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Magnetic fluctuations generated by a tangling of the mean magnetic field by velocity fluctuations are studied
in a developed turbulent convection with large magnetic Reynolds numbers. We show that the energy of
magnetic fluctuations depends on the magnetic Reynolds number only when the mean magnetic field is smaller
than Beq/4Rm1/4, where Beq is the equipartition mean magnetic field determined by the turbulent kinetic energy
and Rm is the magnetic Reynolds number. Generation of magnetic fluctuations in a turbulent convection with
a nonzero mean magnetic field results in a decrease of the total turbulent pressure and may cause the formation
of large-scale inhomogeneous magnetic structures even in an originally uniform mean magnetic field. This
effect is caused by a negative contribution of the turbulent convection to the effective mean Lorentz force. The
inhomogeneous large-scale magnetic fields are formed due to excitation of the large-scale instability. The
energy for this instability is supplied by small-scale turbulent convection. The discussed effects might be useful
for understanding the origin of solar nonuniform magnetic fields: e.g., sunspots.
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I. INTRODUCTION

Magnetic fields in astrophysics are strongly nonuniform
�see, e.g., �1–8��. Large-scale magnetic structures are ob-
served in the form of sunspots, solar coronal magnetic loops,
etc. There are different mechanisms for the formation of the
large-scale magnetic structures: e.g., the magnetic buoyancy
instability of stratified continuous magnetic fields �2,9–11�,
magnetic flux expulsion �12�, topological magnetic pumping
�13�, etc.

Magnetic buoyancy applies in the literature for different
situations �see �11��. The first corresponds to the magnetic
buoyancy instability of stratified continuous magnetic fields
�see, e.g., �2,9–11��, and the magnetic flux tube concept is
not used there. The magnetic buoyancy instability of strati-
fied continuous magnetic fields is excited when the scale of
variations of the initial magnetic field is less than the density
stratification length. On the other hand, buoyancy of discrete
magnetic flux tubes has been discussed in a number of stud-
ies in solar physics and astrophysics �see, e.g., �11,14–18��.
This phenomenon is also related to the problem of the stor-
age of magnetic fields in the overshoot layer near the bottom
of the solar convective zone �see, e.g., �19–22��.

A universal mechanism of the formation of the nonuni-
form distribution of magnetic flux is associated with a mag-
netic flux expulsion. In particular, the expulsion of magnetic
flux from two-dimensional flows �a single vortex and a grid
of vortices� was demonstrated in �12�. In the context of solar
and stellar convection, the topological asymmetry of station-
ary thermal convection plays a very important role in mag-
netic field dynamics. In particular, topological magnetic
pumping is caused by topological asymmetry of the thermal
convection �13�. The fluid rises at the centers of the convec-
tive cells and falls at their peripheries. The ascending fluid

elements �contrary to the descending fluid elements� are dis-
connected from one another. This causes a topological mag-
netic pumping effect, allowing downward transport of the
mean horizontal magnetic field to the bottom of a cell, but
impeding its upward return �4,13,23�.

Turbulence may form inhomogeneous large-scale mag-
netic fields due to turbulent diamagnetic and paramagnetic
effects �see, e.g., �3,24–28��. Inhomogeneous velocity fluc-
tuations lead to a transport of mean magnetic flux from re-
gions with a high intensity of velocity fluctuations. Inhomo-
geneous magnetic fluctuations due to the small-scale dynamo
cause a turbulent paramagnetic velocity; i.e., the magnetic
flux is pushed into regions with a high intensity of magnetic
fluctuations. Other effects are the effective drift velocities of
the mean magnetic field caused by inhomogeneities of the
fluid density �26,27� and pressure �29�. In a nonlinear stage
of the magnetic field evolution, inhomogeneities of the mean
magnetic field contribute to the diamagnetic or paramagnetic
drift velocities depending on the level of magnetic fluctua-
tions due to the small-scale dynamo and level of the mean
magnetic field �30�. The diamagnetic velocity causes a drift
of the magnetic field components from regions with a high
intensity of the mean magnetic field.

The nonlinear drift velocities of the mean magnetic field
in a turbulent convection have been determined in �31�. This
study demonstrates that nonlinear drift velocities are caused
by three kinds of inhomogeneities: i.e., inhomogeneous tur-
bulence, the nonuniform fluid density, and the nonuniform
turbulent heat flux. The nonlinear drift velocities of the mean
magnetic field cause the small-scale magnetic buoyancy and
magnetic pumping effects in the turbulent convection. These
phenomena are different from the large-scale magnetic buoy-
ancy and magnetic pumping effects which are due to the
effect of the mean magnetic field on the large-scale density
stratified fluid flow. The small-scale magnetic buoyancy and
magnetic pumping can be stronger than these large-scale ef-
fects when the mean magnetic field is smaller than the equi-
partition field determined by the turbulent kinetic energy
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�31�. The pumping of magnetic flux in three-dimensional
compressible magnetoconvection has been studied in direct
numerical simulations in �32� by calculating the turbulent
diamagnetic and paramagnetic velocities.

Turbulence may affect also the Lorentz force of the large-
scale magnetic field �see �33–36��. This effect can also form
inhomogeneous magnetic structures. In this study a theoret-
ical approach proposed in �33–36� for a nonconvective tur-
bulence is further developed and applied to investigate the
modification of the large-scale magnetic force by turbulent
convection and to elucidate a mechanism of formation of
inhomogeneous magnetic structures.

This paper is organized as follows. In Sec. II we discuss
the physics of the effect of turbulence on the large-scale
Lorentz force. In Sec. III we formulate the governing equa-
tions, the assumptions, and the procedure of the derivations
of the large-scale effective magnetic force in turbulent con-
vection. In Sec. IV we study magnetic fluctuations and de-
termine the modification of the large-scale effective Lorentz
force by the turbulent convection. In Sec. V we discuss the
formation of large-scale magnetic inhomogeneous structures
in the turbulent convection due to excitation of the large-
scale instability. Finally, we draw conclusions in Sec. VI. In
the Appendix we perform the derivation of the large-scale
effective Lorentz force in the turbulent convection.

