
Mean-field dynamos in random Arnold-Beltrami-Childress and Roberts flows

Nathan Kleeorin* and Igor Rogachevskii†

Department of Mechanical Engineering, The Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel

Dmitry Sokoloff‡

Department of Physics, Moscow State University, Moscow 119992, Russia

Dmitry Tomin§

Department of Mechanics and Mathematics, Moscow State University, Moscow 119992, Russia
�Received 18 November 2008; published 2 April 2009�

We study magnetic field evolution in flows with fluctuating in time governing parameters in electrically
conducting fluid. We use a standard mean-field approach to derive equations for large-scale magnetic field for
the fluctuating Arnold-Beltrami-Childress �ABC� flow as well as for the fluctuating Roberts flow. The derived
mean-field dynamo equations have growing solutions with growth rate of the large-scale magnetic field which
is not controlled by molecular magnetic diffusivity. Our study confirms the Zeldovich idea that the nonstation-
arity of the fluid flow may remove the obstacle in the large-scale dynamo action of classic stationary flows.
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I. INTRODUCTION

Many celestial bodies including the Earth, the Sun, and
the Milky Way have magnetic fields with spatial scales
which are much larger than the basic �maximum� scale of
turbulence or turbulent convection. It has been widely recog-
nized that these magnetic fields originate due to the mean-
field dynamo based on a joint action of differential rotation
and � effect operating in the mirror-asymmetric turbulence
or turbulent convection �see, e.g., Refs. �1–8��. More recent
models of large-scale dynamos include also such phenomena
as the shear-current effect, kinetic helicity fluctuations, etc.
�see, e.g., Refs. �9–14��. Corresponding dynamo models for
particular celestial bodies result in magnetic fields configu-
rations which are compatible with available phenomenology
at least in a crude approximation �see, e.g., Ref. �15��.

On the other hand, many important features in astrophysi-
cal dynamos remain unclear �see, e.g., Ref. �16��. In particu-
lar, many realistic dynamo models contain a concept of tur-
bulence or turbulent convection which is considered as a
flow random in space and time. This concept that originated
in the Kolmogorov theory �see, e.g., Refs. �17–19��, is ac-
cepted by many experts. However, we have to appreciate the
fact that from many points of view it is at least helpful to
reserve a possibility to present astrophysical flows as deter-
ministic solutions of the Navier-Stokes equation.

Arnold suggested to mimic the magnetic field generation
in a random flow by a dynamo action of a special flow
known today as ABC �Arnold-Beltrami-Childress� flow �see,
e.g., Refs. �20–24��. The point is that a conventional mean-
field dynamo requires a nonzero kinetic helicity, i.e., a cor-
relation between velocity field v and curl v. On the other

hand, there are deterministic flows �Beltrami fields� whereby
v is parallel to curl v. If we accept the concept of the � effect
and the kinetic helicity for deterministic flows, their kinetic
helicity is maximum so these flows can be suitable for a
generation of a large-scale magnetic field. Simultaneously,
Arnold stressed that the Beltrami velocity fields provide an
effective magnetic lines stretching. The ABC flow is a simple
example of Beltrami flows. Speaking in modern terms, the
ABC flow provides a simple example of dynamical chaos.

The problem, however, is that this flow is complicated
enough so that the induction equation cannot be generally
solved analytically. Arnold with coauthors suggested an arti-
ficial example of chaotic flow in a specially chosen Rie-
mannian space for which the induction equation can be
solved analytically �see Ref. �25��. It was demonstrated in
�25� that a large-scale magnetic field can be generated by this
flow. On the other hand, numerical experiments �see, e.g.,
Refs. �26–28�� also show that the ABC flow can excite a
magnetic field. However, the generated magnetic field is
quite remote from that which astrophysicists are inclined to
refer to as a large-scale magnetic field. Its spatial configura-
tion looks like a combination of cigarlike structures, which
spatial scale in the cross section is controlled by magnetic
Reynolds number.

