii) segmentation of the
image using a threshold technique, and (iii) identification of
particle locations in the segments by least-squares fitting of
the recorded light intensity distribution and the light intensity
distribution caused by superposition of the Gaussian distri-
butions at the particle locations. This procedure has been
tested using artificial computer-generated images. The error
in determining the particle coordinates is on the order of 3%.

This approach allows us to determine in the experiments
the two-point second-order correlation function ®(R) of the
particle number density. For instance, in Fig. 2 we plot the
normalized two-point second-order correlation function
®(R) determined in our experiments, which are performed in
the air flow with imposed mean temperature gradient, i.e., for
the stably stratified turbulence with the temperature differ-
ence AT=50 K between the top and bottom walls of the
chamber.

On the other hand, we have found that in the experiments
in isothermal turbulence without imposed mean temperature
gradient, the inertial particle clustering is very weak, i.e., the
correlation function ®(R) for the inertial clustering is much
smaller than that for the tangling clustering. Indeed, in Fig. 3
we compare the correlation function ®(R) for the isothermal
turbulence (unfilled circles) with that for the turbulence with
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FIG. 3. Normalized two-point second-order correlation function
®(R) determined in our experiments: (i) for isothermal turbulence
(unfilled circles); (ii) for nonisothermal turbulence (filled squares as
in Fig. 2).

imposed mean temperature gradient (filled squares). For in-
stance, for the isothermal turbulence ®;,(R=0.4¢,)=0.3,
while for the turbulence with imposed mean temperature gra-
dient ®,,(R=0.4¢,)=3.3 (the tangling clustering). The mini-
mum distances R, at which the correlation function ®(R)
approaches zero are Ry={, for the isothermal turbulence and
Ry,=7.6¢,, for the tangling clustering.

In the next section we perform theoretical study of this
kind of particle tangling clustering and compare theoretical
predictions with the experimental results.

IV. THEORETICAL ANALYSIS AND COMPARISON WITH
EXPERIMENTAL RESULTS

Let us consider the two-point second-order correlation
function of the particle number density fluctuations gener-
ated by tangling of the gradient of the mean particle number
density by the turbulent velocity field. This gradient is
formed due to phenomenon of turbulent thermal diffusion in
stably stratified turbulence.

A. General consideration

The equation for the number density n(z,x) of particles
advected by a fluid velocity field reads

on +V-(nv)=D,An, (4)
Jat
where D,, is the coefficient of molecular (Brownian) diffu-
sion and v(z,x) is the particle velocity field. Equation (4)
implies conservation of the total number of particles in a
closed volume. The equation for fluctuations of the particle
number density O(s,x)=n(r,x)—N(t,x) reads

ZL0)

E+V~(@V—<®V>)=DmA®—(V~V)N—NV ‘v (5)
(see, e.g., [78,79]). Using Eq. (5) we derive an equation for
the evolution of the two-point second-order correlation func-
tion of the particle number density ®(¢,R)=(0O(z,x)O(z,x
+R)),
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9P _ [B(R) +2UY(R) - V+ D;;(R)V,V,]®(1,R) + I(R)

a
(6)
(see [42]), where UY(R)=(1/2)[U(R)-U(-R)],

Dy;=2D,,6,;+DI(0) - DI(R). )

Dl-Tj(R) = 2fw (v[0,&(t.x|0)]v [ 7. &, x + R|D)]d7, (8)
0

B(R) = 2f°° (b0, &(,x|0)1b[ 7, €@, x + R| D dT,  (9)
0

Ui(R)=- 2[00 (v[0,&(t,x|0)]b[ 7, &(t,x + R| D) ])d 7.
0

(10)

Here, b=div v, D;(R) is the scale-dependent turbulent diffu-
sion tensor, 6,-j is the Kronecker tensor, I(R) is the source of
particle number density fluctuations, and (---) denotes aver-
aging over the statistics of turbulent velocity field and the
Wiener process w(z). The Wiener trajectory &(¢,x|s) (which
is often called the Wiener path) in the expressions for the
turbulent diffusion tensor D;(R) and other transport coeffi-
cients is defined as follows:

&£(r,x Dldr—\2D,w(t-s), (11)

§)=xX-— JI v[ 7, &t,x

where w(r) is the Wiener random process which describes
the Brownian motion (molecular diffusion). The Wiener ran-
dom process w(r) is defined by the following properties:
(W(1)w=0, (wit+7w(t))y=78;, and (---),, denotes the
mathematical expectation over the statistics of the Wiener
process. The velocity v[7,&(t,x|7)] describes the Eulerian
velocity calculated at the Wiener trajectory.

The source function I(R) in Eq. (6) is related to the last
two terms —(v-V)N—NV -v in the right-hand side of Eq. (5).
In particular, when VN # 0 the nonzero source [ results in
generation of fluctuations of the particle number density
caused by tangling of the gradient of the mean particle num-
ber density by the turbulent velocity field. The source func-
tion /(R) is given by

I(R) = BR)N? + US(R) - VN? + 3 D[(R)(V.N)(V,N),
(12)

where U®(R)=(1/2)[U(R)+U(-R)] and we have taken
into account that VE")V;WN(t,x)N(t,y)z(3/4)(V,N)(VJN)
and V;= VﬁR).