II. TURBULENT PRESSURE AND EFFECTIVE MEAN
MAGNETIC PRESSURE

In this section we discuss the physics of the effect of
turbulence on the large-scale Lorentz force. First, let us ex-
amine an isotropic turbulence. The Lorentz force of the
small-scale magnetic fluctuations can be written in the form
Fi

�m�=� j�ij
�m�, where the magnetic stress tensor �ij

�m� is given
by

�ij
�m� = −

�b2�
2

�ij + �bibj� , �1�

b are the magnetic fluctuations, and �ij is the Kronecker
tensor. Hereafter we omit the magnetic permeability of the
fluid � and include �−1/2 in the definition of the magnetic
field. The angular brackets in Eq. �1� denote ensemble aver-
aging. For isotropic turbulence �bibj�=�ij�b2� /3, and the
magnetic stress tensor reads

�ij
�m� = −

�b2�
6

�ij = −
Wm

3
�ij , �2�

where Wm= �b2� /2 is the energy density of the magnetic fluc-
tuations. The magnetic pressure pm is related to the magnetic
stress tensor: �ij

�m�=−pm�ij, where pm=Wm /3. Similarly, in an
isotropic turbulence the Reynolds stresses �uiuj� read �uiuj�
=�ij�u2� /3, and

�ij
�v� = − �0�uiuj� = −

�0�u2�
3

�ij = −
2Wk

3
�ij , �3�

where u are the velocity fluctuations, Wk=�0�u2� /2 is the
kinetic energy density of the velocity fluctuations, and �0 is

the fluid density. Equation �3� yields the hydrodynamic pres-
sure pv=2Wk /3, where �ij

�v�=−pv�ij. Therefore, the equation
of state for the isotropic turbulence is given by

pT =
1

3
Wm +

2

3
Wk �4�

�see also �37,38��, where pT is the total �hydrodynamic plus
magnetic� turbulent pressure. Similarly, the equation of state
for an anisotropic turbulence reads

pT =
2

3�2 + AN�
Wm +

4 + 3AN

3�2 + AN�
Wk, �5�

where AN= �2/3���u�
2 � / �uz

2�−2� is the degree of anisotropy
of the turbulent velocity field u=u�+uze. For an isotropic
three-dimensional turbulence �u�

2 �=2�uz
2� and the parameter

AN=0, while for a two-dimensional turbulence �uz
2�=0 and

the degree of anisotropy AN→�. Here e is the vertical unit
vector perpendicular to the plane of the two-dimensional tur-
bulence.

In a two-dimensional turbulence AN→� and the total tur-
bulent pressure pT→Wk. Note that the magnetic pressure in a
two-dimensional turbulence vanishes. Indeed, for isotropic
magnetic fluctuations in a two-dimensional turbulence
�bibj�= �1/2��b2��ij

�2�, and therefore, �ij
�m��−�1/2��b2��ij

�2�

+ �bibj�=0, where �ij
�2�=�ij −eiej.

The total energy density WT=Wk+Wm of the homoge-
neous turbulence with a mean magnetic field B is determined
by the equation

�WT

�t
= IT −

WT

�0
+ �T�� � B�2 �6�

�see, e.g., �36��, where �0 is the correlation time of the tur-
bulent velocity field in the maximum scale l0 of turbulent
motions, IT is the energy source of turbulence, �T is the
turbulent magnetic diffusion, and the mean magnetic field B
is given �prescribed�. The second term WT /�0 on the right-
hand side of Eq. �6� determines the dissipation of the turbu-
lent energy. For a given time-independent source of turbu-
lence IT the solution of Eq. �6� is given by

WT = �0�IT + �T�� � B�2��1 − exp	−
t

�0

� + W̃T exp	−

t

�0

 ,

�7�

where W̃T=WT�t=0�. For instance, a time-independent
source of the turbulence exists in the Sun. The mean nonuni-
form magnetic field causes an additional energy source of
turbulence, IN=�T���B�2. The ratio IN / IT of these two
sources of turbulence is of the order of

IN

IT
� 	 l0

LB

2 B2

�0�u2��0� � 1, �8�

where LB is the characteristic scale of the spatial variations
of the mean magnetic field. Since l0�LB and B2��0�u2��0�,
we can neglect the small magnetic source IN of the turbu-
lence. Thus, for t��0 the total energy density of the turbu-
lence reaches a steady state WT=const=�0IT. Therefore, the
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total energy density WT of the homogeneous turbulence is
conserved �the dissipation is compensated by a supply of
energy�; i.e.,

Wk + Wm = const. �9�

A more rigorous derivation of Eq. �9� is given in the Appen-
dix �see Eq. �A16��. Equation �9� implies that the uniform
large-scale magnetic field performs no work on the turbu-
lence. It can only redistribute the energy between hydrody-
namic and magnetic fluctuations.

Combining Eqs. �4� and �9� we can express the change of
turbulent pressure, �pT, in terms of the change of the mag-
netic energy density, �Wm, for an isotropic turbulence, �pT
=−�1/3��Wm �see �33,34,36��. Therefore, the turbulent pres-
sure is reduced when magnetic fluctuations are generated
��Wm	0�. Similarly, for an anisotropic turbulence, the gen-
eration of magnetic fluctuations reduces the turbulent pres-
sure; i.e.,

�pT = −
2 + 3AN

3�2 + AN�
�Wm.

The total turbulent pressure is decreased also by the tan-
gling of the large-scale mean magnetic field B by the veloc-
ity fluctuations �see, e.g., �1–4�, and references therein�. The
mean magnetic field generates additional small-scale mag-
netic fluctuations due to a tangling of the mean magnetic
field by velocity fluctuations. For a small energy of the mean
magnetic field, B2��0�u2�, the energy of magnetic fluctua-
tions, �b2�− �b2��0�, caused by a tangling of the mean mag-
netic field can be written in the form

�b2� − �b2��0� = am�B,Rm�B2 + O„B4/��0�u2��2
… , �10�

where �b2��0� are the magnetic fluctuations with a zero mean
magnetic field generated by a small-scale dynamo. Equation
�10� allows us to determine the variation of the magnetic
energy �Wm. Therefore, the total turbulent pressure reads

pT = pT
�0� − qp

B2

2
, �11�

where pT
�0� is the turbulent pressure in a flow with a zero

mean magnetic field and the coefficient qp
am�B ,Rm�. Here
we neglect the small terms 
O(B4 / ��0�u2��2). The coeffi-
cient qp is positive when magnetic fluctuations are generated,
and it is negative when they are damped. The total pressure
is

Ptot � Pk + pT + PB�B� = Pk + pT
�0� + �1 − qp�

B2

2
, �12�

where Pk is the mean fluid pressure and PB�B�=B2 /2 is the
magnetic pressure of the mean magnetic field. Now we ex-
amine the part of the total pressure Ptot that depends on the
mean magnetic field B; i.e., we consider

Pm�B� = PB�B� − qp�B�
B2

2
= �1 − qp�

B2

2
�13�

�see �33,34,36��, where now Ptot= P+ Pm�B� and P= Pk

+ pT
�0�. The pressure Pm�B� is called the effective �or com-

bined� mean magnetic pressure. Note that both the hydrody-
namic and magnetic fluctuations contribute to the combined
mean magnetic pressure. However, the gain in the turbulent
magnetic pressure pm is not as large as the reduction of the
turbulent hydrodynamic pressure pv by the mean magnetic
field B. This is due to different coefficients multiplying by
Wm and Wk in the equation of state �4� �see also Eq. �5��.
Therefore, this effect is caused by a negative contribution of
the turbulence to the combined mean magnetic pressure.