In spite of various impressive results in solving particular
problems for dynamos in stationary deterministic flows �see,
e.g., Refs. �20,21,28–33�� no particular deterministic flow is
yet known to mimic a self-excitation of the large-scale mag-
netic field which widely occurs in random flow. This situa-
tion looks obviously unsatisfactory.

It was suggested by Zeldovich that a nonstationarity of a
fluid flow is an important feature required for the generation
of the mean magnetic field �see, e.g., Ref. �4��. Since the
induction equation for a nonstationary flow is even more
complicated for analytical study, it was quite difficult to pro-
vide a convincing support for this idea. It looks reasonable in
this context to introduce time dependence in the ABC flow
�or other deterministic velocity field� as a noise added to
numerical parameters �here A, B, and C� which govern the
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flow. This idea as well as possible approaches have been
known for years, however, the bulk of analytical work re-
quired was quite large, so no particular solution has been
suggested until now.

The goal of this study is to revise this old and intriguing
problem. This paper is organized as follows. In Sec. II the
mean-field approach for a flow with random coefficients is
formulated. In Sec. III the electromotive force is determined
for random ABC and Roberts flows. Finally, we discuss ob-
tained results and draw conclusions in Sec. IV. In Appen-
dixes A and B we discuss spatial averaging of the mean-field
equation and present details of calculations of the electromo-
tive force for the ABC flow as well as for the Roberts flow
with random coefficients.

II. MEAN-FIELD APPROACH FOR A FLOW WITH
RANDOM COEFFICIENTS

The problem under consideration requires quite a lot of
simple, however, bulky algebra so we describe here the strat-
egy of the research undertaken and present results for par-
ticular flows. To be specific, we describe the strategy using
ABC flow which is determined as

vx = B cos y + C sin z, vy = C cos z + A sin x ,

vz = A cos x + B sin y , �1�

where x ,y ,z are measured in units of the characteristic scale
l of the velocity field variations. We consider the flow �1� as
given and study a kinematic dynamo problem. We do not
discuss here how the flow can be excited in practice or what
is a nonlinear stage of dynamo action. We highly appreciate
the importance of these questions �see, e.g., Ref. �8� and
references therein�. From our point of view a straightforward
way to resolve these questions is to return to the concept of
turbulence as a field that is random in space and time. We
appreciate as well that in practice a kinetic helicity is far
from the maximum possible �i.e. realistic velocity fields have
kinetic helicity that is much lower than that for the Beltrami
field�.

A first approach applied here is to consider the flow de-
termined by Eq. �1� with random coefficients A ,B ,C as a
particular example of inhomogeneous and anisotropic ran-
dom velocity field, and to apply corresponding expressions
for electromotive force E known in the literature �see, e.g.,
Refs. �34–36��. This approach is practical in the sense that it
requires a minimum bulk of algebra and allows a clear iden-
tification of various terms which appear in the resulting
mean-field equation. This is a reason why we use this ap-
proach in the present study. On the other hand, we recognize
that the above approach is not fully convincing from the
viewpoint of high-brow probability theory. The point is that
we accept here that the flow under consideration can mimic a
turbulent flow while it is something what we have to prove.

This is a reason why we also need to use another ap-
proach consisting in a direct averaging of the induction equa-
tion and not using the known expressions for electromotive
force E. In the second approach we have to use a particular
model of random A ,B ,C in the form of the �-correlated in

time random processes and reproduce just from the begin-
ning the procedure of derivation of mean-field equations for
the magnetic field in such flow. The second approach re-
quires much more algebra and creates various problems with
identifications of terms in the resulting equation. However,
the final results occur to be identical to those obtained using
the first approach. Comparing the results of these two ap-
proaches, one has to bear in mind that the equations ex-
ploited in both cases suppose different normalization for ve-
locity field �up to the factor 1 /2 in resulting expressions�. We
avoid here the bulky, however, important calculations used in
the second approach and present them in a separate study
�37�.