The meaning of the turbulent transport coefficients B(R)
and U(R) is as follows. The function B(R) is determined by
the compressibility of the particle velocity field. The vector
U(R) determines a scale-dependent drift velocity which de-
scribes transport of fluctuations of particle number density
from smaller scales to larger scales, i.e., in the regions with
larger turbulent diffusion. The scale-dependent tensor of tur-
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bulent diffusion D;(R) in very small scales is equal to the
tensor of the molecular (Brownian) diffusion, while in the
vicinity of the maximum scale of turbulent motions this ten-
sor coincides with the regular tensor of turbulent diffusion.

If the turbulent velocity field is not delta correlated in
time (e.g., the correlation time is small yet finite), the tensor
of turbulent diffusion, D,.TJ-(R), is compressible, i.e.,
(a1 (9R,<)DiTj(R)¢O (for details see [42]). The parameter o
that characterizes the degree of compressibility of the tensor
of turbulent diffusion is defined as follows:

V.V.D'(R)

DR (V-BP)
ViVjDZ;m(R)Eimpejnp (VX §)2> ’

or= (13)
where € is the fully antisymmetric Levi-Civita unit tensor

and £=&—x with |r—s|> .. Here, . is the characteristic tur-
bulent time,

19¢,

V. &=
g &gm dxl'

_ f ulr XD 06y, (14)

I, f dun[ 7 E6X|T)] 9, (15)

— =45 . — _ -
" T agn &xi

ox
When the turbulent velocity field is a delta-correlated in

time random process, VE:—(V-u)(r—s) and VX §~
=—(V Xu)(z—ys). Therefore, in this case the parameter o is
given by

i

C(V-u?)
TTE (Y X w)?)

where u is the fluid velocity field. For a small yet finite
correlation time (i.e., for a small Strouhal numbers Sr
=7.\(u?)/€<1), the parameter o can be estimated as

2 Sr2< 9130°
+
3 12(1+0,)

For derivation of Eq. (17) we used Eq. (C12) given in [42].
For inertial particles with small Stokes time the corrections
~0O(St?) in Egs. (14)—(16) can be neglected (see Sec. IV B),
where St=7,/7, is the Stokes number, 7, is the Stokes time
of inertial particles, and 7, is the Kolmogorov time scale.

Equation (6) with I(R)=0 has been derived in [80] for a
delta-correlated in time random incompressible (b=0) veloc-
ity field. For a turbulent compressible (b# 0) velocity field
with a finite correlation time, Eq. (6) has been derived in [42]
by means of stochastic calculus, i.e., Wiener path integral
representation of the solution of the Cauchy problem for Eq.
(4), using Feynman-Kac formula and Cameron-Martin-
Girsanov theorem. The comprehensive description of this ap-
proach can be found in [42,62,81].

= 0,

us (16)

) +0(Sr%). (17)

Or= O'u+

B. Gradient of the mean particle number density

A nonzero gradient of the mean particle number density in
stratified turbulence with external mean temperature gradient
is caused by the phenomenon of turbulent thermal diffusion
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[55-61]. This phenomenon in turbulent stratified flows re-
sults in the nondiffusive flux of particles in the direction of
the heat flux. Particles are accumulated in the vicinity of the
minimum of the mean temperature of the surrounding fluid.
This causes formation of large-scale inhomogeneities in spa-
tial distribution of particles. Turbulent thermal diffusion has
been detected in two experimental setups: oscillating grid
turbulence generator [57-59] and multifan turbulence gen-
erator [60]. The experiments have been performed for stably
and unstably stratified fluid. In these experiments, even with
strongly inhomogeneous temperature fields, particles in tur-
bulent fluid accumulate in the regions of temperature
minima, in a good agreement with the theory of turbulent
thermal diffusion [55,56].

Let us discuss the physics of the phenomenon of turbulent
thermal diffusion. The velocity of particles, v, depends on
the velocity of the surrounding fluid, u, and it can be deter-
mined from the equation of motion for a particle. When p,
> p, this equation represents a balance of particle inertia with
the fluid drag force produced by the motion of the particle
relative to the surrounding fluid, dv/dt=(u-v)/7,, where 7,
is the particle Stokes time, p is the fluid density, and p,, is the
material density of a particle. The solution of the equation of
motion for small Stokes numbers, St<<1, reads

V=u—St[0;—l:+(u~V)u}+O(St2) (18)

(see, e.g., [54]). This solution is written in dimensionless
form, where the time is measured in the units of Kolmogorov
time scales. The second term in Eq. (18) describes the dif-
ference between the local fluid velocity and particle velocity
arising due to the small but finite inertia of the particle. In
this study we consider low-Mach-number turbulent flow with
V-u=—p~!(u-V)p+#0. Equation (18) for the velocity of par-
ticles and Navier-Stokes equation for the fluid for large Rey-
nolds numbers yield the equation for V-v written in dimen-
sional form,

v-v=v-u—nv-<d—“)+o(7§)
dt

= L)+ EVh s 0(R), (19)
p p

where p is the fluid pressure.