We consider the case when P�B2 /2, so that the total
pressure Ptot is always positive. Only the combined mean
magnetic pressure Pm�B� may be negative when qp	1,
while the pressure PB�B� as well as the values Pk, pv, pm, and
pT are always positive. When a mean magnetic field B is
superimposed on an isotropic turbulence, the isotropy breaks
down. Nevertheless Eq. �13� remains valid, while the rela-
tionship between qp and am may change.

In this section we use the conservation law �9� for the
total turbulent energy only for elucidation of the principle of
the effect, but we have not employed Eq. �9� to develop the
theory of this effect �see for details �34–36��. In particular,
the high-order closure procedure �34,36� and the renormal-
ization procedure �35� have been used for the investigation
of the nonconvective turbulence at large magnetic and hydro-
dynamic Reynolds numbers.

In this study we investigate the modification of the large-
scale magnetic force by turbulent convection. We demon-
strate that turbulent convection enhances modification of the
effective magnetic force and causes a large-scale instability.
This results in the formation of large-scale inhomogeneous
magnetic structures.

III. GOVERNING EQUATIONS AND THE PROCEDURE
OF DERIVATION

In order to study magnetic fluctuations and the modifica-
tion of the large-scale Lorentz force by turbulent convection
we use a mean-field approach in which the magnetic and
velocity fields and entropy are decomposed into the mean
and fluctuating parts, where the fluctuating parts have zero
mean values. We assume that there exists a separation of
scales; i.e., the maximum scale of turbulent motions l0 is
much smaller than the characteristic scale LB of the mean
magnetic field variations. We apply here an approach which
is described in �30,31,39� and outlined below.

We consider a nonrotating turbulent convection with large
Rayleigh numbers and large magnetic Reynolds numbers.
We use the equations for fluctuations of the fluid velocity u,
entropy s�, and the magnetic field b. The equations for ve-
locity and entropy fluctuations are rewritten in the new vari-
ables v=��0u and s=��0s�. We also use the new variable
H=B /��0 for the mean magnetic field B. On the other hand,
we do not use a new variable for magnetic fluctuations b.
Equations for fluctuations of fluid velocity, entropy, and
magnetic field are applied in the anelastic approximation,
which is a combination of the Boussinesq approximation and
the condition div ��0u�=0. The turbulent convection is re-
garded as a small deviation from a well-mixed adiabatic ref-
erence state. This implies that we consider the hydrostatic
nearly isentropic basic reference state.
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Using these equations for fluctuations of fluid velocity,
entropy, and magnetic field written in a Fourier space we
derive equations for the two-point second-order correlation
functions of the velocity fluctuations �viv j�, the magnetic
fluctuations �bibj�, the entropy fluctuations �ss�, the cross
helicity �biv j�, and the turbulent heat flux �svi� and �sbi�. The
equations for these correlation functions are given by Eqs.
�A4�–�A9� in the Appendix. We split the tensor �bibj� of
magnetic fluctuations into nonhelical, hij, and helical, hij

�H�,
parts. The helical part hij

�H� depends on the magnetic helicity
�see below�. We also split all second-order correlation func-
tions M�II� into symmetric and antisymmetric parts with re-
spect to the wave vector k—e.g., hij =hij

�s�+hij
�a�, where the

tensor hij
�s�= �hij�k�+hij�−k�� /2 describes the symmetric part

of the tensor and hij
�a�= �hij�k�−hij�−k�� /2 determines the an-

tisymmetric part of the tensor.
The second-moment equations include the first-order spa-

tial differential operators N̂ applied to the third-order mo-
ments M�III�. A problem arises as to how to close the equa-
tions for the second moments—i.e., how to express the third-

order terms N̂M�III� through the second moments M�II� �see,
e.g., �40–42��. We will use the spectral � approximation
which postulates that the deviations of the third-moment

terms N̂M�III��k� from the contributions to these terms af-
forded by the background turbulent convection,

N̂M�III,0��k�, are expressed through similar deviations of the
second moments, M�II��k�−M�II,0��k�:

N̂M�III��k� − N̂M�III,0��k� = −
1

��k�
�M�II��k� − M�II,0��k��

�14�

�see, e.g., �30,34,36,40,43��, where ��k� is the scale-depen-
dent relaxation time. In the background turbulent convection
the mean magnetic field is zero. The � approximation is ap-
plied for large hydrodynamic and magnetic Reynolds num-
bers and large Rayleigh numbers. In this case there is only
one relaxation time � which can be identified with the corre-
lation time of the turbulent velocity field. A justification of
the � approximation for different situations has been per-
formed in numerical simulations and theoretical studies in
�44–49� �see also review �8��. The � approximation is also
discussed in Sec. VI.

We apply the spectral � approximation only for the non-
helical part hij of the tensor of magnetic fluctuations. The
helical part hij

�H� depends on the magnetic helicity, and it is
determined by the dynamic equation which follows from the
magnetic helicity conservation arguments �see, e.g., �50–56�
and the review �8�, and references therein�. The characteristic
time of evolution of the nonhelical part of the tensor hij is of
the order of the turbulent time �0= l0 /u0, while the relaxation
time of the helical part of the tensor hij

�H� of magnetic fluc-
tuations is of the order of �0 Rm, where Rm= l0u0 /� is the
magnetic Reynolds number, u0 is the characteristic turbulent
velocity in the maximum scale of turbulent motions l0, and �
is the magnetic diffusivity due to electrical conductivity of
the fluid.

In this study we consider an intermediate nonlinearity
which implies that the mean magnetic field is not strong
enough in order to affect the correlation time of the turbulent
velocity field. The theory can be expanded to the case of a
very strong mean magnetic field after taking into account a
dependence of the correlation time of the turbulent velocity
field on the mean magnetic field.

We assume that the characteristic time of variation of the
mean magnetic field B is substantially larger than the corre-
lation time ��k� for all turbulence scales. This allows us to
get a stationary solution for the equations for the second-
order moments given by Eqs. �A10�–�A14� in the Appendix.
For the integration in k space of the second moments we
have to specify a model for the background turbulent con-
vection �with a zero mean magnetic field, B=0�. Here we use
the model of the background shear-free turbulent convection
with a given heat flux �see Eqs. �A17�–�A20� in the Appen-
dix�. In this model velocity and magnetic fluctuations are
homogeneous and isotropic.

This procedure allows us to study magnetic fluctuations
with a nonzero mean magnetic field and to investigate the
modification of the large-scale Lorentz force by turbulent
convection �see Sec. IV�.