The main result in both approaches is a governing equa-
tion for the magnetic field averaged over the ensemble of
realizations of A ,B ,C. Because the velocity field investi-
gated is far from being statistically homogeneous and isotro-
pic, the resulting equation is quite bulky and hardly can be
solved analytically. A numerical approach to this equation
does not looks easier than the one for initial equations. We
are interested, however, in large-scale solutions for the equa-
tions. To this end, we perform an additional spatial averaging
to remove small-scale noise from the solutions and keep
large-scale properties of the solutions only. In practice, we
remove terms like sin x and cos x and replace terms like
sin2 x and cos2 x by 1 /2. As a result, we arrive at simple
equations with constant coefficients which we solve in Fou-
rier space.

We perform our analysis for two velocity fields which
look instructive for our problem. One is the above discussed
ABC flow where fluctuations of governing parameters are
implied. We choose as a counterpart another well-known
flow suggested for the dynamo problem by Roberts �38�:

vx = − C sin x cos y, vy = C cos x sin y ,

vz = C sin x sin y , �2�

and consider the governing parameter C as random.
The ABC flow and the Roberts flow demonstrate proper-

ties which are to some extent opposite from the viewpoint of
topological fluid dynamics �see, e.g., Ref. �39,40��. In par-
ticular, the ABC flow looks as a most advantageous velocity
field in the sense that the large-scale field generation be-
comes independent on details of the flow geometry. The
ABC flow is a Beltrami flow, i.e., vectors v and curl v are
parallel. Such a velocity field provides exponential stretching
of magnetic lines.

In contrast, the Roberts flow is not a Beltrami flow, i.e.,
two-component vectors �curlx v , curly v� and �vx ,vy� are par-
allel, however, curlz v=0 while vz�0. It means that the sta-
tionary Roberts flow �i.e., constant in time governing param-
eter C� does not provide exponential stretching of magnetic
lines. On the other hand, we demonstrate in this study that
the Roberts flow becomes a dynamo when the coefficient C
fluctuates in time �see Sec. III�.

In the next section we investigate how fluctuations of the
governing parameters in these velocity fields affect the large-
scale dynamo action.
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III. ELECTROMOTIVE FORCE IN ANISOTROPIC
VELOCITY FIELD

The electromotive force in anisotropic velocity field is
determined by the following equation:

Ei = �ijbj − �ij�� � b� j + �Veff � b�i − �ijk��b� jk, �3�

where b= �H� �in the context of the ABC flow the angular
brackets denote averaging over random coefficients A ,B ,C�,
and

�ij = −
�

2
��imn�vn� jvm� + � jmn�vn�ivm�� , �4�

�ij =
�

2
��v2��ij − �viv j�� , �5�

Vi
eff = −

1

2
�m��vmvi� , �6�

�ijk = −
�

2
��ijm�vmvk� + �ikm�vmv j�� , �7�

where � is the characteristic time scale of the random veloc-
ity field, �ij is the Kronecker tensor, and �ijk is the fully
antisymmetric Levi-Civita tensor. Equations �3�–�7� have
been derived by the following procedures: �i� the second or-
der correlation approximation �or first-order smoothing� in
�34� that is valid for small Reynolds numbers; �ii� the path
integral approach in �35� for the delta-correlated in time ran-
dom velocity field; �iii� the tau approach in �36� that is valid
for large Reynolds numbers.

The spatial averaging �¯��sp� of the induction equation
for the field b yields the equation for the mean magnetic field

B= �b��sp�. In spatial averaging the effects, ��̃ijb̃j��sp�,

��̃ij��� b̃� j��sp�, �Ṽeff� b̃��sp�, and ��̃ijk��b̃� jk��sp�, should be
also taken into account. Here �ij = ��ij��sp�+ �̃ij and ��̃ij��sp�

=0, and similarly for other tensors �a tilde denotes the spa-

tially variable part of the tensor�. The magnetic field b̃ is
determined by the following equation:

�mni�n���ij��sp�b̃j − ��ij��sp��� � b̃� j + ��Veff��sp� � b̃�i

− ��ijk��sp���b̃� jk� = Im, �8�

Im = − �mni�n��̃ijBj − �̃ij�� � B� j + �Ṽeff � B�i − �̃ijk��B� jk� .

