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We study a large-scale instability in a sheared nonhelical turbulence that causes generation of large-scale
vorticity. Three types of the background large-scale flows are considered, i.e., the Couette and Poiseuille flows
in a small-scale homogeneous turbulence, and the “log-linear” velocity shear in an inhomogeneous turbulence.
It is known that laminar plane Couette flow and antisymmetric mode of laminar plane Poiseuille flow are stable
with respect to small perturbations for any Reynolds numbers. We demonstrate that in a small-scale turbulence
under certain conditions the large-scale Couette and Poiseuille flows are unstable due to the large-scale insta-
bility. This instability causes formation of large-scale vortical structures stretched along the mean sheared
velocity. The growth rate of the large-scale instability for the “log-linear” velocity shear is much larger than
that for the Couette and Poiseuille background flows. We have found a turbulent analogue of the Tollmien-
Schlichting waves in a small-scale sheared turbulence. A mechanism of excitation of turbulent Tollmien-
Schlichting waves is associated with a combined effect of the turbulent Reynolds stress-induced generation of
perturbations of the mean vorticity and the background sheared motions. These waves can be excited even in
a plane Couette flow imposed on a small-scale turbulence when perturbations of mean velocity depend on three
spatial coordinates. The energy of these waves is supplied by the small-scale sheared turbulence.
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I. INTRODUCTION

Large-scale vortical structures are universal features ob-
served in geophysical, astrophysical, and laboratory flows
�see, e.g., �1–6��. Formation of vortical structures is related
to the Prandtl secondary flows �see, e.g., �7–10��. A lateral
stretching �or “skewing”� by an existing shear generates
streamwise vorticity that results in formation of the first kind
of the Prandtl secondary flows. In turbulent flow the large-
scale vorticity is generated by the divergence of the Rey-
nolds stresses. This mechanism determines the second kind
of the Prandtl turbulent secondary flows �10�.

The generation of large-scale vorticity in a homogeneous
nonhelical turbulence with an imposed large-scale linear ve-
locity shear has been recently studied in �11�. Let us discuss
a mechanism of this phenomenon. The equation for the mean
vorticity W=��U read

�W

�t
= � � �U � W + F − �� � W� , �1�

where U is the mean fluid velocity, Fi=−� j�uiuj� is the ef-
fective force caused by velocity fluctuations, u, and � is the
kinematic viscosity. The first term, U�W, in Eq. �1� deter-
mines laminar effects of the mean vorticity production
caused by the sheared motions, while the effective force F
determines the turbulent effects on the mean fluid flow. Let
us consider a simple large-scale linear velocity shear U�s�

= �0,Sx ,0� imposed on the small-scale nonhelical turbulence.

The equation for the perturbations of the mean vorticity, W̃
= �W̃x�z� ,W̃y�z� ,0�, reads

�W̃x

�t
= SW̃y + �TW̃x�, �2�

�W̃y

�t
= − �0Sl0

2W̃x� + �TW̃y�, �3�

�see �11��, where W̃�=�2W̃ /�z2, �T is the turbulent viscosity,
l0 is the maximum scale of turbulent motions and the param-
eter �0 is of the order of 1, and depends on the scaling
exponent of the correlation time of the turbulent velocity
field �see Sec. II�. A solution of Eqs. �2� and �3� has the form
�exp��t+ iKzz�, where the growth rate of the large-scale in-
stability is given by �=��0Sl0Kz−�TKz

2 and Kz is the wave
number. The maximum growth rate of perturbations of the
mean vorticity, �max=�0�Sl0�2 /4�T, is attained at Kz=Km

=��0Sl0 /2�T. This corresponds to the ratio W̃y /W̃x

=��0l0Km�S�0, where the time �0= l0 /u0 and u0 is the char-
acteristic turbulent velocity in the maximum scale l0 of tur-
bulent motions. Note that in a laminar flow this instability
does not occur.

The mechanism of this instability is as follows �see �11�
for details�. The first term, SW̃y = �W�s� ·��Ũx, in Eq. �2� de-
termines a “skew-induced” generation of perturbations of the

mean vorticity W̃x by stretching of the equilibrium mean vor-

ticity W�s�= �0,0 ,S�, where Ũ are the perturbations of the

mean velocity. In particular, the mean vorticity W̃xex is gen-

erated from W̃yey by equilibrium shear motions with the

mean vorticity W�s�, whereby W̃xex� �W�s� ·��Ũxex�W̃yey

�W�s�. Here ex, ey, and ez are the unit vectors along x, y, and
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z axes, respectively. On the other hand, the first term,
−�0Sl0

2W̃x�, in Eq. �3� determines a “Reynolds stress-induced”
generation of perturbations of the mean vorticity W̃y by the
Reynolds stresses. In particular, this term is determined by
���F�y. This implies that the component of the mean vor-

ticity W̃yey is generated by an effective anisotropic viscous

term �−l0
2��W̃xex ·��U�s��x�ey �−l0

2SW̃x�ey. This instability is
caused by a combined effect of the sheared motions �“skew-
induced” generation� and the “Reynolds stress-induced” gen-
eration of perturbations of the mean vorticity.