IV. MAGNETIC FLUCTUATIONS AND LARGE-SCALE
EFFECTIVE LORENTZ FORCE

A. Magnetic fluctuations with a nonzero mean magnetic field

Let us study magnetic fluctuations with a nonzero mean
magnetic field using the approach outlined in Sec. III. Inte-
gration in k space in Eq. �A11� yields an analytical expres-
sion for the energy of magnetic fluctuations, �b2� �see Eq.
�A21� in the Appendix�. The energy of magnetic fluctuations
versus the mean magnetic field B /Beq is shown in Fig. 1,
where Beq is the equipartition mean magnetic field deter-
mined by the turbulent kinetic energy. The asymptotic for-
mulas for �b2� are given below. In particular, for a very weak
mean magnetic field, B�Beq/4Rm1/4, the energy of mag-
netic fluctuations is given by

�b2� = �b2��0� +
4

3
��v2��0� − �b2��0��B2 ln Rm

+
8a*

5
�v2��0�B2�2 − 3 cos2�� , �15�

where the quantities with the superscript �0� correspond to
the background turbulent convection �with a zero mean mag-
netic field�, and �v2��0� and �b2��0� are the velocity and mag-
netic fluctuations in the background turbulent convection.
Here the magnetic field B is measured in units of Beq and �
is the angle between the vertical unit vector e and the mean
magnetic field B. The unit vector e is directed opposite to the
gravity field. The parameter a* characterizing the turbulent
convection is determined by the budget equation for the total
energy, and it is given by
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a*
−1 = 1 +

�T��U�2 + �T��B�2/�0

gF*
,

where �T is the turbulent viscosity, U is the mean fluid ve-
locity, and F*= �uzs���0� is the vertical heat flux in the back-
ground turbulent convection. The energy of magnetic fluc-
tuations for a very weak mean magnetic field,
B�Beq/4Rm1/4, depends on the magnetic Reynolds number:
�b2�
 ln Rm. This is an indication of that the spectrum of
magnetic fluctuations is k−1 in the limit of a small yet finite
mean magnetic field �34–36,57� �see also discussion in �58��.
When the mean magnetic field Beq/4Rm1/4�B�Beq/4, the
energy of magnetic fluctuations is given by

�b2� = �b2��0� +
16

3
��v2��0� − �b2��0��B2�ln�4B��

+
8a*

5
�v2��0�B2�2 + 3 cos2�� , �16�

and for B�Beq/4 it is given by

�b2� =
1

2
��v2��0� + �b2��0�� −




24B
��v2��0� − �b2��0��

+

a*

40B
�v2��0��1 − 3 cos2�� . �17�

The normalized energy of magnetic fluctuations �b2� /B2 ver-
sus the mean magnetic field is shown in Fig. 2 for a noncon-
vective and convective turbulence. Inspection of Figs. 1 and
2 shows that turbulent convection increases the level of mag-
netic fluctuations in comparison with the nonconvective tur-
bulence. It follows from Eqs. �15�–�17� that in the case of
Alfvénic equipartition, �u2��0�= �b2��0�, a deviation of the en-
ergy of magnetic fluctuations from the background level is
caused by the turbulent convection.

B. Large-scale effective Lorentz force

The effective �combined� mean magnetic force, which
takes into account the effect of turbulence on magnetic force,
can be written in the form Fi

eff=� j�ij
eff, where the effective

stress tensor �ij
eff reads
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FIG. 1. �a� The energy of magnetic fluctuations �b2� versus the
mean magnetic field B /Beq for a nonconvective turbulence �a*=0�,
Rm=106, and different values of the parameter ���b2��0� / �u2��0�:
�=0 �solid line�, �=0.3 �dashed line�, and �=0.5 �thin dashed line�.
�b� The energy of magnetic fluctuations �b2� versus the horizontal
�dashed line� and vertical �thin solid line� mean magnetic field for a
convective turbulence �a*=0.7� and for Rm=106, �=0.
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FIG. 2. The normalized energy of magnetic fluctuations �b2� /B2

versus the mean magnetic field B /Beq for a nonconvective turbu-
lence �a*=0� �solid line� and for a convective turbulence �a*=0.7�
with the horizontal �dashed line� and vertical �thin solid line� mean
magnetic field, where the cases B�Beq �a� and B
Beq �b� are
shown. Here Rm=106 and �=0.
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�ij
eff = −

1

2
B2�ij + BiBj −

1

2
�b2��ij + �bibj� − �0�uiuj� .

�18�

The last three terms on the right-hand side �RHS� of Eq. �18�
determine the contribution of velocity and magnetic fluctua-
tions to the effective �combined� mean magnetic force. Using
Eqs. �A10� and �A11� for �uiuj� and �bibj� after the integra-
tion in k space we arrive at the expression for the effective
stress tensor:

�ij
eff = − �1 − qp�B��

B2

2
�ij + �1 − qs�B��BiBj + a*�ij

A�B� ,

�19�

where the analytical expressions for the nonlinear coeffi-
cients qp�B� and qs�B� are given by Eqs. �A23� and �A24� in
the Appendix, and the tensor �ij

A�B� is the anisotropic contri-
bution caused by turbulent convection to the effective stress
tensor �which is given by Eq. �A22� in the Appendix�.

The nonlinear coefficients qp�B� and qs�B� in Eq. �19� for
the effective stress tensor are shown in Figs. 3�a� and 4�a� for
different values of the magnetic Reynolds numbers. The non-
linear coefficients qp�B� and qs�B� increase with the mag-

netic Reynolds numbers in the range of weak mean magnetic
fields �B�0.1Beq�. On the other hand, the turbulent convec-
tion reduces these nonlinear coefficients in comparison with
the case of a nonconvective turbulence. The asymptotic for-
mulas for the nonlinear coefficients qp�B� and qs�B� are
given below. In particular, for a very weak mean magnetic
field, B�Beq/4Rm1/4, the nonlinear coefficients qp�B� and
qs�B� are given by

qp�B� =
4

5
�1 − ���ln Rm +

4

45
� −

8a*

35
�11 − 13 cos2�� ,

�20�

qs�B� =
8

15
�1 − ���ln Rm +

2

15
� −

24a*

35
, �21�

where ���b2��0� / �u2��0�. For Beq/4Rm1/4�B�Beq/4 these
nonlinear coefficients are given by

qp�B� =
16

25
�1 − ���5�ln�4B�� + 1 + 32B2�

−
8a*

35
�11 − 13 cos2�� , �22�
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FIG. 3. �a� The nonlinear coefficient qp�B� for different values
of the magnetic Reynolds numbers Rm: Rm=103 �thin solid line�,
Rm=106 �dash-dotted line�, and Rm=1010 �thick solid line� for a
nonconvective turbulence �a*=0� and at Rm=106 �dashed line� for
a convective turbulence �a*=0.7�. �b� The effective �combined�
mean magnetic pressure Pm�B�= �1−qp�B2 /Beq