The physical mechanism of the phenomenon of turbulent
thermal diffusion for inertial particles can be explained as
follows. Due to inertia, particles inside the turbulent eddies
drift out to the boundary regions between the eddies (the
regions with the decreased velocity of the turbulent fluid
flow). Neglecting nonstationarity and molecular viscosity,
the estimate based on the Bernoulli’s law implies that these
are the regions with the increased pressure of the surround-
ing fluid. Consequently, particles are accumulated in the re-
gions with the maximum pressure of the turbulent fluid. In-
deed, due to the inertia effect V-ve(7,/p)V?p#0 even for
incompressible fluid flow [see Eq. (19)]. On the other hand,
for large Peclet numbers, when we can neglect the molecular
diffusion of particles in Eq. (4), V-vec—dn/dt. This implies
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that in regions with maximum pressure of turbulent fluid
(i.e., where V?p<0) there is accumulation of inertial par-
ticles [i.e., dn/dtx—(7,/p)V?p>0]. Similarly, there is an
outflow of inertial particles from regions with the minimum
pressure of fluid.

In the case of homogeneous and isotropic turbulence
without external large-scale gradients of temperature, a drift
from regions with increased (decreased) concentration of
particles by a turbulent flow of fluid is equiprobable in all
directions. Therefore, the pressure (temperature) of the fluid
is not correlated with the turbulent velocity field and there
exists only turbulent diffusion of particles.

The situation drastically changes in a turbulent fluid with
a mean temperature gradient. In this case, the heat flux (u6)
is not zero, i.e., fluctuations of fluid temperature, 6, and ve-
locity are correlated. We consider low-Mach-number flows
(M=ulc,<1, ¢, is the sound speed) and study mean-field
effects. For low-Mach-number isothermal flows, the mean
fluid mass flux (up’) is very small [~O(M?)] (see, e.g.,
[82]), i.e., the fluctuations of the fluid density p’ and velocity
u are weakly correlated. Moreover, in stratified turbulent
flows with imposed mean temperature gradient the total mass
current in the cell reference frame vanishes.

On the other hand, fluctuations of pressure must be corre-
lated with the fluctuations of velocity due to a nonzero tur-
bulent heat flux, (uf) # 0. Indeed, using the equation of state
for an ideal gas we find that p/P=p'/p+6/T and {up)/P
=(ub)/T, where P, T, and p are the mean fluid pressure,
temperature, and density, respectively. Therefore, the fluctua-
tions of temperature and pressure are correlated and the pres-
sure fluctuations cause fluctuations of the number density of
particles. The correlation between p and 6, necessary for
P{6u)=T(pu), arises from the buoyancy component of p and
from the effect of nonuniform mass density in the Navier-
Stokes equation.

The increase (decrease) in the pressure of surrounding
fluid is accompanied by accumulation (outflow) of the par-
ticles. The direction of the mean flux of particles coincides
with the direction of the heat flux of temperature—toward
the minimum of the mean temperature. Therefore, the par-
ticles are accumulated in this region (for more details, see
[55)).

The equation for the evolution of the mean number den-
sity N of particles reads

IN
VvV F"”]=0, (20)

where V is the mean particle velocity and F®”=(v®) is the
turbulent flux of particles that includes contributions of tur-
bulent thermal diffusion and turbulent diffusion (see
[55,56]),

F? =V N_D, VN, (21)

where D= {yu is the coefficient of turbulent diffusion, u is
the characteristic turbulent velocity in the maximum scale ¢,
of turbulent motions, and V¢ is the effective velocity caused
by turbulent thermal diffusion given by the following equa-
tion:
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Vel = — ®v(V - v)). (22)

Equation (22) for the effective velocity has been derived us-
ing different rigorous methods in [55,56,61,83,84]. Note that
even a simple dimensional analysis yields the estimate for
the effective velocity V' that coincides with Eq. (22). In-
deed, the magnitude of d®/dt+V-Q-D,,V?® in Eq. (5) can
be estimated as ®/ 7. Therefore, the turbulent component ®
of particle number density is on the order of ®=
-7V - (Nv)=—1N(V-v)+(v-V)N]. Now let us determine the
turbulent flux of particles F\"'=(v,0),

F,(-n) ==N1(V-v)) - vv,)V,N, (23)

where the first term in the right-hand side of Eq. (23) deter-
mines the turbulent flux of particles caused by turbulent ther-
mal diffusion, —N7(v,(V-V)>=V?”N, while the second term
in the right-hand side of Eq. (23) determines the turbulent
flux of particles caused by turbulent diffusion, v ;)V;N
=D;V;N. In the latter estimate we neglected the anisotropy
of turbulence for simplicity. More detailed analysis shows
that the effective velocity caused by turbulent thermal diffu-
sion is given by
Vo= — aDTV—T , (24)
T
where VS'=U(R=0) (see Sec. IV C). The turbulent thermal
diffusion ratio « is given by the following equation:
14 yW,Lp In(Re) (25)
uglo

(see [55,56]), where y=c,/c, is the ratio of specific heats,
W,=7g is the terminal fall velocity of particles, 7
=m,/6mpva, is the Stokes time for small spherical particles
of radius a, and mass m,, g is the acceleration of gravity,
L;l =|V_P/P|, and Re=uy{,/ v is the Reynolds number. For
gases and noninertial particles a=1. For derivation of Eqs.
(24) and (25) we took into account the equation of state,
neglected the mass flux of fluid (up’) for the low-Mach-
number flows, and used the identity 7,=pW,Lp/P, where
|V.P|=pg. The steady-state solution of Eq. (20) at V=0
reads

—=—a. (26)

We will use Eq. (26) in order to determine the source func-
tion I(R) in Eq. (6).