�9�

The solution of Eq. �8� allows us to determine the second

moments ��̃ijb̃j��sp�, ��̃ij��� b̃� j��sp�, and ��̃ijk��b̃� jk��sp� and
to derive equation for the mean magnetic field B.

A. The ABC flow with random coefficients

Let us consider the ABC flow that is determined by Eq.
�1�, where the coefficients A ,B ,C are the random variables.
Using Eq. �4� we determine the tensor �ij for the ABC flow:

�xx = −
��A

l
, �yy = −

��B

l
, �zz = −

��C

l
, �10�

and �ij =0 for i� j, where �A= �A2�, �A�=0, and similarly for
random variables B ,C. The tensor �ij determines the genera-
tion of magnetic field. For the ABC flow with random coef-
ficients �̃ij =0 and the effective drift velocity of the magnetic
field Veff=0 �see Eq. �6�, and Eq. �A1� in Appendix A�. Note
that the condition �A�=0 implies that we consider a fluctuat-
ing ABC flow with vanishing mean velocity. In other words,
we choose parametrization of the random flow in such a way
as to stress the difference between the flow under consider-
ation and the conventional stationary ABC flow.

Using Eqs. �5� and �A1� we get the symmetric tensor �ij
for the ABC flow:

�xx =
�

2
��A + �B sin2 y + �C cos2 z� ,

�yy =
�

2
��B + �C sin2 z + �A cos2 x� ,

�zz =
�

2
��C + �A sin2 x + �B cos2 y� ,

�xy = −
��C

4
sin�2z�, �xz = −

��B

4
sin�2y� ,

�yz = −
��A

4
sin�2x� . �11�

Equation �7� allows us to determine the tensor �ijk��b� jk:

�xjk��b� jk =
�

2
�uyk��b�zk − uzk��b�yk� ,

�yjk��b� jk =
�

2
�uzk��b�xk − uxk��b�zk� ,

�zjk��b� jk =
�

2
�uxk��b�yk − uyk��b�xk� , �12�

where the velocity fluctuations, uij = �viv j�, are determined by
Eq. �A1�. The tensors �ij and �ijk contribute to the magnetic
eddy diffusivity caused by random motions of the conducting
fluid. This effect limits the dynamo growth rate of magnetic
field.

The spatial averaging �¯��sp� of the electromotive force
yields the following equation �see Appendix A�:

�E��sp� = − ��A�Bl−1 + � � B� , �13�

where we considered the case �A=�B=�C. Note that there
are generally two contributions to the electromotive force
caused by the spatial averaging �¯��sp�. Indeed, the direct
contribution to the electromotive force, E�1�, is due to the
spatial averaging of Eqs. �10�–�12�, while the second contri-
bution to the electromotive force, E�2�, is caused by the sec-

ond moments ��̃ijb̃j��sp�, ��̃ij��� b̃� j��sp�, etc. However, for
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the ABC flow E�2� vanishes �see Appendix A�, while for the
Roberts flow this contribution is not zero. Therefore the
equation for the mean magnetic field reads

�B

�t
= −

��A

l
�� � B� + �� + ��A�	B , �14�

where � is the magnetic diffusion due to the electrical con-
ductivity of the fluid.

B. The random Roberts flow

Now let us consider the random Roberts flow �2�, that can
be rewritten in the form v=C�e+e���sin x sin y, where e is
the unit vector in the z direction and C is the random vari-
able. Using Eq. �4� we get the symmetric tensor �ij:

�xx =
��

l
sin2 y, �yy =

��

l
sin2 x ,

�xz =
��

4l
sin�2y�, �yz =

��

4l
sin�2x� ,

�xy = �zz = 0, �15�

where �= �C2� and �C�=0. We choose parametrization of this
flow in a way which stresses the difference with the conven-
tional stationary Roberts flow.

