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We study experimentally and theoretically mixing at the external boundary of a submerged turbulent jet. In
the experimental study we use particle image velocimetry and an image processing technique based on the
analysis of the intensity of the Mie scattering to determine the spatial distribution of tracer particles. An air jet
is seeded with the incense smoke particles, which are characterized by a large Schmidt number and a small
Stokes number. We determine the spatial distributions of the jet fluid characterized by a high concentration of
the particles and of the ambient fluid characterized by a low concentration of the tracer particles. In the data
analysis we use two approaches, whereby one approach is based on the measured phase function for the study
of the mixed state of two fluids. The other approach is based on the analysis of the two-point second-order
correlation function of the particle number density fluctuations generated by tangling of the gradient of the
mean particle number density by the turbulent velocity field. This gradient is formed at the external boundary
of a submerged turbulent jet. We demonstrate that probability density function of the phase function of a jet
fluid penetrating into an external flow and the two-point second-order correlation function of the particle
number density do not have universal scaling and cannot be described by a power-law function. The theoretical
predictions made in this study are in qualitative agreement with the obtained experimental results.
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I. INTRODUCTION

Jets are often used in numerical, experimental, and theo-
retical studies for modeling of mixing in various engineering
applications �see, e.g., �1–11��. Different kinds of structures
are formed during mixing in turbulent jets �see, e.g.,
�12,13��. One of the most significant results is the detection
of a sharp increase of mixing rates caused by the onset of
small-scale turbulence within large-scale coherent motions
�14�. This effect that was studied experimentally and numeri-
cally, demonstrates complex nonlinear dynamics of mixing
�see, e.g., �8,11,15–18��. However, it is not clear how such
mixing states are attained, and the ambiguity is exacerbated
by the differences in experimental results.

The possible reason for such a variety of experimental
results is the difference in the Schmidt number between
gases and liquids. It was found in �17� that mixing becomes
more effective in a liquid jet for the larger Reynolds num-
bers. However, the dependence of the normalized scalar vari-
ance on the Reynolds number for the gaseous jet is very
weak. It was suggested in �17� that this difference is caused
by the Schmidt number effect. In particular, when the
Schmidt number Sc�1 the larger molecular species diffusiv-
ity results in better mixing of the scalar field even at lower
Reynolds numbers. Here Sc=� /Dm is the Schmidt number,

Dm is the coefficient of Brownian �molecular� diffusion, and
� is the kinematic viscosity. For the liquid jets, Sc�102, the
improved mixing requires the enhancement in the interfacial
surface-to-volume ratio �smaller distances between isoscalar
surfaces� associated with higher Reynolds numbers. Due to
the large differences in Schmidt numbers the results of these
studies in liquids are not directly applicable to the case of
gaseous shear-layer mixing.

In the present study we investigate experimentally mixing
at the air jet interface using the incense smoke that is char-
acterized by a significantly larger Schmidt number �Sc
�105� than that employed in the previous studies of gas flow
mixing. The high magnitude of Schmidt number prevents
from fast molecular diffusion to affect mixing. We study
mixing at the external boundary of a submerged turbulent jet
using particle image velocimetry �PIV� and an image pro-
cessing technique based on the analysis of the intensity of
the Mie scattering in order to determine the spatial distribu-
tion of the jet fluid �with a high concentration of the tracer
particles� and of the ambient fluid �with a low concentration
of the tracer particles�. In this flow there is no sharp interface
between the jet and ambient air.

In the data analysis we use two approaches, whereby one
approach is similar to that used previously in the analysis of
Rayleigh-Taylor instability �see �19��. This approach is based
on the measured phase function for the study of the mixed
state of two fluids. The other approach used in our study is
based on the analysis of the two-point second-order correla-
tion function of the particle number density fluctuations gen-
erated by tangling of the gradient of the mean particle num-
ber density by the turbulent velocity field �see, e.g., �20,21��.
This gradient is formed at the external boundary of a sub-
merged turbulent jet. Both approaches demonstrate that prob-
ability density function �PDF� of the phase function of a jet
fluid penetrating into an external flow and the two-point
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second-order correlation function of the particle number den-
sity do not have universal scaling and cannot be fitted by a
power-law function. There is qualitative agreement between
theoretical and experimental results obtained in our study.

The paper is organized as follows. In Sec. II we describe
the experimental setup for a laboratory study of mixing at the
external boundary of a submerged turbulent jet. In Sec. III
we discuss the experimental results and their detailed analy-
sis by means of the approach based on the measured phase
function. In Sec. IV we perform a theoretical study of mixing
at the external boundary of a submerged turbulent jet based
on the analysis of the two-point second-order correlation
function of the particle number density. In Sec. IV we also
compare the theoretical predictions with the obtained experi-
mental results for the correlation function of the particle
number density. Finally, conclusions are drawn in Sec. V. In
the Appendix we perform an asymptotic analysis of the so-
lution of equation for the two-point second-order correlation
function.

II. EXPERIMENTAL SETUP

The experimental setup with an air jet shown in Fig. 1
includes the chamber with the transparent plexiglass walls
�1�, and the cylindrical tube �2� with a jet nozzle mounted at
the tip. A submerged air jet �3� discharges into the chamber.
The cross section of the channel with transparent walls is
47�47 cm2, a diameter of the jet nozzle is D=10 mm, and
the diameter of the jet in the probed region is about 35 mm.
Consequently, the side walls of the channel weakly affect the
development of the jet. The optics �4� produce a light sheet
�5�, and the scattered light from the probed flow region �6� is
recorded with the CCD camera �7� �see Fig. 1�. The laser
sheet thickness is 1 mm. Note that in the present paper we
study mixing of particles at the external boundary of a jet
and we do not investigate the dynamics of a jet.

Flow measurements have been conducted with digital PIV
using a LaVision Flow Master III system to determine the jet
velocity field �see, e.g., �22–24��. The light sheet is provided
by a double PIV Nd-YAG laser, Continuum Surelite 2
�170 mJ. The beam of the laser is directed with the aid of a
few prisms to the light sheet optics that comprises spherical
and cylindrical Galilei telescopes with tunable divergence
and adjustable focus length. A progressive-scan 12-bit digital
CCD camera with dual-frame technique for cross correlation
captures the images of 1280�1024 pixels with a size 6.7
�6.7 �m. A programmable timing unit �an interface card of
the system PC� generates sequences of pulses to control the
laser, the camera, and data acquisition. The software package
DAVIS 7 is applied to control all hardware components and for
image acquisition and visualization. Jet flow images are ana-
lyzed with the package supplemented with the software de-
veloped in this study.