The mechanism for this large-scale instability in a sheared
nonhelical homogeneous turbulence is different from that
discussed in �12–14�, where the generation of large-scale
vorticity in the helical turbulence occurs due to hydrody-
namic alpha effect. The latter effect is associated with the
hydrodynamic helicity of turbulent flow. In a nonhelical ho-
mogeneous turbulence this effect does not occur.

The large-scale instability in a nonhelical homogeneous
turbulence has been studied in �11� only for a simple case of
unbounded turbulence with an imposed linear velocity shear
and when the perturbations of the mean vorticity depend on
one spatial variable z. In this study the theoretical approach
proposed in �11� is further developed and applied for com-
prehensive investigation of the large-scale instability for dif-
ferent situations with nonuniform shear, inhomogeneous tur-
bulence and a more general form of the perturbations of the

mean vorticity W̃�r� that depends on three spatial variables.
In the present study we consider three types of the back-

ground large-scale flows, i.e., the Couette flow �linear veloc-
ity shear� and Poiseuille flow �quadratic velocity shear� in a
small-scale homogeneous turbulence, and the “log-linear”
velocity shear in an inhomogeneous turbulence. We have de-
rived mean-field equations for perturbations of large-scale
velocity which depend on three spatial coordinates in a
small-scale sheared turbulence, for a nonuniform background
large-scale velocity shear and for an arbitrary scaling of the
correlation time ��k� of the turbulent velocity field.

The stability of the laminar Couette and Poiseuille flows
in a problem of transition to turbulence has been studied in a
number of publications �see, e.g., �15–20�, and references
therein�. It is known that laminar plane Couette flow and
antisymmetric mode of laminar plane Poiseuille flow are
stable with respect to small perturbations for any Reynolds
numbers. A symmetric mode of laminar plane Poiseuille flow
is stable when the Reynolds number is less than 5772 �17�.
In laminar flows the Tollmien-Schlichting waves can be ex-
cited. The molecular viscosity plays a destabilizing role in
laminar flows which promotes the excitation of the Tollmien-
Schlichting waves �see, e.g., �16��. These waves are growing
solutions of the Orr-Sommerfeld equation.

In the present study we have found a turbulent analogue
of the Tollmien-Schlichting waves. These waves are excited
by a small-scale sheared turbulence, i.e., by a combined ef-
fect of the turbulent Reynolds stress-induced generation of
perturbations of the mean vorticity and the background
sheared motions. The energy of these waves is supplied by
the small-scale sheared turbulence. We demonstrate that the
off-diagonal terms in the turbulent viscosity tensor play a

crucial role in the excitation of the turbulent Tollmien-
Schlichting waves. These waves can be excited even in a
plane Couette flow imposed on a small-scale turbulence
when perturbations of velocity depend on three spatial coor-
dinates. When perturbations of large-scale velocity depend
on one or two spatial coordinates the turbulent Tollmien-
Schlichting waves can not be excited in a sheared turbulence.
In the present study we show that the large-scale Couette and
Poiseuille flows imposed on a small-scale turbulence can be
unstable with respect to small perturbations. The critical ef-
fective Reynolds number �based on turbulent viscosity� re-
quired for the excitation of this large-scale instability, is of
the order of 200.

This paper is organized as follows. In Sec. II the govern-
ing equations are formulated. In Sec. III we consider a ho-
mogeneous turbulence with a large-scale linear velocity
shear �Couette flow�, while in Sec. IV we study a homoge-
neous turbulence with a large-scale quadratic velocity shear
�Poiseuille flow�. In Sec. V we investigate formation of
large-scale vortical structures in an inhomogeneous turbu-
lence with an imposed nonuniform velocity shear. Finally,
we draw conclusions in Sec. VI.

II. GOVERNING EQUATIONS

The equation for the mean velocity U in incompressible
flow reads

	 �

�t
+ U · �
Ui = −

�iP

	
+ � j�uiuj� + ��Ui, �4�

where U is the mean velocity, P is the mean pressure, and �
is the kinematic viscosity. The effect of turbulence on the
mean flow is determined by the Reynolds stresses �uiuj�,
where u are the fluid velocity fluctuations.