C. Functions B(R) and US(R)

Let us consider the case a?>> 1. The magnitude of a? in
the experiment was on the order of 10-15. Note that it is not
easy to determine the exact value of & in the experiments
because of a size distribution of particles. In particular, the
particle size in the experiments varies from 3 to 40 wm, with
the mean value of 10 um. On the other hand, in the analysis
of the particle clustering we used a threshold in the light
intensity. This implies that we did not take into account very
small particles in the data analysis of the particle clustering.
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In this case V-v=~(7,/p)V?p, and the function B(R), de-
termined by Eq. (9), is given by the following equation:

27
p; (IV2p(x)]V?p(y))

27| P*
- [%wvw(xﬂvzﬁ(y»

BR) =

P? P?
+ ?<7‘[V2p’(x)]vzp'(y)> + p—T{<T[V2p'(X)]V26’(y)>

+(AV26(x) IV?p’ (y)>}} ; (27)

where V2p(x) =[V®]?p(x). Hereafter we omit the argument ¢
in the correlation function. In derivation of this equation we
used the relationship

p_p

0 !

I p+T+0(p 0), (28)
which follows from the equation of state for ideal gas. We
also take into account that characteristic spatial scales for
fluctuations of fluid pressure, temperature, and density are
much less than those for the mean fields.

In turbulence with imposed turbulent heat flux (e.g., the
imposed mean temperature gradient in the oscillating grid
turbulence), the correlation function {[VZ8(x)]VZ6(y)) is
much larger than the correlation functions of density-density
fluctuations or density-temperature fluctuations, i.e.,

V26001V > [V IV (W)Y (29)
r p
TP o170ty = (V2 (OIF005), (G0

P61V )] = - (V007 (5D D

Indeed, the correlation function ([V?8(x)]V26(y)) is caused
by the turbulent heat flux, ie., (0(x)6(y))x
—7o(u;(x) 0(y))(V,T) [see Egs. (43) and (46)], where 7 is the
characteristic turbulent time. On the other hand, the correla-
tion functions of density-density fluctuations or density-
temperature fluctuations are nearly independent of the turbu-
lent heat flux, and they are proportional to the mass flux
(u(x)p’(y)), which is very small.

In particular, the temperature fluctuations can be esti-
mated as #oc—7yu,;V,T. Then the temperature-density fluctua-
tions are estimated as (6(x)p’(y)) o —7o{u;(x)p’ (y))(V,T).
The density fluctuations are determined by the continuity
equation,

(9 !
==V (pu) + 0(p"w). (32)

and the correlation function of density-density fluctuations
(p'(x)p’(y)) is determined by the following equation:
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0! (00’ (1) == ALV () + T (¥ )]

- %[(P'(x)ui(y)) +(p'(Yu,(x))], (33)

which follows from Eq. (32). Since (p’ (x)u;(y)) is very small
and is nearly independent of the turbulent heat flux, the cor-
relation functions of the density-density fluctuations or
density-temperature fluctuations are much smaller than the
correlation functions of the temperature-temperature fluctua-
tions.

In k space the correlation function (7 VZ6(x)][V26(y)])
reads

(AVex) V2 a(y)]) = f Hk)k*(0(k) 6(— k))exp(ik - R)dk.

(34)
Similarly, the function U®)(R) determined by Eq. (10) is
given by the following equation:

27,

L Vo).
pT

U(R) ~ - %m(x)wzp(ym -

(35)

In k space the correlation function (ru(x)[V>6(y)]) reads

(ru(x)[V*0(y)]) = - f k), (u(k) (- k))exp(ik - R)dk.

(36)

In order to determine the correlation functions
(0(k)(-k)) and (u(k)O(-k)) we use the following evolu-
tionary equation for the temperature field T, (7,r) in a tur-
bulent flow:

dT,,
o W Tt (y= DV W=DV Ty, (37)

where D is the coefficient of molecular temperature diffu-
sion, y=cplc, is the ratio of specific heats, u is the fluid
velocity field that satisfies continuity equation in inelastic
approximation for a low-Mach-number flow,

V- (pu) =0. (38)

Combining Egs. (37) and (38) we obtain the following equa-
tion:

JT
=+ (V)T =DV, (39)

where W= yu. Averaging Eq. (39) over an ensemble of turbu-
lent velocity field we obtain the equation for the evolution of
the mean temperature field T(z,r),

aT ,
— +V F=DVT. (40)

where F=(ii6) is the heat flux, and for simplicity we con-
sider the fluid flow with a zero mean velocity. Note that for a

056313-8



TANGLING CLUSTERING OF INERTIAL PARTICLES IN...

low-Mach-number flow without imposed external pressure
gradient Vp/p=~-VT/T.