In this experimental study we use methods of measure-
ments applied previously in different studies of turbulent
transport of particles �for details, see �25–27��. In particular,
we use PIV and an image processing technique based on the
analysis of the intensity of the Mie scattering to determine
the spatial distribution of tracer particles �see, e.g., �28��. As
a tracer we use smoke produced by incense particles subli-
mation. The submerged air jet, seeded with the incense
smoke particles of submicron sizes with the mean diameter
0.7 �m, flows into the still air inside the chamber. An esti-
mate of the mean response time of these particles �p to a step
change of the velocity is of the order of 10−6 s. Since the
latter value is much smaller than the Kolmogorov time �K of
the flow in the jet ��K varies in the range from
10−4 to 10−3 s�, and smoke particles Stokes number St
=�p /�K�1, it can be safely assumed that these particles fol-
low the flow faithfully.

Laser sheet light scattered by the incense smoke particles
is captured with a CCD camera. Series of 50 pairs of images
with the adjustable time delay are acquired with a frequency
of 2 Hz and are stored for ensemble and spatial averaging of
flow characteristics. We measure spatial particle distribution
in a flow area of 18.4�18.4 cm2 with a spatial resolution of
1024�1024 pixels that is 0.18 mm /pixel.

In the experiments the jet fluid is characterized by a high
concentration of the tracer particles, and the external fluid is
characterized by a low concentration of the particles. Every
recorded image is normalized by a light intensity measured
just at the jet entrance into the chamber in order to eliminate
the effects associated with a change of concentration of the
incense smoke. We measure parameters of mixing in a local
system of coordinates �y ,z�, where the y axis is directed
along the averaged jet-ambient fluid interface; the z axis is
perpendicular to this interface �see Fig. 1�. The jet param-
eters are determined in intervals L, where the flow character-
istics are statistically homogeneous.

III. DATA PROCESSING BASED ON THE MEASURED
PHASE FUNCTION

In this section we use the approach applied previously in
the analysis of Rayleigh-Taylor instability �see �19��. This

FIG. 1. A scheme of the test section and PIV technique; a sketch
of a jet’s coordinates and a range of measurements. 1—channel
with transparent walls; 2—tube with a jet nozzle; 3—submerged jet;
4—light sheet optics; 5—laser light sheet; 6—image area; and
7—CCD camera.
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approach is based on the measured phase function X�y ,��,
defined as follows: X�y ,��=1 when the point �y ,�� is within
the jet fluid and X�y ,��=0 elsewhere �see �29��, where � is
the polar angle �see Fig. 1�. We analyze the statistical prop-
erties of the system by averaging over an interval of L along
the y direction at fixed angles �, i.e., �X�=L−1	0

LX�y ,��dy,
where L is the length of the interval in the y direction �see
Fig. 1�.

Let us introduce the first and the second moments of the
measured phase function: ����= �X� and ��	 ,��= �X�y
−	 /2,��X�y+	 /2,���, where ���� characterizes the frac-
tion of y that is occupied by the jet fluid, and 	 are the sizes
of regions �with X�y�=1� occupied by the jet fluid �see Fig.
2�. The study of the mixed state of two fluids induced by
Rayleigh-Taylor instability conducted in �19� indicates that
PDF of the random size 	 of the regions occupied by the jet
fluid can be described by gamma distribution

f�	� =
1


�2 − r�
aL

�2

exp�− 	/��
�	/��r , �1�

where 	 are the sizes of the regions occupied by the jet fluid,
the scale � and the exponent r are parameters characterizing
the length scale and a deviation from the exponential PDF. A
ratio of the moments

�n =



0

�

	n+rf�	�d	



0

�

	n+r−1f�	�d	

, �2�

determines a characteristic scale �n, where n is the number of
the statistical moment. Equation �1� for PDF implies that

�n

n
= const. �3�

This property of the PDF of the sizes 	 of the regions occu-
pied by the jet fluid, is valid if the parameter 	 in Eqs. �1�
and �2� varies in the infinite interval 0
	
�.

We show below that the measured PDF of the phase func-
tion in our experiments can be reasonably approximated by
gamma distribution. In the present analysis we use images of
a jet obtained in our experiments, whereby the interface be-
tween a jet and an ambient fluid is determined for a mean jet
image averaged over 50 independent instantaneous images.
The images are converted into a binary form using the fol-

lowing procedure. The threshold for the image transforma-
tion into a binary form is chosen equal to the intensity
whereby the PDF of the scattered light intensity in the jet is
equal to that in the ambient fluid �see Fig. 3, where this
threshold is 96 counts�. Thereafter all pixels of every image
where the scattered light intensity is above the threshold
value, are assigned the value of the phase function X�y ,��
equal 1 and are categorized as a jet fluid, while pixels with
light intensity below the threshold are assigned the value of
the phase function equal to 0 and are categorized as an am-
bient fluid.

After implementing this procedure the mean image of the
instantaneous binary jet images is obtained. The mean image
is transformed into a binary form with the threshold 0.5. In
particular, the pixels, where a probability of a jet fluid ap-
pearance was higher then 0.5 were assigned the value of the
phase function equal to 1, while all the rest were assigned the
value of the phase function equal to 0. The boundary of a jet
is a line, where a mean value of a phase function is equal to
0.5. The threshold adopted in this study �the intensity
whereby the PDFs of the scattered light intensity in the jet is
equal to that in the ambient fluid�, allows one to decrease a
systematic error during the transformation into a binary
form. Our analysis has shown that the obtained results on
mixing of particles at the external boundary of a jet are not
very sensitive to a particular choice of the threshold.

We can roughly distinguish between three regions in the
jet down steam the nozzle. In the first region having the size
�D the jet is stable, where D is a diameter of a nozzle. The
second region includes an unstable part of the jet, whereby
the Kelvin-Helmholtz instability might be the main feature
of the flow, and this region extends up to a distance of about
�3D. The third region down steam is a turbulent flow region
that is the subject of our study.