We consider a turbulent flow with an imposed mean ve-
locity shear �iU

�s�. In order to study a stability of this equi-

librium we consider perturbations Ũ of the mean velocity,

i.e., the total mean velocity is U=U�s�+ Ũ. Thus, the linear-
ized equation for the small perturbations of the mean veloc-
ity is given by

	 �

�t
+ U�s� · �
Ũi + �Ũ · ��Ui

�s� = −
�iP̃

	
+ Fi + ��Ũi,

�5�

where Fi=−� j f ij�Ũ� is the effective force, f ij = �uiuj�, and P̃
are the perturbations of the fluid pressure. Equation �5� is
derived by subtracting Eq. �4� written for the equilibrium
velocity U�s� from Eq. �4� for the mean velocity U. We con-
sider a simple large-scale velocity shear, so that U�s� is di-
rected along y direction and is nonuniform in x direction, i.e.,
U�s�= �0,Uy

�s��x� ,0�.
In order to obtain a closed system of equations, an equa-

tion for the effective force Fi=−� j f ij�Ũ� has been derived in
�11�, where
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f ij�Ũ� = − 2�T��Ũ�ij − l0
2�4C1Mij + C2�Nij + Hij� + C3Gij� ,

�6�

��Ũ�ij = ��iŨj +� jŨi� /2 and l0 is the maximum scale of tur-
bulent motions. The tensors Mij, Nij, Hij, and Gij, in the
expression for the Reynolds stresses �6� are given by

Mij = ��U�s��im��Ũ�mj + ��U�s�� jm��Ũ�mi,

Nij = W̃n�
nim��U�s��mj + 
njm��U�s��mi�,

Hij = Wn
�s��
nim��Ũ�mj + 
njm��Ũ�mi�,

Gij = Wi
�s�W̃j + Wj

�s�W̃i,


ijk is the fully antisymmetric Levi-Civita tensor, ��U�s��ij

= ��iUj
�s�+� jUi

�s�� /2 and the parameters Ck in Eq. �6� are
given below.

The effective force Fi depends on the correlation time of
the turbulent velocity field ��k�, where k is the wave number.
In the present study we derive a more general form of the
effective force Fi for an arbitrary scaling of the correlation
time ��k�=C�0�k /k0�−� of the turbulent velocity field, where
k0=1 / l0. To this end we use Eq. �20� derived in �11�. The
value of the coefficient C= �q−1+�� / �q−1� corresponds to
the standard form of the turbulent viscosity in the isotropic
turbulence, i.e., �T=���k���u2�E�k��dk=�0�u2� /3. Here E�k�
= �q−1�k0

−1�k /k0�−q is the energy spectrum of turbulence. For
the Kolmogorov’s type background turbulence �i.e., for the
turbulence with a constant energy flux over the spectrum�,
the exponent �=q−1 and the coefficient C=2. This case has
been studied in �11�. For a turbulence with a scale-
independent correlation time, the exponent �=0 and the co-
efficient C=1. The parameters Ck entering in the Reynolds
stresses �6� are given by C1=2C2��2−11�+28� /315, C2=
−C2�7�+1� /90 and C3=−C2��+3� /90.

For the derivation of the effective force Fi we use a pro-
cedure outlined below �see �11� for details�. Using the equa-
tion for fluctuations of velocity written in a Fourier space, we
derive equation for the two-point second-order correlation
function of the velocity fluctuations �uiuj�. We introduce a
background turbulence with zero gradients of the mean fluid
velocity. This background turbulence is determined by a stir-
ring force that is independent of gradients of the mean ve-
locity. In this study we use a model of isotropic, homoge-
neous and nonhelical background turbulence. Then we
subtract the equation for the two-point second-order correla-
tion function of the velocity fluctuations �uiuj��0� written for
the background turbulence from the equation for �uiuj�. This
yields the equation for the deviations from the background
turbulence.

The obtained second-moment equation include the first-

order spatial differential operators N̂ applied to the third-
order moments M�III�. A problem arises how to close the

equation, i.e., how to express the third-order terms N̂M�III�

through the lower moments M�II� �see, e.g., �21–23��. To this
end we use a spectral � approximation which postulates that

the deviations of the third-moment terms from the contribu-
tions to these terms afforded by the background turbulence
are expressed through the similar deviations of the second
moments �see, e.g., �11,21,24–26��. A justification of the �
approximation for different situations has been performed in
numerical simulations and analytical studies in �27–31�.

We assume that the characteristic time of variation of the
second moment of velocity fluctuations is substantially larger
than the correlation time for all turbulence scales. This al-
lows us to obtain a steady state solution of the second mo-
ment equation for the deviations from the background turbu-
lence. Integration in k space allows us to determine the
Reynolds stresses in the form of Eq. �6�. Note that this form
of the Reynolds stresses in a turbulent flow with a mean
velocity shear can be obtained even by simple symmetry
reasoning �see �11� for details�.

In the following sections we use Eq. �5� with the derived
effective force �see Eq. �6�� for a study of the dynamics of
perturbations of the mean velocity. We show that under cer-
tain conditions the large-scale instability can be excited
which causes formation of large-scale vortical structures.