2 at Rm=106 for a
nonconvective turbulence �a*=0� �thick solid line� and for a con-
vective turbulence �a*=0.7� for the horizontal field �dashed line�
and for the vertical field �thin solid line�.
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the magnetic Reynolds numbers Rm: Rm=103 �thin solid line�,
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a nonconvective turbulence a*=0 and at Rm=106 �dashed line� for
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magnetic tension �B�B�= �1−qs�B2 /Beq
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vertical field �thin solid�.
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qs�B� =
32

15
�1 − ����ln�4B�� +

1

30
+ 12B2� −

24a*

35
, �23�

and for B�Beq/4 they are given by

qp�B� =
1

6B2 �1 − �� +

a*

80B
�1 − 5 cos2�� , �24�

qs�B� =



48B3 �1 − �� +
3
a*

160B
�1 − 3 cos2�� . �25�

The effective �combined� mean magnetic pressure Pm�B�
= �1−qp�B2 /Beq

2 is shown in Fig. 3�b�. Inspection of Fig. 3�b�
shows that the combined mean magnetic pressure Pm�B�
= �1−qp�B2 /Beq

2 vanishes at some value of the mean mag-
netic field B=BP
�0.2−0.3�Beq. This causes the following
effect. Let us consider an isolated tube of magnetic field
lines. When B=BP, the combined mean magnetic pressure
Pm�B�=0, the fluid pressure, and fluid density inside and
outside the isolated tube are the same, and therefore, this
isolated tube is in equilibrium. When B	BP, the combined
mean magnetic pressure Pm�B�	0; the fluid pressure and
fluid density inside the isolated tube are smaller than the
fluid pressure and fluid density outside the isolated tube. This
results in an upward floating of the isolated tube. On the
other hand, when B�BP, the combined mean magnetic pres-
sure Pm�B��0, the fluid pressure, and fluid density inside
the isolated tube are larger than the fluid pressure and fluid
density outside the isolated tube. Therefore, this isolated
magnetic tube flows down.

The effective �combined� mean magnetic tension �B�B�
= �1−qs�B2 /Beq

2 is shown in Fig. 4�b�. The combined mean
magnetic tension �B�B� vanishes at some value of the mean
magnetic field B=BS
0.2Beq �see Fig. 4�b��. When B	BS,
the combined mean magnetic tension �B�B�	0, and
Alfvénic and magnetosound waves can propagate in the iso-
lated tubes. On the other hand, when B�BS, the combined
mean magnetic tension �B�B��0, and Alfvénic and magne-
tosound waves cannot propagate in the isolated tubes.

The anisotropic contributions �ij
A�B� to the effective stress

tensor determine the anisotropic mean magnetic tension due
to the turbulent convection. The tensor �ij

A�B� is character-
ized by the function �A�B�=�ij

A�B�eij =qeB
2 /Beq

2 . The nonlin-
ear coefficient qe�B� and the anisotropic mean magnetic ten-
sion �A�B� are shown in Figs. 5�a� and 5�b�. In the next
section we show that the anisotropic mean magnetic tension
�A�B� caused by the turbulent convection strongly affects the
dynamics of the horizontal mean magnetic field.

In this section we demonstrate that turbulent convection
strongly modifies the large-scale magnetic force. Let us dis-
cuss a possibility for a study of the effect of turbulence on
the effective �combined� mean Lorentz force in the direct
numerical simulations. Consider the mean magnetic field
which is directed along the x axis; i.e., B=Bex. Let us intro-
duce the functions �x�B� and �y�B�,

�x�B� = −
1

2
�b2� + �bx

2� − �0�ux
2� , �26�

�y�B� = −
1

2
�b2� + �by

2� − �0�uy
2� , �27�

which allow us to determine the coefficients qp�B� and qs�B�
in the effective stress tensor:

qp�B� =
2

B2 ��y�B� − �y�B = 0�� , �28�

qs�B� =
1

2
qp�B� −

1

B2 ��x�B� − �x�B = 0�� . �29�

Therefore, Eqs. �26�–�29� allow us to determine the effective
�combined� mean magnetic force in the direct numerical
simulations.

V. LARGE-SCALE INSTABILITY

The modification of the mean magnetic force by turbulent
convection causes a large-scale instability. In this study we
investigate the large-scale instability of continuous magnetic
fields in small-scale turbulent convection and we do not con-
sider buoyancy of the discrete magnetic flux tubes. In order
to study the large-scale instability in a small-scale turbulent
convection we use the equation of motion �with the effective
magnetic force Fi

eff=� j�ij
eff determined in Sec. IV�, the in-

duction equation, and the equation for the evolution of the
mean entropy �see Eqs. �A25�–�A27� in the Appendix�. We
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FIG. 5. �a� The nonlinear coefficient qe�B� versus the mean
magnetic field and �b� the anisotropic mean magnetic tension
�A�B�=�ij

Aeij =qeB
2 /Beq

2 for a convective turbulence �a*=1� with
the horizontal mean magnetic field �solid line� and vertical mean
magnetic field �dashed line�.
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estimate the growth rate � of this instability and the frequen-
cies � of generated modes, neglecting turbulent dissipative
processes for simplicity’s sake. We also neglect a very small
Brunt-Väisälä frequency based on the gradient of the mean
entropy. We seek a solution of these equations in the form

exp��t+ i�t− iK ·R�.

A. Horizontal mean magnetic field

First, we study the large-scale instability of a horizontal
mean magnetic field that is perpendicular to the gravity field.
Let the z axis of a Cartesian coordinate system be directed
opposite to the gravitational field, and let the x axis lie along
the mean magnetic field B. Consider the case Kx=0, which
corresponds to the interchange mode. The dispersive relation
for the instability reads

�̂2 = 	KyCA

KL�

2

�Q + iD� , �30�

where �̂=�+ i�, L� is the density stratification length, LB is
the characteristic scale of the mean magnetic field variations,
CA=B /��0 is the Alfvén speed,

Q = �1 − qp�y� − yqp��y� + a*�y�A��y�	1 − 2
L�

LB



+
1

2
�A��y�	1 − 4

L�

LB

��

y=B2
	 L�

LB
− 1
 ,

D = a*KzL���A��y��y=B2	 L�

LB
− 1
 ,

�A�y�=qe�y�y, �A��y�=d�A�y� /dy, B is measured in units of
the equipartition field Beq=��0u0, and K=�Kz

2+Ky
2.

When Q�0 the growth rate of perturbations with fre-
quency

� =
Ky

�2K
	CA

L�

D��Q2 + D2 + Q�−1/2 �31�

is given by

� =
Ky

�2K
	CA

L�

��Q2 + D2 + Q�1/2. �32�

When Q�0 the growth rate of perturbations with fre-
quency

� = − sgn�D�
Ky

�2K
	CA

L�

��Q2 + D2 + �Q��1/2 �33�

is given by

� =
Ky

�2K
	CA

L�

�D���Q2 + D2 + �Q��−1/2. �34�

Therefore, in small-scale turbulent convection this large-
scale instability causes excitation of oscillatory modes with
growing amplitude. In a nonconvective turbulence �a*=0�
this large-scale instability is aperiodic.