A phase function X�y ,z� is determined for each image in
the interval of y /D from 4.5 to 10.9 along the different di-
rections with a given � �or for different values of z in the
range �D� �see Fig. 1�. We determine a mean value � of the
phase function X�y ,z� averaged over the ensemble of the jet
images. For instance, the function ��z� is shown in Fig. 4 for

FIG. 2. The measured phase function, X�y� at fixed angle �.
Here 	 are the sizes of regions with X�y�=1 that are occupied by
the jet fluid.

FIG. 3. Measured PDF of light intensities in the jet �right line�
and in the ambient fluid �left line�.
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two experiments with different global Reynolds numbers,
R=8.4�103 and R=104. Here R=VD /� is the global Rey-
nolds number based on the mean jet velocity V at the nozzle
exit and the diameter D of a jet nozzle. Although we per-
formed experiments for two values of the Reynolds number,
we did not study the dependence of mixing on the Reynolds
number. The line z=0 corresponds to the mean boundary of
the jet, z
0 inside the jet and z�0 outside the jet. The mean
value � of the phase function decreases along the positive
direction of the axis z.

In our analysis of mixing of particles at the external
boundary of a jet it is not important whether the jet at dis-
tances y /D=4.5–10.9 could be affected by the initial condi-
tions. Indeed, the interface between the jet and the ambient
fluid is determined for a mean jet image averaged over 50
independent images that are acquired with a frequency of
2 Hz. The successive pairs of images are not correlated since
the turbulence correlation time �0 is of the order of 10−3 s
and the characteristic time of the mean flow in the image
scale is of the order of 10−2 s. The estimate for the turbu-
lence correlation time is obtained using the measured char-
acteristic turbulent velocity u0��1–2��103 cm /s, the
maximum scale of turbulent motions l0�1 cm, and �0
= l0 /u0�10−3 s.

PDF of the phase function of a jet fluid penetrating into an
ambient fluid is determined for the same intervals of y /D for
different z using the parametric histogram estimator �see,
e.g., �30��. The obtained PDF is approximated by the gamma
distribution �1� using three adjustable parameters r, �, and
A=aL /
�2−r�. The PDF of the phase function and its ap-
proximation by the gamma distribution, measured in our ex-
periments, are shown in Fig. 5, where the parameters of the
gamma distribution are r=1.03, � /D=0.13, and A=0.182.
These PDFs vary more slowly for large values of 	 than for
small 	. For comparison, a power-law fitting curve A1�−r1 is
also shown in Fig. 5, where r1=2.46, � /D=0.13, and A1
=3.36�10−2. Clearly, the measured PDF cannot be fitted by
a power-law function �see Fig. 5�.

The ratios of the moments �n /n for the measured PDF
versus the length 	m are shown in Fig. 6, where 	m is the
maximum size of the observed jet fluid inclusions. A range of

our experimental data is limited to 	m /D=0.6, where the
probability of the event with 	 /D=0.6 is about 3�10−4.
Consequently, it can be expected that only one such event
occurs in a sample with the size of about 3300 events �not to
mention the events with 	 /D�0.6�. Therefore, it is not fea-
sible to expand significantly the 	m /D range of the observed
events, since a probability of the events with 	 /D�0.6 is
extremely low. Using Eq. �2� we also determine the scale
�n /n for n varied from 1 to 4 using a direct fit �solid lines in
Fig. 6� of the measured PDF to gamma distribution with the
following parameters: r=1.03, � /D=0.13, and A=0.182. In-
spection of Fig. 6 shows that if the range of integration 	m is
too short �i.e., 	m
10�n /n�, the ratios �n /n are different for
different n. On the other hand, when 	m�10�n /n, the ratios
�n /n are independent of n. Therefore, the method of deter-
mining the parameters of PDF �see Eq. �1��, using the prop-
erty �3� of gamma distribution, �n /n=const, is not appropri-
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FIG. 4. First moment � of the phase function for different z
inside and outside the jet determined in the experiments with dif-
ferent global Reynolds numbers: R=8.4�103 �triangles� and R
=104 �squares�. Here z=0 corresponds to the mean boundary of the
jet, z
0 inside the jet and z�0 outside the jet.
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FIG. 5. PDF of the phase function of the jet fluid penetrating
into an ambient flow �squares� and its approximation �solid line� for
z=0 by the gamma distribution �see Eq. �1�� with the following
parameters: r=1.03, � /D=0.13, and A=0.182. For comparison, a
power-law fitting curve A1�−r1 �dashed line� is also shown, where
r1=2.46, � /D=0.13, and A1=3.36�10−2.
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FIG. 6. Ratios of the moments �n /nD of the measured PDF
versus the length 	m /D for n varied from 1 �squares� to 4 �circles�,
where 	m is the maximum size of the observed jet fluid inclusions.
Ratios �n /nD are also determined using a direct fit of the measured
PDF to gamma distribution �Eqs. �1� and �2�� with the following
parameters: r=1.03, � /D=0.13, and A=0.182, where n=1 is the
upper solid curve, and n=4 is the lower solid curve�.
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ate if 	m
10�n /n. The latter condition corresponds to all
our experiments �see Fig. 6�. This implies that in our experi-
ments we cannot account for large 	 when we determine �n.
Therefore, the method based on Eq. �3� can be used only
when 	m�10�n /n.

The parameters r and � of the PDF of the phase function
versus z determined in the experiments are shown in Figs. 7
and 8. The characteristic scale � that is shown in a logarith-
mic scale �see Fig. 8�, varies significantly, decreasing by 1.5
orders of magnitude from the internal to the external regions
of a jet. This dependence is close to an exponential function.
The behavior of the functions ��z� and ��z� is similar �see
Figs. 4 and 8�. Indeed, � is the first moment �mean value� of
the phase function, while � should coincide with the first
moment �1 if the sizes 	 of the regions occupied by the jet
fluid vary from 0 to very large values. For negative z �i.e.,
inside the jet� the size � of the region occupied by the jet
fluid is much larger than that for positive z �i.e., outside the
jet�, whereby the concentration of the jet fluid is small.