III. LINEAR VELOCITY SHEAR (COUETTE FLOW)
IN HOMOGENEOUS TURBULENCE

We consider a homogeneous turbulence with a mean lin-
ear velocity shear, U�s�= �0,Sx ,0�. This velocity field is a
steady state solution of the Navier-Stokes equation. Let us

first study the case when the velocity perturbations Ũ�t ,x ,z�
are independent of y. The equations for the components Ũx

and Ũy of the velocity perturbations read

� �

�t
− �T�
�Ũx = l0

2S�0��z
2Ũy , �7�

�� �

�t
− �T�
Ũy = − S�Ũx, �8�

and the component Ũz is determined by the continuity equa-

tion � · Ũ=0, where �0=C1+C2−C3=C2�2�2−43�
+63� /315. In order to derive Eqs. �7� and �8� we calculate

�� ��� Ũ� using Eq. �5�, that allows us to exclude the pres-
sure term from this equation. We also use Eq. �6� for the
Reynolds stresses in the sheared turbulence. For simplicity,
in Eq. �8� we neglect the small terms �O��l0 /LS�2�, where LS

is the characteristic scale of the velocity shear.
We seek for a solution of Eqs. �7� and �8� in the form

Ũx,y = exp��t��Ax,y cos�Kxx� + Bx,y cosh�Kzx��cos�Kzz + �� ,

�9�

where the coefficients Ax,y, Bx,y, the angle � and the growth
rate � of the instability are determined by the boundary con-
ditions. We choose the symmetric solution �relative the point
x=0�, because the maximum growth rate of the symmetric
mode is higher than that of antisymmetric mode �see below�.
Perturbations of the mean velocity grow in time due to the
large-scale instability with the growth rate

LARGE-SCALE INSTABILITY IN A SHEARED… PHYSICAL REVIEW E 76, 066310 �2007�

066310-3



� = ��0Sl0Kz − �T�Kx
2 + Kz

2� . �10�

The maximum growth rate of perturbations of the mean ve-
locity,

�max =
�0�Sl0�2

4�T
− �TKx

2, �11�

is attained at Kz=Km=��0Sl0 /2�T.
In order to determine the threshold required for the exci-

tation of the large-scale instability, we consider the solution
of Eqs. �7� and �8� with the following boundary conditions
for a layer of the thickness LS in the x direction: at x

= ±LS /2 the functions Ũ=0 and �x�Ũx,y�=0. This yields the
threshold value of the wave number Kx

cr, determined by the
equation

tan�Kx
crLS/2� = − tanh�Kx

crLS/2� . �12�

The condition �max
0 implies that Km�Kx
cr. Therefore, the

large-scale instability is excited when the value of the shear
S exceeds the critical value Scr that is given by

Scr�0 =
2Kx

crl0

3��0

� 4.7
l0

LS
, �13�

where Kx
cr=2� /LS. Note that the value of Kx

cr for the sym-
metric mode is smaller than that for antisymmetric mode.
This is the reason why the maximum growth rate of the
symmetric mode is larger than that of antisymmetric mode.

Note that the parameter �0 depends on the scaling expo-
nent � of the correlation time of the turbulent velocity field,
��k��k−�. In particular, for the Kolmogorov scaling, ��k�
�k−2/3, we arrive at �0=0.45. This case has been considered
in �11�. The necessary condition for the large-scale instability
��0
0� reads 2�2−43�+63
0, i.e., the instability is ex-
cited when 0���1.58 and �
19.9. Note that the condi-
tion �
19.9 is not realistic. In the case of a turbulence with
a scale-independent correlation time, the exponent �=0 and
the parameter �0=0.2.

For small hydrodynamic Reynolds numbers, the scaling
of the correlation time ��k��1 / ��k2�, i.e., �=2, and the pa-
rameter �0�0. This implies that the instability of the pertur-
bations of the mean vorticity does not occur for small Rey-
nolds numbers in agreement with the recent results obtained
in �32� whereby an instability of the perturbations of the
mean vorticity in a random flow with large-scale velocity
shear has not been found using the second order correlation
approximation and assumption that the correlation time
��k��1 / ��k2�. This approximation is valid only for small
Reynolds numbers �see discussion in �33��.

Let us consider now a more general case when the veloc-

ity Ũ depends on three spatial coordinates, i.e., Ũ
= Ũ�t ,x ,y ,z�. The equations for the components Ũx and Ũy

of the velocity perturbations read

	 �

�t
+ U�s��y − �T�
�Ũx = l0

2S���0�HŨy + ��1

− �2��x�yŨx� , �14�

�	 �

�t
+ U�s��y − �T�
Ũy = l0

2S���2�� − �y
2�Ũx + ��1

− �0��x�yŨy� + S�2�y
2 − ��Ũx,

�15�

and the component Ũz is determined by the continuity equa-

tion � · Ũ=0. Here �H=�−�x
2, �1=2C1−C2=C2�8�2−39�

+231� /630 and �2=C1+C3=C2�4�2−51�+91� /630. In or-

der to derive Eqs. �14� and �15� we calculate �� ��� Ũ�
using Eq. �5�, that allows us to exclude the pressure term
from this equation. For the derivation of Eqs. �14� and �15�
we also use Eq. �6� for the Reynolds stresses in the sheared
turbulence. Equations �14� and �15� can be reduced to the
Orr-Sommerfeld equation if we replace �T by � and set �n
=0 �see, e.g., �15–17�, and references therein�.