The growth rate � of the large-scale instability and fre-
quency � of the generated modes for the horizontal mean

magnetic field versus B /Beq for different values Kz and
L� /LB for a nonconvective and convective turbulence are
shown in Figs. 6 and 7. Here � and � are measured in units
of t*

−1, where t*= �L� /u0��K /Ky�. In turbulent convection
there are two ranges for the large-scale instability of the hori-
zontal mean magnetic field �when Q	0 and Q�0�, while in
a nonconvective turbulence �a*=0� there is only one range
for the instability. The first range for the instability is related
to the negative contribution of turbulence to the effective
magnetic pressure for the case of L��LB, while the second
range is mainly caused by the anisotropic contribution �A�B�
due to turbulent convection.

In the absence of turbulence �small Reynolds numbers� or
turbulent convection �small Rayleigh numbers� the coeffi-
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FIG. 6. The growth rate �a� of the large-scale instability and
frequency of the generated modes �b� for the horizontal mean mag-
netic field with L� /LB=0.2 versus B /Beq for different values
Kz : KzL�=3 �dash-dotted line� and KzL�=5 �solid line� for turbu-
lent convection with a*=1 �thick curves� and a*=0.3 �thin curves�
and for a nonconvective turbulence a*=0 �dashed line�. Here �=0
and Rm=106.
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FIG. 7. The growth rate �a� of the large-scale instability and
frequency of the generated modes �b� for the horizontal mean mag-
netic field with L� /LB=10 versus B /Beq for different values
Kz : KzL�=3 �dash-dotted line� and KzL�=5 �solid line� for turbu-
lent convection with a*=1 �thick curves� and a*=0.3 �thin curves�
and for a nonconvective turbulence a*=0 �dashed line�. Here �=0
and Rm=106.
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cients Q=L� /LB−1, D=0, and the criterion for the large-
scale instability, L�	LB, coincides with that of the Parker’s
magnetic buoyancy instability �2,9,10�. In this case, �=0;
i.e., the oscillatory modes with growing amplitude are not
excited. On the other hand, in a developed turbulent convec-
tion the effective �combined� magnetic pressure becomes
negative and the Parker’s magnetic buoyancy instability can-
not be excited. However, the instability due to the modifica-
tion of the mean magnetic force by small-scale turbulent
convection can be excited even when L��LB—i.e., even in a
uniform mean magnetic field.

The instability mechanism due to the modification of the
mean magnetic force consists in the following. An isolated
tube of magnetic field lines moving upwards turns out to be
lighter than the surrounding plasma. This is due to the fact
that the decrease of the magnetic field in the isolated tube
caused by its expansion is accompanied by an increase of the
effective magnetic pressure inside the tube. Since the effec-
tive �combined� magnetic pressure is negative, this leads a
decrease of the density inside the tube. The arising buoyant
force results in the upwards floating of the isolated tube; i.e.,
it causes excitation of the large-scale instability �see also
discussion in �36��.

B. Vertical uniform mean magnetic field

Consider a vertical uniform mean magnetic field; i.e., the
magnetic field is directed along z axis. The growth rate of
perturbations is given by

� = CAKz�qs�y� − 1 − 2yqs��y�
K�

2

K2 �
y=B2

1/2

, �35�

where K� is the component of the wave vector that is per-
pendicular to the z axis and K=�Kz

2+K�
2 . It follows from Eq.

�35� that the large-scale instability of the vertical uniform
mean magnetic field is caused by modification of the mean
magnetic tension by small-scale turbulent convection. When
qs	1 �i.e., when B�0.2Beq� the instability occurs for an
arbitrary value K�, while for qs�1 the necessary condition
for the instability reads K�	K��, where

� = � 1 − qs�y�
2y�qs��y���y=B2

,

and we take into account that qs��y��0. The growth rate of
the instability is reduced by the turbulent dissipation 
�T K2.
The maximum growth rate �max at a fixed value of the wave
number K �i.e., at a fixed value of the turbulent dissipation�
is attained at Kz=Km=K ��1−�� /2�1/2, and it is given by

�max = KCA�1 − ��� y�qs��y��
2

�
y=B2

1/2

, �36�

where ��1. The maximum growth rate �max of the instabil-
ity for the vertical uniform mean magnetic field versus B /Beq
is plotted in Fig. 8. Here �max is measured in units of u0K.
The value of �max is larger for a nonconvective turbulence,
but the range for the instability is wider for the turbulent
convection �see Fig. 8�.

VI. DISCUSSION

In the present study we investigate magnetic fluctuations
generated by a tangling of the mean magnetic field in a de-
veloped turbulent convection. When the mean magnetic field
B�Beq/4Rm1/4, the energy of magnetic fluctuations de-
pends on the magnetic Reynolds number. We study the modi-
fication of the large-scale magnetic force by turbulent con-
vection. We show that the generation of magnetic
fluctuations in a turbulent convection results in a decrease of
the total turbulent pressure and may cause the formation of
large-scale magnetic structures even in an originally uniform
mean magnetic field. This phenomenon is due to a negative
contribution of the turbulent convection to the effective mean
magnetic force.

The large-scale instability causes the formation of inho-
mogeneous magnetic structures. The energy for these pro-
cesses is supplied by the small-scale turbulent convection,
and this effect can develop even in an initially uniform mag-
netic field. In contrast, the Parker’s magnetic buoyancy in-
stability is excited when the density stratification scale is
larger than the characteristic scale of the mean magnetic field
variations �see �2,9,10��. The free energy in the Parker’s
magnetic buoyancy instability is drawn from the gravita-
tional field. The characteristic time of the large-scale insta-
bility is of the order of the Alfvén time based on the large-
scale magnetic field.

We study an initial stage of formation of large-scale mag-
netic structures for horizontal and vertical mean magnetic
fields relative to the vertical direction of the gravity field. In
turbulent convection there are two ranges for the large-scale
instability of the horizontal mean magnetic field. The first
range for the instability is related to the negative contribution
of turbulence to the effective magnetic pressure for the case
of L��LB, while the second range for the instability is
mainly caused by the anisotropic contribution of the turbu-
lent convection to the effective magnetic force. The large-
scale instability of the vertical uniform mean magnetic field
is caused by modification of the mean magnetic tension by
small-scale turbulent convection. The discussed effects in the
present study might be useful for understanding of the origin
of sunspot formation.

Since in the present study we neglect the very small
Brunt-Väisälä frequency based on the gradient of the mean
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FIG. 8. The maximum growth rate of the large-scale instability
for the vertical mean magnetic field versus B /Beq for turbulent con-
vection with a*=1 �solid line� and for a nonconvective turbulence
a*=0 �dashed line�. Here �=0 and Rm=106.
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entropy, we do not investigate the large-scale dynamics of
the mean entropy. This problem was addressed in �59�
whereby the modification of the mean magnetic force by the
turbulent convection was not taken into account.