It must be noted that we perform experiments in the re-
gion located at the distance 4.5–11 cm downstream from the
nozzle. The reason is that in this region the gradient of the
mean particle number density at the external boundary of a
submerged turbulent jet is very large. In this region the tan-
gling mechanism that is responsible for particle mixing is

more pronounced. The tangling mechanism depends on the
gradient of the mean particle number density �see Sec. IV�.
Increase of the distance from the nozzle is accompanied by a
decrease of the gradient of the mean particle number density.
In addition, in the regions located far from the nozzle, the
effect of the bottom wall of the chamber �e.g., appearance of
the secondary flows� becomes stronger.

Note that mixing in water jet flows was also studied in
recent experiments �31� �see also �32,33��. In these experi-
ments the water jet with ink having a diameter D=0.8 cm
and the global Reynolds numbers R�104, discharges into a
square duct with a width L=3 cm. The measurements de-
scribed in �31� were performed in the duct section at the
distance x /D in the range from 6.6 to 22.5 downstream of the
jet entrance �see Fig. 2�b� in �31��. Inspection of Fig. 1 in
�31� reveals that the mixed part of the flow spreads over the
whole cross section of the channel after �4.5 cm �x /D
�5.6� downstream of the jet entrance. Consequently, most of
the measurements in �31� were performed in the nonturbu-
lent duct flow with the global Reynolds number R�2
�103 �based on the width of the duct and the mean flow
velocity�. The flow in another experiment reported in �31� is
also laminar �R�0.1�. In these experiments it was found
that the PDF of the concentration of the dye in the channel
can be described by gamma distribution with a positive pa-
rameter r=n−1�3–84 in a power function. In our study we
consider a kinematic problem of mixing at the turbulent
fluid-ambient fluid interface and found that the PDF of the
random size of the regions occupied by the jet fluid can be
described by a gamma function with a negative parameter
r�−0.9 in a power function. These findings imply the ab-
sence of power-law scaling.

Although the PDF of a phase function was fitted in Fig. 5
by a gamma function, one of the main findings of this section
is that the PDF of a phase function does not have a universal
scaling and cannot be described by a power-law function.

IV. THEORETICAL MODELING OF TURBULENT
MIXING AND COMPARISON WITH EXPERIMENTAL

RESULTS

In the previous section we analyzed experimental data
using the measured phase function. In this section we use
another approach in the analysis of turbulent mixing of par-
ticles at the external boundary of the submerged turbulent jet.
This approach is based on the analysis of the two-point
second-order correlation function of the particle number den-
sity fluctuations generated by tangling of the gradient of the
mean particle number density by the turbulent velocity field.
This gradient is formed at the external boundary of a sub-
merged turbulent jet.

The equation for the number density n�t ,x� of particles
advected by a fluid velocity field reads

�n

�t
+ � · �nv� = Dm	n , �4�

where Dm is the coefficient of molecular �Brownian� diffu-
sion, v�t ,x�=V+u is the particle velocity field, V= �v� is the
mean velocity, and u are velocity fluctuations. Equation �4�
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FIG. 7. Dependence of the exponent r on the distance from the
jet boundary for R=8.4�103 �triangles� and R=104 �circles�.
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FIG. 8. Dependence of a scale � on a distance z /D from the jet
boundary for R=8.4�103 �triangles� and R=104 �circles�.
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implies conservation of the total number of particles in a
closed volume. In this study we consider incompressible par-
ticle turbulent velocity field �� ·u=0�. This implies that we
neglect a small compressibility of particle velocity field
caused by particle inertia, because the particle size in our
experiments is less than 1 �m. We also neglect very small
compressibility of the air velocity. Consider ��t ,x�=n−N,
the deviation of n from the mean number density of particles
N. The equation for fluctuations of the particle number den-
sity ��t ,x� reads

��

�t
+ � · ��u − ��u�� = Dm	� − �u · ��N �5�

�see, e.g., �34,35��. Using Eq. �5� we derive an equation
for the evolution of the two-point second-order correlation
function of the particle number density, ��t ,R�
����t ,x���t ,x+R��.

��

�t
= 2�Dm�ij + Dij

T�0� − Dij
T�R���i� j� + I , �6�

where Dij
T�R� is the turbulent diffusion tensor �see below�, �ij

is the Kronecker tensor, I=DT��N�2 exp�−c*R / l0� is the
source of particle number density fluctuations at the jet-
ambient fluid interface, DT� l0u0 is the turbulent diffusion
coefficient, u0 is the characteristic turbulent velocity in the
maximum scale l0 of turbulent motions, c*�1 is a free con-
stant, and the angular brackets denote ensemble averaging.
The source function I is related to the last term in the right-
hand side of Eq. �5�.

When �N�0 the nonzero source I results in the genera-
tion of fluctuations of the particle number density caused by
tangling of the gradient of the mean particle number density
by the turbulent velocity field. In this section we study this
effect in detail. Equation �6� has been derived in �36� for a
delta-correlated in time random velocity field. For a turbulent
velocity field with a finite correlation time Eq. �6� has been
derived in �21� by means of stochastic calculus, i.e., Wiener
path integral representation of the solution of the Cauchy
problem for Eq. �4�, using the Feynman-Kac formula and the
Cameron-Martin-Girsanov theorem. The comprehensive de-
scription of this approach can be found in �20,21,37�.

The turbulent diffusion tensor Dij
T�R� is given by the fol-

lowing formula:

Dij
T = 


0

�

�ui�0,��t,x�0��uj��,��t,x + R�����d� �7�

�see �21��. Here the Wiener trajectory ��t ,x �s� �which is of-
ten called the Wiener path� is defined as follows

��t,x�s� = x − 

s

t

u��,��t,x����d� − 
2Dmw�t − s� , �8�

where w�t� is the Wiener random process, which describes
the Brownian motion �molecular diffusion�. The Wiener ran-
dom process w�t� is defined by the following properties:
�w�t��w=0, �wi�t+��wj�t��w=��ij, and �. . .�w denotes the
mathematical expectation over the statistics of the Wiener
process. The velocity ui�� ,��t ,x ���� describes the Eulerian

velocity calculated at the Wiener trajectory. For a random
incompressible velocity field with a finite correlation time
the tensor of turbulent diffusion is given by Dij

T�R�
��−1��i�t ,x �0�� j�t ,x+R ���� �see �21��. Hereafter �…� de-
notes averaging over the statistics of both turbulent velocity
field and the Wiener process.