We seek for a solution of Eqs. �14� and �15� in the form
���x�exp��t+ i�t+ iKH ·r�, where KH is the wave number
that is perpendicular to the x axis. After the substitution of
this solution into Eqs. �14� and �15� we obtain the system of
the ordinary differential equations which is solved numeri-
cally. We consider the solution of Eqs. �14� and �15� with the
following boundary conditions for a layer of the thickness LS

in the x direction: At x= ±LS /2 the functions Ũ=0 and

�x�Ũx,y�=0. These boundary conditions with a linear veloc-
ity shear corresponds to the Couette flow.

In this section we show that in a small-scale turbulence
the large-scale Couette flow can be unstable under certain
conditions. The range of parameters �LS /LH;�� for which the
large-scale instability occurs is shown in Fig. 1, where LH
=2� /KH, KH= �Ky

2+Kz
2�1/2 and � is the angle between the

wave vector KH and the direction of the mean sheared ve-
locity U�s�. In Figs. 2–4 we show the growth rate of the
large-scale instability ��0 and the frequencies of the gener-
ated modes ��0 vs LS /LH. The growth rates of the large-scale
instability increase with the increase of the angle �, while the
frequencies of the generated modes decrease with the angle
� so that ���→90° �→0. The growth rate of the large-scale
instability reaches the maximum value at �=90°. In addition,
the range of angles � for which the large-scale instability
occurs, is small and located in the vicinity of �=90° �see
Fig. 1�. Therefore, Ky�Kz and since Lz�LS, the size of the

84 86 88
0

1

2

3

4

Instability

L
S
/L

H

FIG. 1. Range of parameters �LS /LH; �� for which the large-
scale instability occurs for Couette background flow and for differ-
ent values of the large-scale shear: S�0=0.2 �dashed line�; S�0

=0.4 �solid line�. Here LS / l0=30.
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structures in the direction of U�s� is much larger than the
sizes of the structures along x and z directions. This implies
that the large-scale structures formed due to this instability
are stretched along the mean sheared velocity U�s�.

The curves in Figs. 2–4 have a point L* whereby the first
derivative of the growth rate of the large-scale instability
with respect to the wave number KH has a singularity. At this
point there is a bifurcation which is illustrated in Fig. 3. In
particular, the growth rates and the frequencies for the first
and the second modes which have the highest growth rates

are shown in Fig. 3�a� and 3�b�. When the size of perturba-
tions LH�L*, the frequencies of the first and the second
modes are different, but the growth rates are the same.
Therefore, at the point LH=L*, there is a generation of two
different modes with the same growth rate. On the other
hand, when the size of perturbations LH
L*, the growth
rates of the first and the second modes are different, but the
frequencies are the same.

The maximum growth rate of perturbations of the mean
velocity, �max, is attained at KH=Km, and the value Km in-
creases with the increase of the angle � between the wave
vector KH and the direction of the mean sheared velocity
U�s�. The increase of shear S promotes the large-scale insta-
bility, i.e., it cause the increase of the range for the instability
�see Fig. 1� and the maximum growth rate �see Figs. 2 and
4�. The characteristic spatial scale Lm=2� /Km and the time
scale tinst��max

−1 for the instability are much larger than the
characteristic turbulent scales. This justifies separation of
scales which is required for the validity of the mean-field
theory applied in the present study. The spatial profiles of the

ratios of vorticity components W̃y /W̃x and W̃z /W̃x for pertur-
bations in Couette background flow are shown in Fig.5. The

function W̃y /W̃x is symmetric relative to the center of the

flow at x=0, while the function W̃z /W̃x is antisymmetric.

Since the function W̃x→0 at the boundaries of the flow, the

ratios of vorticity components W̃y /W̃x and W̃z /W̃x tend to
→±� at the boundaries.

The numerical results for the case �=90° shown in Figs.
2, 4, and 5 coincide with the analytical predictions based on
Eqs. �9�–�13�. For instance, the threshold value of the shear
at LS / l0=30 is Scr�0�0.157 in agreement with Eq. �13�. The

ratio of vorticity components W̃y /W̃x�0.3 at x=0 for modes
with the maximum growth rate of the large-scale instability.