The effective drift velocity of the magnetic field Veff is
given by

Vx
eff = −

��

4l
sin�2x�, Vy

eff = −
��

4l
sin�2y� ,

Vz
eff = 0, �16�

�see Eq. �6�, and Eq. �B1� in Appendix B�. The effective drift
velocity of the magnetic field determines the diamagnetic �or
paramagnetic� effect. Using Eqs. �5� and �B1� we determine
the symmetric tensor �ij for the Roberts flow:

�xx =
��

2
sin2 y, �xy =

��

8
sin�2x�sin�2y� ,

�yy =
��

2
sin2 x, �yz = −

��

4
sin2 y sin�2x� ,

�zz =
��

4
�1 − cos�2x�cos�2y�� ,

�xz =
��

4
sin2 x sin�2y� . �17�

Equation �7� yields the tensor �ijk=−��ijmumk, where the sec-
ond moment for the velocity field uij = �viv j� is determined by
Eq. �B1�.

The spatial averaging �¯��sp� of the electromotive force
yields �E��sp�=E�1�+E�2�, where

E�1� =
��

4
�2��ij − eiej�Bjl

−1 − � � B� , �18�

and the second contribution to the electromotive force E�2� is
given by Eq. �B7� in Appendix B. This contribution causes a
decrease of the total turbulent magnetic diffusion and an in-
crease of the total � effect. However, these effects are small
�see Eqs. �B8� and �B9��. This implies that the equation for
the mean magnetic field evolution for the random Roberts
flow reads

�Bi

�t
=

��

2l
��ij − eiej��� � B� j + �� +

��

4
�	Bi. �19�

IV. DISCUSSION

A natural step in further analysis is to solve the mean-field
equations with transport coefficients obtained for the random
ABC flow and Roberts flow. Straightforward calculations in
Fourier space yield the growth rates of the large-scale mag-
netic field for the ABC flow:


 = K	 ��A

l
− ���A + ��K
 �20�

�see Eq. �14��, and for the Roberts flow:


 = K	 ��

2l
− � ��

4
+ ��K
 �21�

�see Eq. �19��, where K=2� /LB is the wave number and LB
is the characteristic scale of the magnetic field variations.
Equations �20� and �21� imply that the large-scale magnetic
field grows in the same time scale for both flows. Moreover,
the growth rates obtained are similar to that for the mean-
field dynamo in developed mirror asymmetric turbulence
with � effect.

Therefore our study confirms the Zeldovich idea that the
time dependence �e.g., in the form of random in time fluc-
tuations� removes the obstacle in the large-scale dynamo ac-
tion of classic stationary flows and provides dynamos. More-
over, we do not see any necessity for an instantaneous flow
geometry to be topologically complex. Of course, trajectories
of the flow particles remain chaotic due to the random nature
of governing parameters.

In this study we choose parametrization of the fluctuating
ABC and Roberts flows in a way to vanish the mean veloci-
ties and stress the difference with conventional stationary
ABC and Roberts flows. Therefore the dynamo effects iso-
lated are associated with fluctuations only. When �A��0
�and �C��0� the standard U�B term in the mean-field dy-
namo equation vanishes, where U= ��v���sp� and B= ��H���sp�

are the mean velocity and magnetic fields. On the other hand,
there can be a nonvanishing contribution to the mean-field