If the turbulent velocity field is not delta correlated in
time �e.g., the correlation time is small yet finite�, the tensor
of turbulent diffusion, Dij

T�R�, is compressible, i.e.,
�� /�Ri�Dij

T�R��0 �for details see �21��. Let us consider the
parameter �T that characterizes the degree of compressibility
of the tensor of turbulent diffusion.

�T �
�i� jDij

T�R�
�i� jDmn

T �R��imp� jnp

�
��� · ��2�

��� � ��2�
, �9�

where �ijk is the fully antisymmetric Levi-Civita unit tensor.
Note that when the turbulent velocity field is a delta-
correlated in time random process, � ·��� ·u, while for a
turbulent flow with the finite correlation time � ·� has a con-
tribution that is independent of � ·u.

Let us discuss the assumptions underlying the above
model of particle transport in turbulent flow. We use the ten-
sor of turbulent diffusion Dij

T�R� for isotropic and homoge-
neous turbulent flow. In our experiments the velocity field is
generally anisotropic. We determine the two-point second-
order correlation function ��t ,R� in the vicinity of the mean
boundary of the jet along the y axis, so that the size of the
probed region in the z direction is small. It is of the order of
the maximum scale of turbulent motions l0.

In addition, a main contribution to the level of fluctuations
of particle number density is due to the mode with the mini-
mum damping rate �see Eqs. �22� and �23� below�. This
mode is an isotropic solution of Eq. �6�. Consequently, it is
plausible to neglect the anisotropic effects. This assumption
is also supported by our measurements of the two-point
second-order correlation function ��t ,R� determined along
the y axis for different values of z inside and outside the jet
�see Fig. 13 below�. The difference between these correlation
functions determined for different z is very small. We per-
form measurements in the range along the y axis whereby the
turbulence is nearly homogeneous. On the other hand, the
turbulence parameters l0 and u0 vary slowly with z in the
probed region.

Note that the mechanism of mixing related to the tangling
of the gradient of the mean particle number density at the
external boundary of a submerged turbulent jet by the turbu-
lent velocity field, is robust enough. The properties of the
tangling are not very sensitive to the exponent of the energy
spectrum of the background turbulence. The requirements
that turbulence should be isotropic, homogeneous, and
should have a very long inertial range �a fully developed
turbulence�, are not necessary for the tangling mechanism.

Anisotropy effects can complicate the theoretical analysis,
but do not introduce new physics in the mixing process. The
reason is that the main contribution to the tangling mecha-
nism is at the Kolmogorov �viscous� scale of turbulent mo-
tions. At this scale turbulence can be considered as nearly
isotropic, while anisotropy effects can be essential in the
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vicinity of the maximum scale of turbulent motions.
Using these arguments, we consider the tensor Dij

T�R� in
the following form:

Dij
T�R� = DT��F�R� + Fc�R���ij + RFc�

RiRj

R2

+
RF�

2
��ij −

RiRj

R2 �� , �10�

DT= l0u0 /3 is the turbulent diffusion coefficient, F�0�=1
−Fc�0� and F�=dF /dR. The function Fc�R� describes the
compressible �potential� component, whereas F�R� corre-
sponds to the vortical �incompressible� part of the turbulent
diffusion tensor. Using Eqs. �6� and �10� we derive an equa-
tion for the two-point second-order correlation function ��R�
written in a dimensionless form as follows:

��

�t
=

1

M�R���� + 2� 1

R
+ ��R����� + I , �11�

where time t is measured in units of �0= l0 /u0, distance R is
measured in units of l0, and

1

M�R�
=

2

Pe
+

2

3
�1 − F − �RFc��� , �12�

��R� = −
M�R�

3
�F − 2Fc��, �13�

and Pe=u0l0 /Dm is the Péclet number. The two-point corre-
lation function ��R� satisfies the following boundary condi-
tions: ��R=0�=1 and ��R→��=0. This function has a glo-
bal maximum at R=0 and therefore it satisfies the conditions

���R = 0� = 0, ���R = 0� 
 0,

��R = 0� � ���R � 0�� .

Let us introduce a function

��t,R� = R��t,R�exp�

0

R

��x�dx� . �14�

Equations �11� and �14� yield the following equation for the
function ��R�:

��

�t
=

1

M�R�
�2�

�R2 − U�R�� + I0, �15�

where

U�R� =
��R�
M�R�

� 2

R
+ ��R� +

��

�
� , �16�

I0 = RI�R�exp�

0

R

��x�dx� . �17�

In the analysis we use a quantum mechanics analogy,
whereby Eq. �15� is regarded as a one-dimensional
Schrödinger equation with a variable mass. We seek the so-
lution of Eq. �15� in the following form:

��t,R� = �
p=1

�

�p�t��p�R� , �18�

where �p�R� are the eigenfunctions determined by the fol-
lowing equation:

1

M�R�
d2�p

dR2 − �2�p + U�R���p = 0. �19�

The condition of the orthogonality for the eigenfunctions
reads



0

�

M�R��i�R�� j�R�dR = �ij . �20�

Substituting solution �18� into Eq. �15�, multiplying the ob-
tained equation by �l�R�, and integrating over R yields the
following equation for the function �p�t�:

d

dt
�p − �p�p =

2

3
l0
2��N�2. �21�

In the derivation of Eq. �21� we use Eq. �20� and take into
account that



0

�

M�R�RI�R�exp�

0

R

��x�dx��p�R�dR �
2

3c*
l0
2��N�2,

where the function M�R�I�R� is strongly localized and is ap-
proximated by the delta function. We also assume here that
the basis of the eigenfunctions �p�R� is complete. The solu-
tion of Eq. �21� for the function �p�t� with the initial condi-
tion �p�t=0�=0 reads

�p�t� =
2

3c*

l0
2

��p�
��N�2�1 − exp�− ��p�t�� . �22�

Equations �14�, �18�, and �22� yield the correlation function
��t ,R� as follows:

��t,R� =
2

3c*
� l0

L*
�2

��N�2�
p=1

�
�p�R�

��p�
�1 − exp�− ��p�t�� ,

�23�

where we used an estimate ��N�2���N�2 /L*
2 . The main con-

tribution to the correlation function ��t ,R� for t� ��p�−1 in
Eq. �23� is due to the mode with the minimum damping rate
��p�, i.e., for the mode with p=1.