This is in agreement with this ratio of W̃y /W̃x obtained using
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Eq. �9�. The maximum growth rates of perturbations of the
mean velocity are in agreement with Eqs. �11� and �12�.
When we switch off the turbulence, the large-scale instability
does not excited, etc.

The growing modes with a nonzero frequency discussed
in this section can be regarded as the turbulent analogue of
the Tollmien-Schlichting waves. In laminar flows the
Tollmien-Schlichting waves are growing solutions of the
Orr-Sommerfeld equation and the molecular viscosity pro-
motes the excitation of the Tollmien-Schlichting waves �see,
e.g., �16��. On the other hand, the turbulent Tollmien-
Schlichting waves are excited by a small-scale sheared tur-
bulence, i.e., by a combined effect of the turbulent Reynolds
stress-induced generation of perturbations of the mean vor-
ticity and the background sheared motions.

IV. QUADRATIC VELOCITY SHEAR (POISEUILLE
FLOW) IN HOMOGENEOUS TURBULENCE

Now we consider a homogeneous turbulence with an im-
posed large-scale quadratic velocity shear, U�s�=S*x�1
−x /LS�ey. The equations for the components Ũx and Ũy of
the velocity perturbations read

	 �

�t
+ U�s��y − �T�
�Ũx = l0

2S���0�HŨy + ��1

− �2��x�yŨx� + S��yŨx,

�16�

�	 �

�t
+ U�s��y − �T�
Ũy = S�2�y

2 − ��Ũx − 2S��xŨx

+ l0
2S����1 − �0��x�yŨy + �2��

− �y
2�Ũx� + l0

2S��2�1�x�y��xŨy

− �yŨx� + ���2�2 + �1��xŨx

+ ��2 − �0��yŨy�� , �17�

and the component Ũz is determined by the continuity equa-

tion � · Ũ=0, where S�x�=�xU
�s� and S�=�xS. In order to

derive Eqs. �16� and �17� we calculate �� ��� Ũ� using Eq.
�5�. We seek for a solution of Eqs. �16� and �17� in the form
���x�exp��t+ i�t+ iKH ·r�, where KH is the wave number
that is perpendicular to the x axis. After the substitution of
this solution into Eqs. �16� and �17� we obtain the system of
the ordinary differential equations which is solved numeri-
cally. We consider the solution of Eqs. �16� and �17� with the
following boundary conditions for a layer of the thickness LS

in the x direction: At x= ±LS /2 the functions Ũ=0 and

�x�Ũx,y�=0. These boundary conditions with a quadratic
large-scale velocity shear corresponds to the Poiseuille flow.
We show below that in a small-scale turbulence the large-
scale Poiseuille flow can be unstable with respect to small
perturbations.

The range of parameters �LS /LH; �� for which the large-
scale instability in the Poiseuille background flow occurs is
shown in Fig. 6 for different values of the large-scale shear,
where S*=S�x=0�. The growth rates of this instability and
the frequencies of the generated turbulent Tollmien-
Schlichting waves are shown in Figs. 7 and 8. The spatial

profiles of the ratios of vorticity components W̃y /W̃x and

W̃z /W̃x in Poiseuille background flow for modes with the
maximum growth rates of the large-scale instability are
shown in Fig. 9. The general behavior of the large-scale in-
stability in the Poiseuille background flow is similar to that
for the Couette background flow. In particular, the growth
rates of the large-scale instability increase with the increase
of the angle � between the wave vector KH and the direction
of the mean sheared velocity U�s�, reaching the maximum
value at �=90°. The frequencies ��0 of the generated turbu-
lent Tollmien-Schlichting waves by the large-scale instability
decrease with the increase of the angle � and �→0 at �
→90°. The values Km at which the growth rates of the large-
scale instability reach the maximum values increase with the
increase of the angle �. The range for the large-scale insta-
bility and the growth rates of perturbations in the Poiseuille
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background flow increases with the increase of shear. This
implies that increase of shear promotes the large-scale insta-
bility.

For the Poiseuille flow the large-scale instability can be
excited for smaller angles � than that for the Couette back-
ground flow. On the other hand, the thresholds for the insta-
bility in the value of shear and in the value of LS /LH for
Poiseuille background flow are larger than that for the Cou-
ette background flow. A difference between the Couette and
Poiseuille background flows can be also seen in Figs. 5 and 9

for the spatial profiles of the ratios of vorticity components

W̃y /W̃x and W̃z /W̃x. This difference is caused by the different
geometries in these flows. In particular, the first spatial de-
rivatives of the flow velocity in the Poiseuille background
flow are antisymmetric relative to the center of the flow at
x=0, while they are symmetric �constant� in the Couette
background flow. This is the reason of that the spatial profile

of W̃y /W̃x is symmetric relative to x=0 in the Couette back-
ground flow, and it is antisymmetric in the Poiseuille flow.