In order to study magnetic fluctuations and the modifica-
tion of the large-scale Lorentz force by turbulent convection
we apply the spectral � approximation �see Sec. III�. The �
approach is a universal tool in turbulent transport that allows
one to obtain closed results and compare them with the re-
sults of laboratory experiments, observations, and numerical
simulations. The � approximation reproduces many well-
known phenomena found by other methods in the turbulent
transport of particles and magnetic fields, in turbulent con-
vection, and in stably stratified turbulent flows �see below�.

In turbulent transport, the � approximation yields correct
formulas for turbulent diffusion, turbulent thermal diffusion,
and turbulent barodiffusion �see, e.g., �60,61��. The phenom-
enon of turbulent thermal diffusion �a nondiffusive streaming
of particles in the direction of the mean heat flux� has been
predicted using stochastic calculus �the path integral ap-
proach� and the � approximation. This phenomenon has been
already detected in laboratory experiments in oscillating grid
turbulence �62� and in a multiple-fan turbulence generator
�63� in stably and unstably stratified fluid flows. The experi-
mental results obtained in �62,62� are in a good agreement
with the theoretical studies performed by means of different
approaches �see �60,64��.

The � approximation reproduces the well-known k−7/3

spectrum of anisotropic velocity fluctuations in a sheared
turbulence �see �65��. This spectrum was found previously in
analytical, numerical, and laboratory studies and was ob-
served in atmospheric turbulence �see, e.g., �66��. In the tur-
bulent boundary layer problems, the � approximation yields
correct expressions for turbulent viscosity, turbulent thermal
conductivity, and the classical heat flux. This approach also
describes the counterwind heat flux and the Deardorff’s heat
flux in convective boundary layers �see �65��. These phe-
nomena have been studied previously using different ap-
proaches �see, e.g., �41,42,67��.

The theory of turbulent convection �65� based on the �
approximation explains the recently discovered hysteresis
phenomenon in laboratory turbulent convection �68�. The re-
sults obtained using the � approximation allow us also to
explain the most pronounced features of typical semiorga-
nized coherent structures observed in the atmospheric con-
vective boundary layers �“cloud cells” and “cloud streets”�
�69�. The theory �65� based on the � approximation predicts
realistic values of the following parameters: the aspect ratios
of structures, the ratios of the minimum size of semiorga-
nized structures to the maximum scale of turbulent motions,
and the characteristic lifetime of semiorganized structures.
The theory �65� also predicts excitation of convective-shear
waves propagating perpendicular to the convective rolls
�“cloud streets”�. These waves have been observed in atmo-
spheric convective boundary layers with cloud streets �69�.

A theory �70� for stably stratified atmospheric turbulent
flows based on the � approximation and the budget equations
for the key second moments, turbulent kinetic and potential
energies, and vertical turbulent fluxes of momentum and
buoyancy is in good agrement with data from atmospheric

and laboratory experiments, direct numerical simulations,
and large-eddy simulations �see the detailed comparison in
Sec. V of �70��.

A detailed verification of the � approximation in direct
numerical simulations of turbulent transport of passive sca-
lars has been recently performed in �46�. In particular, the
results on turbulent transport of passive scalars obtained us-
ing direct numerical simulations of homogeneous isotropic
turbulence have been compared with those obtained using a
closure model based on the � approximation. The numerical
and analytical results are in good agreement.

In magnetohydrodynamics, the � approximation repro-
duces many well-known phenomena found by different
methods: e.g., the � approximation yields correct formulas
for the � effect �3,28,71,72�, the turbulent diamagnetic and
paramagnetic velocities �24–28�, the turbulent magnetic dif-
fusion �3,25,28,30,73�, the ��J and � effects �3,28�, and
the shear-current effect �30,39,74�.

Generation of the large-scale magnetic field in a nonheli-
cal turbulence with an imposed mean velocity shear has been
recently investigated in �75� using direct numerical simula-
tions. The results of these numerical simulations are in good
agreement with the theoretical predictions based on the �
approximation �see �30,39,74�� and with the numerical solu-
tions of the nonlinear dynamo equations performed in
�76,77� �see the detailed comparison in �39��.

The validity of the � approximation has been tested in the
context of dynamo theory in direct numerical simulations in
�47�. The � effect in mean-field dynamo theory becomes
proportional to a relaxation time scale multiplied by the dif-
ference between kinetic and current helicities. It is shown in
�47� that the value of the relaxation time is positive and, in
units of the turnover time at the forcing wave number, it is of
the order of unity. Kinetic and current helicities are shown in
�47� to be dominated by large-scale properties of the flow.
Recent studies in �48� of the nonlinear � effect showed that
in the limit of small magnetic and hydrodynamic Reynolds
numbers, both the second-order correlation approximation
�or first-order smoothing approximation� and the � approxi-
mation give identical results. This is also supported by simu-
lations �49� of isotropically forced helical turbulence
whereby the contributions to kinetic and magnetic � effects
are computed. The study performed in �49� provides an extra
piece of evidence that the � approximation is a usable for-
malism for describing simulation data and for predicting the
behavior in situations that are not yet accessible to direct
numerical simulations.
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APPENDIX: VELOCITY AND MAGNETIC
FLUCTUATIONS IN TURBULENT CONVECTION

In order to study the velocity and magnetic fluctuations
with a nonzero mean magnetic field and to derive the effec-
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tive stress tensor in the turbulent convection, we use a mean-
field approach in which the magnetic and velocity fields and
entropy are decomposed into the mean and fluctuating parts,
where the fluctuating parts have zero mean values. The equa-
tions for fluctuations of the fluid velocity, entropy, and the
magnetic field are given by

1
��0

�v�x,t�
�t

= − �	 p

�0

 −

g
��0

s +
1

��0
��b · ��H + �H · ��b

+
��

2
�2e�b · H� − �b · e�H�� + vN, �A1�

�b�x,t�
�t

= �H · ��v − �v · ��H

+
��

2
�v�H · e� − H�v · e�� + bN, �A2�

�s�x,t�
�t

= −
�b

2

g
�v · e� + sN, �A3�

where we used new variables �v, s, H� for fluctuating fields
v=��0u and s=��0s� and also for the mean field H
=B /��0. Here B is the mean magnetic field, �0 is the fluid
density, e is the vertical unit vector directed opposite to the
gravity field, �b

2=−g ·�S is the Brunt-Väisälä frequency, S is
the mean entropy, g is the acceleration of gravity, u, b, and s�
are fluctuations of velocity, magnetic field, and entropy �we
have not used new variables for magnetic fluctuations�, vN,
bN, and sN are nonlinear terms which include the molecular
viscous and diffusion terms, p= p�+��0�H ·b� are the fluc-
tuations of total pressure, and p� are the fluctuations of fluid
pressure.