Particular formulas for the potential U�R� and the mass
M�R� depend on the functions F�R� and Fc�R�. For instance,
we may choose these functions in the following form:

F�R� =
1

1 + �T
exp�− f�R�� , �24�

Fc�R� =
�T

1 + �T
exp�− acf�R�� , �25�
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f�R� =
R2

Re−1/2 + R2/3 , �26�

where Re=u0l0 /� is the Reynolds number based on turbulent
velocity u0 and maximum scale l0 of turbulent motion. Equa-
tion �26� is similar to an interpolation formula derived by
Batchelor for the correlation function of the velocity field
that is valid for a turbulence with Kolmogorov spectrum in
the inertial range and for random motions in the viscous
range of scales �see, e.g., �38,39��. In particular, in the iner-
tial range of turbulent scales, Re−3/4�R�1, the correlation
function for the turbulent diffusion tensor is F�R��1−R4/3,
where R is measured in units of maximum scale of turbulent
motions l0. The corresponding correlation function for the
turbulent velocity field �1−R2/3. The difference between the
scalings of the turbulent diffusion tensor and the correlation
function of the turbulent velocity field is caused by the scal-
ing of correlation time ��R��R2/3. On the other hand, in the
viscous range R�Re−3/4, the correlation function for the tur-
bulent diffusion tensor is F�R��1−Re1/2 R2. This correlation
function is similar to that for the velocity field because in the
viscous range the correlation time is independent of scale.
On the other hand, for large scales R�1 there is no turbu-
lence, so that for R�1 the functions F�R� and Fc�R� should
decrease sharply to zero.

The particular choice of the functions F�R�, Fc�R�, and
f�R� in the paper describes the well-known properties of tur-
bulent velocity field obtained from laboratory experiments,
numerical simulations, and theoretical studies �see, e.g.,
�38,39��. In this study we choose the exponential form for
the functions F�R� and Fc�R�. The final results are not sen-
sitive to the form for these functions at large scales R�1.
Note also that the particular choice of the function f�R� is
also not very important. It should include turbulent motions
in the inertial range �e.g., a turbulence with Kolmogorov
spectrum in the inertial range� and random motions in the
viscous range of scales.

Using Eqs. �24�–�26� we determine the potential U�R� and
the mass M�R� in Eq. �19�. For instance, the potential U�R�
for different values of parameter ac is shown in Fig. 9. This

potential U�R� for smaller scales is also shown in Fig. 10.
The function 1 /M�R� for different values of parameter ac is
shown in Fig. 11. Very important features of the potential
U�R�, which determine the asymptotic behavior of the solu-
tion of Eq. �19�, are as follows. At small scales, the potential
U�R� is negative for �T�0, and there is a positive maximum
of the potential U�R� at the scales R�1. On the other hand,
when the degree of compressibility of the turbulent diffusion
tensor �T=0 �e.g., for the delta-correlated in time turbulent
velocity field�, the potential U�R� is positive for all scales
and decreases for the larger scales, so that there is no maxi-
mum of the potential U�R� for R�0. An analysis performed
by Kraichnan in �36� for the delta-correlated in time turbu-
lent velocity field, showed that the characteristic damping
rate of the particle number density fluctuations is very high
����

−1=
Re �0
−1, where ��=�0 /
Re is the Kolmogorov time

�i.e., the turbulent time at the viscous Kolmogorov scale�.
The latter implies that the level of these fluctuations is very
low ����0�−1�Re−1/2 �see Eq. �23��.

In a real flow with a finite correlation time the degree of
compressibility of the turbulent diffusion tensor �T�0, the

1 2 3
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R/l
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U(R)

FIG. 9. Potential U versus R / l0 for �T=1 and different values of
parameter ac: ac=1.2 �dashed-dotted line�, ac=2 �thick solid line�,
and ac=4 �dashed line�. For comparison the case �T=0 �the delta-
correlated in time velocity field� is shown �thin solid line�. Here
Re=2�103 and Pe=2�108. The horizontal dashed-dotted line
U=0.09 corresponds to the damping rate for the first mode �1

=−0.09�0
−1.
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FIG. 10. Potential U /Re1/2 versus R /� at small scales for �T

=1 and different values of parameter ac: ac=1.2 �dashed-dotted
line�, ac=2 �thick solid line�, and ac=4 �dashed line�. For compari-
son the case �T=0 �the delta-correlated in time velocity field� is
shown �thin solid line�. Here �= l0 /Re3/4 is the Kolmogorov �vis-
cous� scale and ��=�0 /Re1/2 is the Kolmogorov time, Re=2�103

and Pe=2�108.
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FIG. 11. 1 /M versus R / l0 for �T=1 and different values of
parameter ac: ac=1.2 �dashed-dotted line�, ac=2 �thick solid line�,
and ac=4 �dashed line�. For comparison the case �T=0 �the delta-
correlated in time velocity field� is shown �thin solid line�. The
horizontal thin dashed-dotted line determined by equation M−1

=2 /3 corresponds to the scales at which there is no turbulence.
Here Re=2�103 and Pe=2�108.
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characteristic damping rate of the fluctuations of the particle
number density is not high ���0

−1, and therefore, the level of
these fluctuations is not small. In this case the maximum of
the potential U=Umax is attained at the scale Rmax�1,
whereby the inverse mass M−1�1 and changes with R con-
siderably slower than that in the range R�1. The asymptotic
solution for the two-point second-order correlation function
��R� in this region has a form of the gamma distribution
��R��exp�−��R−Rmax�� /Rb, where �= �Umax−2����1/2 and
b�1. The detailed asymptotic analysis of the solution for the
two-point second-order correlation function ��R� in differ-
ent ranges of scales is performed in the Appendix.

Now we solve Eq. �19� numerically in order to determine
the two-point second-order correlation function �p�R�. The
normalized correlation function for the first mode �p=1� for
�T=1 and different values of parameter ac is shown in Fig.
12. Note that the parameter ac strongly affects the compress-
ible part of the tensor of turbulent diffusion caused by the
finite correlation time of turbulent velocity field. The loca-
tion of the maximum in the potential U�R� strongly depends
on the parameter ac and is nearly independent of the Rey-
nolds number. The damping rate for the first mode �1=
−0.09�0

−1. The numerical solution for the correlation function
��R� is in agreement with the results of the asymptotic
analysis performed in the Appendix.