V. NONUNIFORM VELOCITY SHEAR IN
INHOMOGENEOUS TURBULENCE

In this section we consider a more complicated form of
nonuniform velocity shear in an inhomogeneous turbulence.
For simplicity we consider the case when the small pertur-

bations of the mean velocity Ũ are independent of y. The

equations for the components Ũx and Ũy of the velocity per-
turbations in an inhomogeneous turbulence with a nonuni-
form shear read

�� �

�t
− �T�
Ũx = �0�l0

2S� − �x
2�l0

2S���z
2Ũy − 2��x

2�T��z
2Ũx,

�18�

� �

�t
− �T�
Ũy = �− S + �1�x�l0

2S��x + �2l0
2S��Ũx

+ ��x�T��xŨy , �19�

and the component Ũz is determined by the continuity equa-

tion � · Ũ=0, where S�x�=�xU
�s�. Equation �19� is the y

component of Eq. �5� with �yP̃=0, while Eq. �18� is the x
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component of �� ��� Ũ� determined from Eq. �5�. We con-
sider the solution of Eqs. �18� and �19� with the following
boundary conditions for a layer of the thickness LS in the x

direction: at x= ±LS /2 the functions Ũ=0 and �x�Ũx,y�=0.
We consider a “log-linear” velocity profile for the back-

ground large-scale flow in an inhomogeneous turbulence. In
particular, we use the following relationship for the velocity
shear S�x�=u�

2 /�T�x� and the eddy viscosity �T�x�=u�l0�x�,
where l0�x�=���x�LS is the turbulence length scale, � is the
von Kármán constant, u� is the friction velocity, ��x� is the
dimensionless function that characterizes the spatial profile
of the background velocity shear and inhomogeneity of
small-scale turbulence �see below�. These relationships are
usually used for the logarithmic boundary layer profiles �see,
e.g., �22��. The spatial profile ��x� for 0�x�LS /2 is chosen
in the form

��x� = a1�1 − exp�− a0x̃�� + a2x̃ + a3x̃2 + a4x̃3, �20�

where x̃=x /LS−1 /2, the coefficients ak are determined by
the following conditions: At x=0 the functions �=1, �x�
=0, �x

2�=0, �x
3�=0, and at x=−LS /2 the derivative �x�

=� /LS. Here � is a free parameter that characterizes the
inhomogeneities of small-scale turbulence. The spatial pro-
file of the normalized turbulent viscosity �T

*�x�
=�T�x� / ��u�LS����x� is shown in Fig. 10 for different val-
ues of the parameter �. The function �T

*�x� is chosen to be
symmetric relative the point x=0. The minimum possible
value of the parameter � is �=6. We have chosen the veloc-
ity shear profile U�s��x� so that the logarithmic velocity pro-
file near the boundaries can be matched with the linear shear
velocity for the central part of the background flow. Such
kind of flow is typical for the atmospheric boundary layer.
Figure 11 shows the mean velocity profile U�s��x� /Umax for
different values of the parameter �, where Umax=u� /�.

We seek for a solution of Eqs. �18� and �19� in the form
���x�exp��t+ iKzz�. After the substitution of this solution
into Eqs. �18� and �19� we obtain the system of the ordinary
differential equations which is solved numerically. The
growth rate ��0 of the large-scale instability versus lmax /Lz is

shown in Fig. 12, where Lz=2� /Kz is the size of perturba-
tions in z direction and lmax=�LS is the maximum value of
the turbulent length scale l0 when �→1 �x→1�. The range
of parameters �lmax /Lz; �� for which the large-scale instabil-
ity occurs is shown in Fig. 13�a�. The vertical dashed line in
Fig. 13 indicates that the minimum possible value of the
parameter � is �min=6. Figure 13�b� demonstrates that the
increase of the parameter � causes the increase of the maxi-
mum growth rate of the large-scale instability. The growth
rate of the large-scale instability for the inhomogeneous tur-
bulence with a large-scale nonuniform shear is much larger
than that for the Couette and Poiseuille background flows.

The spatial profiles of the ratios of vorticity components

W̃y /W̃x and W̃z /W̃x for modes with the maximum growth
rates of the large-scale instability are shown in Fig. 14. These
profiles are different from that for the Couette and Poiseuille

background flows. The components W̃y and W̃z of perturba-
tions of the mean vorticity in the central part of the flow are

usually much smaller than the component W̃x. Inspection of
Figs. 12 and 13�a� shows that the parameter lmax /Lz�0.17.
The characteristic time scale for the instability is much larger
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than the characteristic turbulent time. This justifies separa-
tion of scales which is required for the validity of the mean-
field theory used here.

Note that in the interval −LS /2�x�0 the obtained results
discussed in this section imply a stability theory for the tur-
bulent boundary layer. Our study shows that the turbulent
boundary layer can be unstable under certain conditions.