Subtracting Eq. (40) from Eq. (39) yields equation for the
temperature fluctuations,

36
a—t+Q—DV26=I, (41)

where I=—(ii-V)T is the source term and Q=V-[d0—-(i6)]
+6(i-V)p/p is the nonlinear term. In Eq. (40) we neglected
the term (6id)- Vp/ p, which is quadratic in large-scale spatial
derivatives.

Now we derive formulas for the function F(z,k)
=(i;(t,k)6(t,—Kk)) and the temperature fluctuation function
E (t,k)=(6(t,k)0(¢,—Kk)) using the 7 approach that is valid
for large Peclet and Reynolds numbers. Using Eq. (41) writ-
ten in a Fourier space we derive equations for the instanta-
neous two-point second-order correlation functions as fol-
lows:

@I TR, @)

dd—? = 26K I(= k) + KES(K), 43)

where  MFD(k) =—[(ii,0)+((dil;/ 1) )~ D(ii;V>6)],,  and
MEgI[)(k)=—[(0Q)—D< 6V?6)], are the third-order moment
terms appearing due to the nonlinear terms which include
also molecular diffusion term.

The equation for the second moment includes the first-

order spatial differential operators M applied to the third-
order moments FU/). A problem arises on how to close the

system, i.e., how to express the third-order terms MFU™D

through the lower moments FU) (see, e.g., [85-87]). We use
the spectral 7 approximation which postulates that the devia-

tions of the third-moment terms, MF (UI(K), from the con-
tributions to these terms afforded by the background turbu-

lence, MFU0(K), can be expressed through the similar
deviations of the second moments, FU)(k)—FU-0)(k),

A ~ 1
MF(III)(k) _ MF(III,O)(k) - _ %[F(H)(k) _ F(II,O)(k)]

(44)

(see, e.g., [87-89]), where 7,(k) is the scale-dependent relax-
ation time, which can be identified with the correlation time
7(k) of the turbulent velocity field for large Reynolds and
Peclet numbers. The functions with the superscript (0) cor-
respond to the background turbulence with a zero gradient of
the mean temperature. Validation of the 7 approximation for
different situations has been performed in numerous numeri-
cal simulations and analytical studies (see, e.g., review [90];
and also discussion in [89], Sec. 6).

Note that the contributions of the terms with the super-
script (0) vanish because when the gradient of the mean tem-
perature is zero, the turbulent heat flux and the temperature

fluctuations vanish. Consequently, Eq. (44) for ./\A/ngm)(k)
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reduces  to /\A/lFf,I”)(k)=—Fi(k)/7(k) and /\%E%””(k)
=—E,K)/ (k). We also assume that the characteristic times
of variation of the second moments F;(k) and E4k) are sub-
stantially larger than the correlation time 7(k) for all turbu-
lence scales. Therefore, in a steady state Eqs. (42) and (43)
yield the following formulas for the functions E,(k) and
Fi(k):

(0(k) (- K)) = 22 (k)i (K)id (- )YV, I)(V;T),  (45)

(1(k) 6(= k) = = 7(k)(ii(K) it (- k) VT (46)

Now we use the Kolmogorov model for the turbulent corre-
lation time, m{(k)=27,(k/ky)~%?, where 7y="€/u, is the char-
acteristic turbulent time, the wave number ky=1/€,, the
length €, is the maximum scale of random motions, and u,, is
the characteristic velocity in the maximum scale of random
motions. We also take into account that (u;(k)6(-Kk))
=y (i1,(k) 6(-k)). Substituting Eqs. (45) and (46) into Eqs.
(34) and (36), respectively, and using Egs. (27) and (35) we
arrive at the following expressions for the functions B(R)
and US(R):

B(R) = - 6L.7Au_(R), (47)
v.T
UPP(R) = - aDj(R) =, (48)

where u_.(R)=(u.(x)u,(x+R)). In derivation of Egs. (47) and
(48) we take into account the following model for the second
moments of turbulent velocity field, (u;(k)u;(-k)), in k
space:

2E(k kik,
(ui(K)u;(-k)) = “gwiﬁ {5,-‘ - 7] , (49)

where the energy spectrum function is  E(k)
=(2/3)k51(k/k0)‘5/3. In derivation of Eq. (47) we also used
the following identity:

f P (k)k*E(K)exp(ik - R)dk = - 87,AE(R).  (50)

The theoretical study performed in this section allows us to
determine the source function /(R) [see Eq. (12)].

D. Equation for two-point correlation function of particle
number density

The theoretical analysis performed in the previous section
has shown that the source function /(R) determined by Eq.
(12) can be rewritten in the following form:

D.(R N?
I(R) = I*{Aln2 Re - 67‘20AMZZ(R):| —, (51)
DT - To
4a% [€,V.T\?
= ‘2)‘ <O_Z> ) (52)
3 In° Re T

where u,.(R)=(u.(x)u(x+R)) and we have considered the
case a*> 1. In derivation of Eq. (51) we used Egs. (47) and
(48).

056313-9



EIDELMAN et al.