dynamo equation caused by the term ��v�� b̃��sp�, where b̃ is
determined by Eq. �8� with an additional source term �−�
� ��v��B�. However, an account for the effect of the mean
fluid velocity on the mean-field dynamo is out of the scope
of the present study.
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Note that stationary deterministic flows �like the ABC
flow with constant coefficients� cannot cause a dynamo of
the large-scale magnetic field, i.e., stationary flows cannot
generate magnetic field in the scales which are larger than
the characteristic scales of the fluid flow field. On the other
hand, numerical experiments �26,28� show that the ABC
flow with constant coefficients excites a magnetic field in the
scales which are smaller than the scales of the fluid flow
field. The generation of the magnetic field by the stationary
ABC flow requires the magnetic Reynolds numbers, Rm,
which are larger than 9. In particular, as follows from nu-
merical experiments �26,28� the magnetic field is excited by
the ABC flow within two ranges of the magnetic Reynolds
numbers: the first one is for 9
Rm
17.5 and the second
range is for Rm�27. Stationary Roberts flow cannot gener-
ate magnetic field. In contrast, in the present study we have
shown that the generation of large-scale magnetic fields by
random ABC or Roberts flows can be possible even for small
magnetic Reynolds numbers.

The analysis undertaken in the present study is not ad-
dressed to clarify the problems of nonlinear dynamo satura-
tion and dynamics of small-scale magnetic fields associated
with dynamo action �see, e.g., Refs. �8,41��. We highly ap-
preciate the importance of these problems, however, this is
out of the scope of this paper. The main goal of the present
study is to demonstrate a possibility for a mean-field dynamo
action �in the scales which are larger than the characteristic
scales of the fluid flow field� in random ABC and Roberts
flows in the framework of the kinematic approach.

Based on the Roberts flow in a finite cylindrical domain
�38,42�, one of the first successful laboratory dynamo experi-
ments was performed in Karlsruhe �43–45�. These experi-
ments demonstrate a generation of magnetic field in a cylin-
drical container filled with liquid sodium in which by means
of guide tubes counter-rotating and counter-current spiral
vortices are established. The dynamo in the Karlsruhe-type
experiment is self-exciting and the magnetic field saturates at
a mean value for fixed supercritical flow rates �43–45�. The
random Roberts flow might be created in the Karlsruhe-type
experimental set up when the pumping of energy in flow
tubes has a random component. The present study might be
relevant to such dynamo experiment.

Solar supergranular flow structures �46� can be considered
as ensemble of random cells. Their collective effect on gen-
eration of the solar magnetic field at scales which are larger
than the sizes of supergranulations is very important. It is
plausible to suggest that the dynamo in random ABC or Rob-
erts flows can mimic the effect of random supergranulations
on the large-scale solar dynamos.

D.T. and D.S. are grateful to RFBR for financial support
under Grant No. 07-02-00127.

APPENDIX A: THE ELECTROMOTIVE FORCE FOR
RANDOM ABC FLOW

Using Eq. �1� we get the tensor uij = �viv j� for random
ABC flow:

uxx = �B cos2 y + �C sin2 z, uxy =
�C

2
sin�2z� ,

uyy = �C cos2 z + �A sin2 x, uyz =
�A

2
sin�2x� ,

uzz = �A cos2 x + �B sin2 y, uxz =
�B

2
sin�2y� ,

�v2� = �A + �B + �C. �A1�

Now we consider for simplicity the case �A=�B=�C. Equa-

tion �8� yields the equation for the magnetic field b̃ for the
random ABC flow that is in Fourier space reads

Dijb̃j = −
l2

�� + ��A�k2 Ii, �A2�

where

Dij = �ij −
i

k2�ijmkm, �A3�

k is the dimensionless wave vector measured in the units of
l−1, and l is the characteristic scale of the velocity field varia-
tions, Ii is determined by Eq. �9�, and we have taken into
account Eqs. �13� and �14�. The solution of Eq. �A2� reads

b̃i = −
l2

�� + ��A�k2Dij
−1Ij , �A4�

where the inverse operator Dij
−1 is given by

Dij
−1 = �k2 − 1�−1�k2�ij + i�ijmkm −

kikj

k2 � . �A5�

Straightforward calculations using Eqs. �A4� and �A5�
yield the second moments ��̃ij��� b̃� j��sp� and ��̃ijk��b̃� jk��sp�

for random ABC flow:

��̃ij�� � b̃� j��sp� = −
�A

eff

6
�� � B�i, �A6�

��̃ijk��b̃� jk��sp� =
�A

eff

6
�� � B�i, �A7�

where �A
eff=�2�A

2 / ��+��A�, and we have taken into account
that kx=ky =2. Note also that for the random ABC flow

��̃ijb̃j��sp�=0 and �Ṽeff� b̃��sp�=0, because �̃ij =0 and Ṽeff

=0.