In order to compare the theoretical predictions with the
experimental results, the analysis of the experimental data is
performed also without transformation of images into a bi-
nary form. In particular, the two-point second-order correla-
tion function ��R� determined in our experiments without
and with transformation of images into a binary form is
shown in Fig. 12. The distance between two points R in our
experiments is measured along the y axis at z=0 �at the mean
boundary of the jet�. In Fig. 13 we also show the correlation
functions determined in our experiments �without transfor-
mation of images into a binary form� for different z inside
and outside the jet.

In Figs. 12 and 13 we use the Reynolds number, Re, based
on the turbulent velocity, velocity u0 and the turbulent cor-

relation length l0, where the characteristic turbulent velocity
u0�0.2V and l0�D, so that Re=0.2R. Note that the global
Reynolds number R based on the mean jet velocity V at the
nozzle exit and the diameter D of a jet nozzle, is more often
used in experimental studies �e.g., for comparisons of differ-
ent experimental setups�, while the Reynolds number, Re,
based on the turbulent velocity, velocity u0 and the turbulent
correlation length l0, is usually used in theoretical analysis.

Figure 12 demonstrates that a difference between the cor-
relation functions determined in our experiments with and
without transformation of images into a binary form is fairly
small. Inspection of Fig. 13 shows that the correlation func-
tions are weakly dependent on z. This conclusion is also
valid when we transform images into a binary form. Note
that when we determine the two-point correlation function
using images transformed into a binary form, we take into
account the contributions of both the jet fluid and the ambi-
ent fluid. On the other hand, when we determine the param-
eter � �see Sec. III�, we take into account only the contribu-
tion of the jet fluid. The difference between the results
obtained using a measured random particle number density
field and binarized �using a threshold� random field is not
surprising, since a binarization is equivalent to a nonlinear
transformation �filtering� of the particle number density field.
Note that the two procedures for data analysis of mixing,
without and with transformation of images in a binary form,
yield additional information about mixing of particles at the
external boundary of a jet. The solid line �ac=2� in Fig. 11
approximates our experimental results after binarization rea-
sonably well.

This study demonstrates that there is qualitative agree-
ment between the measured and theoretically predicted two-
point second-order correlation functions �see Fig. 12�. This is
an indication that the presented theoretical model of the par-
ticle number density fluctuations generated by tangling of the
gradient of the mean particle number density by the turbulent
velocity field, can mimic mixing at the external boundary of
a submerged turbulent jet.

The compressibility of the turbulent diffusion tensor
caused by the compressibility of Lagrangian trajectories in a
turbulent flow with a finite correlation time is a universal
feature of turbulent mixing. The direct consequence of the
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FIG. 12. Normalized two-point second-order correlation func-
tion ��R� for �T=1 and different values of parameter ac: ac=1.2
�dashed-dotted line�, ac=2 �solid line�, and ac=4 �dashed line�.
Two-point second-order correlation function ��R� determined in
our experiments with �unfilled circles� and without �stars� transfor-
mation of images into a binary form. The distance R between two
points is measured along the y axis at z=0 �at the mean boundary of
the jet�. Here Re=2�103 and Pe=2�108.
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FIG. 13. Two-point second-order correlation function ��R� de-
termined in our experiments without transformation of images in a
binary form. The distance R between two points is measured along
the y axis: at the mean boundary �z=0� of the jet �filled squares�; at
z=−0.55D inside the jet �filled triangles�; and at z=0.55D outside
the jet �stars�. Here Re=104 and Pe=2�108.
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compressibility is the existence of a positive maximum in the
potential U�R� in the scales R� l0. This is a reason why the
correlation function of the particle number density does not
have a power-law behavior. This property of the correlation
function of the particle number density is a generic feature,
which seems to be independent of the origin of a random
fluid flow. In particular, a complicated random flow, which
arises at the nonlinear stage of evolution of Rayleigh-Taylor
instability, has a finite correlation time. This implies that the
turbulent diffusion tensor in such a flow is compressible. It is
plausible to suggest that the latter is a reason that the PDF of
the phase function found in the analysis of Rayleigh-Taylor
instability in �19� does not have universal scaling and cannot
be approximated by a power-law function.

V. CONCLUSIONS

In this study we investigate experimentally and theoreti-
cally mixing at the external boundary of a submerged turbu-
lent jet. An air jet in the experiments is seeded with the
incense smoke particles having a large Schmidt number and
a small Stokes number. The spatial distributions of the jet
and ambient fluids are determined in these experiments using
particle image velocimetry and an image processing tech-
nique based on the analysis of the intensity of the light Mie
scattering.

Two approaches are used in the data analysis, whereby
one approach is based on the measured phase function for the
study of the mixed state of two fluids. This approach is simi-
lar to that used for analysis of the Rayleigh-Taylor instability
�19�. Another approach applied in this study is based on the
analysis of the particle number density fluctuations generated
by tangling of the gradient of the mean particle number den-
sity by the turbulent velocity field. This gradient is formed at
the external boundary of a submerged turbulent jet.

The main result of this study is that the phase-function-
based formalism and the formalism based on the analysis of
the two-point second-order correlation function of the par-
ticle number density imply the absence of the universal scal-
ing: the PDF of the phase function of a jet fluid penetrating
into an external flow and the two-point second-order corre-
lation function of the particle number density exhibit a non-
power-law behavior.

A power-law behavior of the correlation function of the
particle number density can be possible when the character-
istic scale of the inhomogeneity of the mean particle number
density is larger than the maximum scale of turbulent mo-
tions. However, in the vicinity of the jet boundary the char-
acteristic scale of the inhomogeneity of the mean particle
number density is much smaller than the maximum scale of
turbulent motions. It is plausible to suggest that one of the
reasons for the nonuniversal behavior of the correlation func-
tion of the particle number density is the compressibility of
Lagrangian trajectories in a turbulent flow with a finite cor-
relation time. For a delta-correlated in time random velocity
field the power-law behavior of the correlation function of
the particle number density might be possible. However, this
suggestion should be carefully verified in different laboratory
experiments and numerical simulations.