Let us discuss the assumptions underlying the employed
model of particle transport in turbulent flow. We use the ten-
sor of turbulent diffusion DT(R) for isotropic and homoge-
neous turbulent flow. In our experlments the velocity field is
weakly anisotropic. A main contribution to the magnitude of
fluctuations of particle number density is due to the mode
with the minimum damping rate [62,91]. This mode is an
isotropic solution of Eq. (6). Consequently, it is plausible to
neglect the anisotropic effects. This assumption is also sup-
ported by our measurements of the two-point second-order
correlation function ®(¢,R). The turbulence parameters €,
and u, vary slowly in the probed region.

Note that the mechanism of mixing related to the tangling
of the gradient of the mean particle number density is quite
robust. The properties of the tangling are not very sensitive
to the exponent of the energy spectrum of the background
turbulence. The requirements that turbulence should be iso-
tropic, homogeneous, and should have a very long inertial
range (a fully developed turbulence) are not necessary for the
tangling mechanism. Anisotropy effects can complicate the
theoretical analysis, but do not introduce new physics in the
clustering process. The reason is that the main contribution
to the tangling clustering is at Kolmogorov (viscous) scale of
turbulent motions. At this scale turbulence can be considered
as nearly isotropic, while anisotropy effects can be essential
in the vicinity of the maximum scale of turbulent motions.

Using these arguments, we consider the tensor DiTj(R) in
the following form:

,RiR;
D/(R) = DT[[F(R) + FR)0; + RF=p5!

RF R;R
+7(5~ ?)] (53)

where Dy={guy/3, F(0)=1-F.0), and F'=dF/dR. The
function F.(R) describes the compressible (potential) compo-
nent, whereas F(R) corresponds to vortical (incompressible)
part of the turbulent diffusion tensor.

Now let us study a zero mode (i.e., a mode with d®/ ot
=0). Using Egs. (6) and (53) we derive an equation for the
two-point second-order correlation function ®(R) written in
a dimensionless form,

1 " 1 !
M(R)[q> +2( +X(R)><I>]+B(R)<D——I(R) (54)

where time 7 is measured in units of 7y=4€/u,, distance R is
measured in units of €, and

1 2
M—P—+3[l F-(RF,)'], (55)
AR =R gy, (56)
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_ _3 _RR
I(R) = I*{m2 Re<1 MR~ ME) )
- 2A<FM(R) + —RFé(R))], (57)

and Pe=uyf,/D,, is the Peclet number and F,(R) is the lon-
gitudinal correlation function of particle velocity field. In
derivation of Eq. (54) we have taken into account that for
large « the term |UY(R)®'|<|B(R)®| for all scales.

The two-point correlation function ®(R) satisfies the fol-
lowing boundary conditions: ®’'(R=0)=0 and ®(R— ©)=0.
This function has a global maximum at R=0 and therefore it
satisfies the following conditions:

®"(R=0)<0, ®R=0)>|DPR>0).

Particular formulas for the functions M(R), x(R), and I(R)
depend on the functions F(R), F.(R), and F,(R). For in-
stance, we may choose these functions in the following form:

FR) = 1UTeXP[—f(R)], (59)
F.(R) = eXP[— a.f(R)], (59)
2
f(R)= —1/1: LR (60)
R2
FU(R)zeXp|:— W]. (61)

Equation (60) is similar to the interpolation formula derived
by Batchelor for the correlation function of the velocity field
that is valid for a turbulence with Kolmogorov spectrum in
the inertial range and for random motions in the viscous
range of scales (see, e.g., [85,86]). In particular, in the iner-
tial range of turbulent scales, Re™*<R <1, the correlation
function for the turbulent diffusion tensor is F(R)<1—-R*?,
where R is measured in units of maximum scale of turbulent
motions €. The corresponding correlation function for the
turbulent velocity field is F,(R) > 1-R*3. The difference be-
tween the scalings of the turbulent diffusion tensor and the
correlation function of the turbulent velocity field is caused
by the scaling of correlation time 7(R)R>?. On the other
hand, in the viscous range, R<Re 4, the correlation func-
tion for the turbulent diffusion tensor is F(R)o« 1—Re!? R2.
This correlation function is similar to that for the velocity
field because in the viscous range the correlation time is
independent of scale. On the other hand, for large scales R
>1 there is no turbulence, so that for R>1 the functions
F(R) and F,(R) should sharply decrease to zero.

The particular choice of the functions F(R), F.(R), F,(R),
and f(R) in the paper describes the well-known properties of
turbulent velocity field obtained from laboratory experi-
ments, numerical simulations, and theoretical studies (see,
e.g., [85,86]). In this study we choose the exponential form
for the functions F(R), F.(R), and F,(R). The final results are
not sensitive to the form for these functions at large scales
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R>1. Note also that the particular choice of the function
f(R) is also not very important. It should describe turbulent
motions in the inertial range (e.g., turbulence with Kolmog-
orov spectrum in the inertial range) and random motions in
the viscous range of scales. The parameter a, in Eq. (59)
characterizes the different spatial scalings of the compress-
ible and incompressible parts of the tensor of the scale-
dependent turbulent diffusion. Our analysis has shown that
the two-point second-order correlation function of the par-
ticle number density is weakly dependent on the parameter
a,.
Analysis performed by Kraichnan in [80] for the delta-
correlated in time turbulent velocity field showed that the
characteristic damping rate of the particle number density
fluctuations is very high, y~ 7-;71. The latter implies that the
level of these fluctuations is very low, ~(y7,)~' ~Re "2, In
a real flow with a finite correlation time the degree of com-
pressibility of the turbulent diffusion tensor o7 # 0, the char-
acteristic damping rate of the fluctuations of the particle
number density is not high, y= 7'51, and, therefore, the level
of these fluctuations is not small.