APPENDIX B: THE ELECTROMOTIVE FORCE FOR
RANDOM ROBERTS FLOW

Using Eq. �5� we get the tensor uij = �viv j� for random
Roberts flow:

uxx = � sin2 x cos2 y, uxy = −
�

4
sin�2x�sin�2y� ,

uyy = � cos2 x sin2 y, uyz =
�

2
sin2 y sin�2x� ,
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uzz = � sin2 x sin2 y, uxz = −
�

2
sin2 x sin�2y� ,

�v2� = ��sin2 x + cos2 x sin2 y� . �B1�

The solution of Eq. �8� yields the magnetic field b̃ for
random Roberts flow that is determined by the following
equation in Fourier space:

b̃i =
l2

k2�� +
��

4
�−1�Ii +

2

k2	�e · ���e � I�i − �e � ��i�e · I�

+
2

k2 �e · ���i�e · I�
� , �B2�

where Ii is given by Eq. �9�, k is the dimensionless wave
vector measured in the units of l−1. Here we have taken into
account Eqs. �18� and �19�. Straightforward calculations
yield

��̃xjb̃j��sp� =
�eff

32
�yBz, ��̃yjb̃j��sp� =

�eff

32
�xBz,

��̃zjb̃j��sp� =
�eff

16
�2�� � B�z + �yBx� , �B3�

��Ṽeff � b̃�x��sp� = −
�eff

32
�yBz,

��Ṽeff � b̃�y��sp� =
�eff

32
�xBz,

��Ṽeff � b̃�z��sp� =
�eff

32
�� � B�z, �B4�

��̃xj�� � b̃� j��sp� = −
�eff

64
�6�� � B�x + 5�zBy� ,

��̃yj�� � b̃� j��sp� =
�eff

64
��� � B�y − 5�xBz� ,

��̃zj�� � b̃� j��sp� =
�eff

64
��� � B�z + 4�yBx − 8l−1Bz� ,

�B5�

and

��̃xjk��b̃� jk��sp� = −
�eff

64
�3�� � B�x + 6�zBz + �xBx + 4l−1Bx� ,

��̃yjk��b̃� jk��sp� = −
�eff

64
�3�� � B�y + 6�xBx + �yBy + 4l−1By� ,

��̃zjk��b̃� jk��sp� = −
�eff

64
�13�� � B�z − 2�yBx − 8l−1Bz� ,

�B6�

where �eff=�2�2 / �4�+���, and we have taken into account
that kx=ky =2. The contribution to the electromotive force,

E�2�, caused by the second moments ��̃ijb̃j��sp�,

��̃ij��� b̃� j��sp�, is given by

Ex
�2� =

�eff

64
�9�� � B�x + 5�zBy + 6�zBz + �xBx + 4l−1Bx� ,

Ey
�2� =

�eff

64
�2�� � B�y + 9�xBz + 6�xBx + �yBy + 4l−1By� ,

Ez
�2� =

�eff

32
�11�� � B�z − �yBx� . �B7�

This implies that the diagonal components of the total turbu-
lent magnetic diffusion tensor are

�xx
tot =

��

4
	1 −

9

64
Rm
 ,

�yy
tot =

��

4
	1 −

1

32
Rm
 ,

�zz
tot =

��

4
	1 −

11

32
Rm
 , �B8�

while the diagonal components of the total � tensor are given
by

�xx
tot = �yy

tot =
��

2l
	1 +

1

32
Rm
 , �B9�

and �zz
tot=0. Here Rm=�� /��1 and we took into account

Eqs. �18� and �B7�.
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