A mechanism of mixing at the external boundary of a
submerged turbulent jet is a kinematic tangling process. The
tangling mechanism is universal and independent of the way
of generation of turbulence for large Reynolds numbers. Tan-
gling of the gradient of the large-scale velocity shear pro-
duces anisotropic velocity fluctuations �40,41� that are re-
sponsible for different phenomena: formation of large-scale
coherent structures in a turbulent convection �42�, excitation
of the large-scale inertial waves in a rotating inhomogeneous
turbulence �43�, generation of large-scale vorticity �44�, and
large-scale magnetic field �45� in a sheared turbulence.

Our theoretical study of mixing is based on the analysis of
the two-point second-order correlation function of the par-
ticle number density. There is a qualitative agreement be-
tween theoretical and experimental results obtained in this
study. However, the theoretical results obtained in this study
cannot be valid in the most general cases since we adopted a
number of simplifying assumptions about the turbulence. We
considered a homogeneous, isotropic, and incompressible
background turbulence. We assumed also that the generated
“tangling” fluctuations of particle number density do not af-
fect the background turbulence. The latter assumption im-
plies a one-way coupling between particles and fluid that is
reasonable in view of a small mass-loading parameter for
particles. We adopted a simplified physical model in order to
describe mixing of particles at the turbulent jet interface. In
spite of the fact that the simplified model considered in our
paper can only mimic mixing in real jets, this model de-
scribes robust features of turbulent mixing in our experi-
ments. Clearly, the comprehensive theoretical and numerical
studies are required for a quantitative description of mixing
at the turbulent jet interface.
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APPENDIX: ASYMPTOTIC SOLUTIONS FOR A
SECOND-ORDER CORRELATION FUNCTION

In this Appendix we perform an asymptotic analysis of
solution for the two-point second-order correlation function
��R�. The correlation function ��R� satisfies the following
boundary conditions: ��R=0�=1 and ��R→��=0. This
function has a global maximum at R=0 and satisfies the
conditions: ���R=0�=0, ���R=0�
0, and ��R=0�
� ���R�0��. There are several characteristic regions in the
solution for the correlation function ��R�: �i� the viscous
range 0�R
Re−3/4; �ii� the inertial range Re−3/4�R�1,
and �iii� the large scales R�1 whereby there is no turbu-
lence. Here R is measured in units of the maximum scale of
turbulent motions l0.
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The behavior of the dimensionless two-point second-order
correlation function ��R� is described by Eq. �11�. Equation
�11� with I=0 has an exact solution in the viscous range 0
�R
Re−3/4.

��X� = S�X�X−1�1 + X2��/2, �A1�

where S�X� is a real part of the function Ã1P�
��iX�

+ Ã2Q�
��iX�. Here P�

��iX� and Q�
��iX� are the Legendre func-

tions with imaginary argument X2= M Pe 
Re R2, and

� =
5�

1 + 3�
,  M =

1 + 3�

3�1 + �T�
,

� = −
1

2
�

1

2� 2 + 1 −
4���

 M

Re

�1/2

,

 =
3 − �

1 + 3�
,

�=ac�T and �
0. In order to obtain the solution �A1� we
take into account that in the viscous range of scales the in-
verse mass, the function ��R� and the potential U�R� are
given by the following formulas:

M−1 =
2

Pe
�1 + X2�, ��R� = −

2 U

3
M�R�Re1/4 R ,

U�R� = − 2 U�1 −  1
X2

1 + X2� ,

 U =
2� − 1

1 + �T
,  1 =

3�1 + 8��
1 + 3�

.

Here we use asymptotics of the functions F�R� and Fc�R�
determined for R�Re−3/4 �see Eqs. �24�–�26� and �12�–�16��.
The solution �A1� has the following asymptotics. In the
scales 0�R�1 / �
Pe Re1/4� �i.e., for X�1, the solution for
the correlation function ��R� reads

��R� = 1 −
���
6

Pe R2, �A2�

while in the scales 1 / �
Pe Re1/4��R
Re−3/4 �i.e., for X
�1�,

��R� = A1 + A2R− . �A3�

In the inertial range Re−3/4�R�Rmax, Eq. �11� with I
=0 reads

R2�� + �1 −  ̃�R�� +
2���

 ̃M

R2/3� = 0, �A4�

where

 ̃ =
3 − �

3 + 7�
,  ̃M =

2�3 + 7��
9�1 + �T�

.

Here we use asymptotics of the functions F�R� and Fc�R�
determined for Re−3/4�R�1 �see Eqs. �24�–�26�, �12�, and
�13��. Equation �A4� has an exact solution as follows:

��R� = R ̃/2�Ã3J��z� + Ã4Y��z�� , �A5�

where J��z� and Y��z� are the Bessel functions of the first and

the second kinds, z= 2R1/3, �= �3 /2�� ̃�, and  2

=3�2��� /  ̃M�1/2. Here we take into account that in the inertial

range the inverse mass M−1�R�=  ̃MR4/3 and the function
��R�=−�4 U /9�M�R�R1/3. The solution �A5� has the follow-
ing asymptotics in the scales Re−3/4�R� 2

−1/3 �i.e., for z
�1�:

��R� = A3 + A4R− ̃. �A6�

In the vicinity of the maximum of the potential U=Umax,
which is attained at the scale Rmax�1, the inverse mass
M−1�1 and it changes with R considerably slower than in
the range R�1. The asymptotic solution for the correlation
function ��R� in this region reads:

��R� = A5
exp�− ��R − Rmax��

Rb , �A7�

where �= �Umax−2����1/2 and b�1.
For large scales R�1 there is no turbulence so that M−1

�2 /3 and �=U=0. The asymptotic solution for the correla-
tion function ��R� in this range of scales reads

��R� = A6R−1 sin�R
3���/2 + !0� . �A8�

Matching functions ��R� and ���R� at the boundaries of
the above-mentioned regions yields coefficients Ak and the
damping rate �. In particular, A1�A3�A5�A6�1, and A2
�1, A4�1, where we consider the case Sc�1. The results
of the above asymptotic analysis are in agreement with the
numerical solution for the correlation function ��R� obtained
in Sec. IV.
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