E. Asymptotic analysis and numerical solution

Let us perform the detailed asymptotic analysis of the
solution of Eq. (54) for the two-point second-order correla-
tion function ®(R) in different ranges of scales. There are
several characteristic regions in the solution for the correla-
tion function ®(R): (i) the viscous range 0=R <Re™>*, (ii)
the inertial range Re™*<R=1, and (iii) the large scales R
> 1, whereby there is no turbulence. Here, R is measured in
units of the maximum scale of turbulent motions €. The
dimensionless two-point second-order correlation function
®(R) is determined by Eq. (54). Equation (54) in the viscous
range a,=R<Re™* reads

R*®" +2R®' + By® =B, (62)

where we take into account that in the viscous range of
scales the functions M(R), x(R), and I(R) are given by the
following formulas:

1 2 —
—— = —(1+ B, Pe\Re R?), 63
ME®) Pe( By PevRe R7) (63)
2B 1/4
X(R):——3XM(R)Re R, (64)
I(R) = B, =20I, Re, (65)
P _20'—1 B 1+30 66)
X 1voy M3+ 0p”

and o=a.o7. Here, we use asymptotics of the functions
F(R), F.(R), and F,(R) determined for R<Re™** [see Egs.
(58)—(61)]. The solution of Eq. (62) reads

R\™? — R
d(R) =A1<—> cos| VByIn—+ ¢ | — 1. (67)
ap p

The condition ®’(R=0)=0 yields ¢, =—arctan(1/2 \B_O) + 7k
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O(R)

FIG. 4. Normalized two-point second-order correlation function
®(R) determined from our model for a,=1 and different values of
the parameter o7: 07=0.5 (solid line), o7=1 (dashed line), o7
=1.5 (dashed-dotted line), and =2 (dotted line). Normalized two-
point second-order correlation function ®(R) determined in our ex-
periments (filled squares as in Fig. 2).

In the inertial range Re™>*=R=1, Eq. (54) reads
YO (y) + 4y’ (y) + BD(y) =0, (68)

where y=R"3, the function ®=®d+1, B=2201./(98,,), and
we take into account that in the inertial range the functions
M(R), x(R), and I(R) are given by the following formulas:

Aﬁ = BuR*, (69)
X(R) =~ X (R, (70)
I(R) =~ B, = %R—“, (71)

By = %. (72)

Equation (68) has the following solution:

- =A2<€£>—1/SCOS[\'IE<€£)—1/3 . %} o
7

n

where €, is the Kolmogorov length scale. For large scales,
R>1, there is no turbulence. The condition ®(R)—0 at R
—1 yields A,~Re'*. Matching the functions ®(R) and
®’'(R) at the boundary of the above-mentioned regions, i.e.,
at R~¢,, yields ¢, =~ m/2—\B+mm.

Now we solve Eq. (54) numerically in order to determine
the two-point second-order correlation function ®(R). The
normalized correlation functions of particle number density
for different parameters oy are shown in Figs. 2 and 4. The
numerical solution for the correlation function ®(R) is in
agreement with the obtained experimental results and with
the results of the asymptotic analysis.

We would like to stress that in the above analysis we have
neglected the corresponding contributions which describe the
pure inertial clustering (i.e., clustering without imposed
mean temperature gradient), because we study the case o’
>1, i.e., we consider the case of a small Stokes number
(which in our experiments is St=7,/7,=5.9 X 107) and not

056313-11



EIDELMAN et al.

very large Reynolds number (which in our experiments is
Re=uyf,/ v=250). In this case contributions which deter-
mine the tangling clustering are much larger than that of the
pure inertial clustering.

Indeed, the main contribution to the inertial clustering de-
termined by the function B(R) in the scales a,<R<{, can
be estimated as

200, uj o
Binertial = ————Re!? ~ 200, Re'’? ~ 20—22—Re3/2
(1+0,) c; In"Re

(74)
(see Eq. (42) in [42]), where ¢, is the sound speed, and we
have taken into account that o, ~ St>< 1. On the other hand,
the main contribution to the tangling clustering in the scales
a,<R<A{, is estimated as

GV.1)? &
7>  In’*Re

where we used Egs. (52) and (65). Therefore, the ratio B.
= Binertia/ Biangling 1 On the order of

Biangting ~ 30 Re, (75)

B inertial

3 (76)

B.=
tangling Cg
For the parameters pertinent to our experiments, the ratio
B.~ 5> 107 is negligibly small. This is the reason why we
have neglected the inertial clustering effect in our study.
Note that for atmospheric turbulence with a strong tempera-
ture inversion (with a mean temperature gradient on the or-
der of 1 K/100 m) the parameter B, ~ 1072, while for atmo-
spheric turbulence with a mean temperature gradient on the
order of 1 K/1000 m, the parameter 3, ~ 1. In these estimates
we take into account that the characteristic parameters of the
atmospheric turbulent boundary layer are: integral (maxi-
mum) scale of turbulent flow €,~10—100 m, the turbulent
velocity in the integral scale uy~0.3—1 m/s, and Reynolds
number Re~ 10°—107 (see, e.g., [92,93]).