VI. DISCUSSION

In this study the theoretical approach proposed in �11� is
further developed and applied to investigate the large-scale
instability in a nonhelical turbulence with a nonuniform
shear and a more general form of the perturbations of the
mean vorticity. In particular, we consider three types of the
background large-scale sheared flows imposed on small-
scale turbulence: Couette flow �linear velocity shear� and
Poiseuille flow �quadratic velocity shear� in a small-scale
homogeneous turbulence, and a more complicated nonuni-
form velocity shear with the logarithmic velocity profile near
the boundaries matched with the linear shear velocity for the
central part of the background flow. This nonuniform veloc-
ity shear is imposed on an inhomogeneous turbulence. The
latter flow is typical for the atmospheric boundary layer.

We show that the large-scale Couette and Poiseuille flows
imposed on a small-scale turbulence are unstable with re-
spect to small perturbations due to the excitation of the large-
scale instability. This instability causes generation of large-
scale vorticity and formation of large-scale vortical
structures. The size of the formed vortical structures in the
direction of the background velocity shear is much larger
than the sizes of the structures in the directions perpendicular
to the velocity shear. Therefore, the large-scale structures
formed during this instability are stretched along the mean
sheared velocity. Increase of shear promotes the large-scale
instability. The thresholds for the excitation of the large-scale
instability in the value of shear and the aspect ratio of struc-
tures for Poiseuille background flow are larger than that for
the Couette background flow. The growth rate of the large-
scale instability for the inhomogeneous turbulence with the
“log-linear” velocity shear is much larger than that for the
Couette and Poiseuille background flows. The characteristic
spatial and time scales for the instability are much larger than
the characteristic turbulent scales. This justifies separation of
scales which is required for the validity of the mean-field
theory applied in the present study.

The large-scale instability results in excitation of the tur-
bulent Tollmien-Schlichting waves. The mechanism for the
excitation of these waves is different from that for the
Tollmien-Schlichting waves in laminar flows. In particular,
the molecular viscosity plays a crucial role in the excitation
of the Tollmien-Schlichting waves in laminar flows. Con-
trary, the turbulent Tollmien-Schlichting waves are excited
by a combined effect of the turbulent Reynolds stress-
induced generation of perturbations of the mean vorticity and
the background sheared motions. The energy of these waves
is supplied by the small-scale sheared turbulence, and the
off-diagonal terms in the turbulent viscosity tensor play a
crucial role in the excitation of the turbulent Tollmien-
Schlichting waves.

Note that this study is principally different from the prob-
lems of transition to turbulence whereby the stability of the
laminar Couette and Poiseuille flows are investigated �see,
e.g., �15–20�, and references therein�. Here we do not ana-
lyze a transition to turbulence. We study the large-scale in-
stability caused by an effect of the small-scale anisotropic
turbulence on the mean flow. This anisotropic turbulence is
produced by an interaction of equilibrium large-scale Cou-
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ette or Poiseuille flows with a small-scale isotropic back-
ground turbulence produced by, e.g., a stirring force. The
anisotropic velocity fluctuations are generated by tangling of
the mean-velocity gradients with the velocity fluctuations of
the background turbulence �11,26�.

The “tangling” mechanism is an universal phenomenon
that was introduced in �34,35� for a passive scalar and in
�36,37� for a passive vector �magnetic field�. The Reynolds
stresses in a turbulent flow with a mean velocity shear is
another example of tangling anisotropic fluctuations �38�.
For instance, these velocity fluctuations are anisotropic in the
presence of shear and have a steeper spectrum �k−7/3 than,
e.g., a Kolmogorov background turbulence �see, e.g.,
�26,38–41��. The anisotropic velocity fluctuations determine
the effective force and the Reynolds stresses in Eq. �6�. This
is the reason for the new terms ��nl0

2 appearing in Eqs.
�14�–�19�.

The obtained results in this study may be of relevance in
different turbulent astrophysical, geophysical, and industrial
flows. Turbulence with a large-scale velocity shear is a uni-
versal feature in astrophysics and geophysics. In particular,
the analyzed effects may be important, e.g., in accretion
disks, extragalactic clusters, merged protostellar and proto-
galactic clouds. Sheared motions between interacting clouds

can cause an excitation of the large-scale instability which
results in generation of the mean vorticity and formation of
large-scale vortical structures �see, e.g., �42–44��. Dust par-
ticles can be trapped by the vortical structures to enhance
agglomeration of material and formation of particle clusters
�45–49�.

The suggested mechanism can be used in the analysis of
the flows associated with Prandtl’s turbulent secondary flows
�see, e.g., �7,10��. However, in this study we have investi-
gated only simple physical mechanisms to describe an initial
�linear� stage of the formation of vortical structures. The
simple models considered in this study can only mimic the
flows associated with turbulent secondary flows. Clearly, the
comprehensive numerical simulations of the nonlinear prob-
lem are required for quantitative description of the turbulent
secondary flows.
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