The small yet finite clustering effect (see unfilled circles
in Fig. 3) which has been observed in our experiments in the
absence of the mean temperature gradient can be explained
by sedimentation of particles in the gravity field. In this case
the steady-state solution of the equation for the mean particle
number density reads

W,N-D;VN=0, (77)

where W, is the terminal fall velocity of particles. This equa-
tion yields the following mean particle number density pro-
file for homogeneous turbulence:

N(z) =N, exp{— i} (78)
Ly
with the characteristic scale of the mean particle number
density, Ly=D7/W,~ 10 cm for 10 um particles. Tangling
of a gradient of the mean particle number density by velocity
fluctuations causes particle clustering due to a combined ef-
fect of gravitational-tangling clustering. However, in the tur-
bulence with the imposed mean temperature gradient the ef-
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fect of tangling clustering is considerably stronger (see filled
squares in Fig. 3).

Indeed, the dimensionless equation for the two-point
second-order correlation function ®(R) for the gravitational-
tangling clustering reads

1 " l I ==
m{q) +2(R+X(R)>CD ]— ]g(R), (79)

where the functions M(R) and y(R) are determined by Egs.
(55) and (56), and

B 3 X(R)
(R = 10{1 “2M(R)  M(R) } (80)
_ 6 _ow,
CarTEar (&1

The solution of Eq. (79) in different ranges of scales is as
follows:

D(R)= 10 [m@—‘—lﬂ}, (82)

ZBM Re]/2
for the viscous range of scales a,=R<Re™*;
91,

®(R)=BR*-— R k= ,
(R)=BiR™ = 5D 370

T—0

(83)

for the inertial range of scales Re™¥*=R=1; and ®(R)=
—B,/R for R>1, where B, =3I, In Re/4 Re®***?"* and B,
=91y/2(3k+2). The correlation function for the
gravitational-tangling  clustering at very small scales is
®(a,) ~ (Iy/ VRe)In({y/a,), which in our experiments is on
the order of ~0.1. The latter value is much smaller than that
for the tangling clustering in the turbulence with the imposed
mean temperature gradient.

V. DISCUSSION AND CONCLUSIONS

In the present experimental and theoretical study we have
found tangling clustering of inertial particles, which occurs
in a stably stratified turbulence with imposed mean vertical
temperature gradient. Fluctuations of the particle number
density are generated by tangling of the large-scale gradient
VN by velocity fluctuations. The gradient of the mean par-
ticle number density is formed in the stratified turbulence
with imposed mean vertical temperature gradient due to the
phenomenon of turbulent thermal diffusion. The tangling
clustering of inertial particles is also enhanced by the addi-
tional tangling of the mean temperature gradient by velocity
fluctuations, which results in generation of the temperature
fluctuations. Therefore, the heat flux due to the imposed
mean temperature gradient plays a twofold role, i.e., it causes
formation of (i) the gradient of the mean particle number
density and (ii) a nonzero two-point correlation function of
the divergence of the particle velocity field, B(R)
=(7b(x)b(y)), where b=div v. The latter is the main source
of the particle clustering in small scales.

There are two contributions to the correlation function
B(R). The first contribution is caused by particle inertia, so
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that the particles inside the turbulent eddies are carried out to
the boundary regions between the eddies by the inertial
forces. This is the main mechanism of the inertial clustering
in isothermal turbulence. The second contribution to the cor-
relation function B(R) is due to the temperature fluctuations
produced by tangling of the mean temperature gradient by
velocity fluctuations. The latter results in the tangling clus-
tering of inertial particles. It must be emphasized that the
heat flux and particle inertia are two important ingredients
which cause the tangling clustering.

We have shown that in the laboratory stratified turbulence
the tangling clustering is much stronger than both the inertial
clustering and the gravitational-tangling clustering occurring
in isothermal turbulence. In particular, in our experiments the
correlation function for the particle clustering in isothermal
turbulence is much smaller than that for the tangling cluster-
ing in nonisothermal turbulence. In the stably stratified tur-
bulence with imposed mean temperature gradient, we have
found particle clusters with the size that is on the order of
several Kolmogorov length scales.

The clustering described in our study is found for inertial
particles with small Stokes numbers and with material den-
sity that is much larger than the fluid density. The Reynolds
number, based on turbulent length scale and rms velocity,
Re=250, in our experiments is smaller than that in experi-
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ments in isothermal turbulence described in [33,36,38].
Probably these are the reasons for weak inertial clustering
which has been observed in our experiments. It must be em-
phasized that inertial and tangling clusterings in our study
are understood in the statistical sense, i.e., we employ an
ensemble averaging over many images with the instanta-
neous particle distributions rather than analyze a single in-
stantaneous image.

In the present study we have developed a theory of the
tangling clustering of inertial particles that is based on the
analysis of the two-point second-order correlation function
of the particle number density. The theoretical predictions
are in a good agreement with the obtained experimental re-
sults.
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