Equations �A1�–�A3� for fluctuations of fluid velocity, en-
tropy, and magnetic field are written in the anelastic approxi-
mation, which is a combination of the Boussinesq approxi-
mation and the condition div ��0u�=0. The equation div u
=���u ·e� in the new variables reads div v= ��� /2��v ·e�,
where ��0 /�0=−��e. The quantities with the subscript 0
correspond to the hydrostatic nearly isentropic basic refer-
ence state; i.e., �P0=�0g and g · ���̃P0�−1�P0−�0

−1��0��0,
where �̃ is the specific heat ratio and P0 is the fluid pressure
in the basic reference state. The turbulent convection is re-
garded as a small deviation from a well-mixed adiabatic ref-
erence state.

Using Eqs. �A1�–�A3� and performing the procedure de-
scribed in Sec. III we derive equations for the two-point
second-order correlation functions of the velocity fluctua-
tions f ij = �viv j�, the magnetic fluctuations hij = �bibj�, the en-
tropy fluctuations �= �ss�, the cross-helicity gij = �biv j�, and
the turbulent heat flux Fi= �svi� and Gi= �sbi�. The equations
for these correlation functions are given by

� f ij�k�
�t

= i�k · H��ij + N̂f ij , �A4�

�hij�k�
�t

= − i�k · H��ij + N̂hij , �A5�

�gij�k�
�t

= i�k · H��f ij�k� − hij�k�� + genPjn�k�Gi�− k� + N̂gij ,

�A6�

�Fi�k�
�t

= − i�k · H�Gi�k� + genPin�k���k� + N̂Fi,

�A7�

�Gi�k�
�t

= − i�k · H�Fi�k� + N̂Gi, �A8�

���k�
�t

= −
�b

2

g
Fz�k� + N̂� �A9�

�see for details �31��, where �ij�k�=gij�k�−gji�−k�, N̂f ij

=gen�Pin�k�Fj�k�+ Pjn�k�Fi�−k��+N̂ f̃ i j, and N̂ f̃ i j, N̂hij, N̂gij,

N̂Fi, N̂Gi, and N̂� are the third-order moment terms appear-
ing due to the nonlinear terms. The terms 
Fi in the tensor

N̂f ij can be considered as a stirring force for the turbulent
convection. Note that a stirring force in the Navier-Stokes
turbulence is an external parameter.

We split the tensor of magnetic fluctuations into nonheli-
cal, hij, and helical, hij

�H�, parts. The helical part hij
�H� depends

on the magnetic helicity, and it is determined by the dynamic
equation which follows from the magnetic helicity conserva-
tion arguments. We also split all second-order correlation
functions into symmetric and antisymmetric parts with re-
spect to the wave vector k—e.g., f ij = f ij

�s�+ f ij
�a�, where the

tensor f ij
�s�= �f ij�k�+ f ij�−k�� /2 describes the symmetric part

of the tensor and f ij
�a�= �f ij�k�− f ij�−k�� /2 determines the an-

tisymmetric part of the tensor. We use the spectral � approxi-
mation �see Eq. �14� in Sec. III�. We assume also that the
characteristic time of variation of the mean magnetic field B
is substantially larger than the correlation time ��k� for all
turbulence scales. This allows us to get a stationary solution
for the equations for the second-order moments:

f ij
�s��k� �

1

1 + 2�
��1 + ��f ij

�0s��k� + �hij
�0s��k�

− 2��genPin�k�Fj
�s��k�� , �A10�

hij
�s��k� �

1

1 + 2�
��f ij

�0s��k� + �1 + ��hij
�0s��k�

+ ��genPin�k�Fj
�s��k�� , �A11�

gij
�a��k� �

i��k · H�
1 + 2�

�f ij
�0s��k� − hij

�0s��k� + �genPin�k�Fj
�s��k�� ,

�A12�

Fi
�s��k� �

Fi
�0s��k�

1 + �/2
, �A13�
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Gi
�a��k� � − i��k · H�Fi

�s��k� �A14�

�for details see �31��, where ��k�=2��k ·H�2 and we ne-
glected terms 
O��b

2�. In Eqs. �A10�–�A14� we neglected
also the large-scale spatial derivatives. The correlation func-
tions f ij

�a�, hij
�a�, gij

�s� Fi
�a�, and Gi

�s� vanish because they are
proportional to the first-order spatial derivatives. Equations
�A10� and �A11� yield

f ij
�s��k� + hij

�s��k�

= f ij
�0s��k� + hij

�0s��k� −
�

1 + 2�
�genPin�k�Fj

�s��k� .

�A15�

Therefore, when the mean heat flux Fi
�0s� in the background

turbulence is zero �i.e., for the nonconvective turbulence�, we
obtain

f ij
�s��k� + hij

�s��k� = f ij
�0s��k� + hij

�0s��k� . �A16�

This is in agreement with the fact that a uniform mean mag-
netic field performs no work on the turbulence �without
mean heat flux�. It can only redistribute the energy between
hydrodynamic fluctuations and magnetic fluctuation. A
change of the total energy of fluctuations is caused by a
nonuniform mean magnetic field. For the integration in k
space of these second moments we have to specify a model
for the background turbulent convection �with zero mean
magnetic field, B=0�. Here we use the following model of
the background turbulent convection �denoted with the su-
perscript �0��:

f ij
�0��k� = �0�u2��0�W�k�Pij�k� , �A17�

hij
�0��k� = �b2��0�W�k�Pij�k� , �A18�

Fi
�0��k� = 3�0�uis���0�W�k�ejPij�k� , �A19�

��0��k� = 2�0�s�2��0�W�k� , �A20�

where Pij�k�=�ij −kikj /k2, W�k�=E�k� /8
k2, ��k�=2�0�̄�k�,
E�k�=−d�̄�k� /dk, �̄�k�= �k /k0�1−q, 1�q�3 is the exponent
of the kinetic energy spectrum �e.g., q=5/3 for Kolmogorov
spectrum�, k0=1/ l0, and �0= l0 /u0. Note also that gij

�0��k�=0
and Gi

�0��k�=0.
This procedure allows us to study magnetic fluctuations

with a nonzero mean magnetic field and to derive the effec-
tive stress tensor in the turbulent convection �see Sec. III�. In
particular, integration in k space in Eq. �A11� yields the en-
ergy of magnetic fluctuations,

�b2� = �b2��0� +
1

12
��v2��0� − �b2��0���6 − 3A1

�0��4B� − A2
�0��4B��

+
a*

6
�v2��0��2��A1� + �1 + 3 cos2����A2�� , �A21�

where ��X�=X�1��2B�−X�1��4B�, � is the angle between the
vertical unit vector e and the mean magnetic field B, the
functions An

�0��y� are given by Eqs. �A33�, �A35�, and �A36�,

and the functions An
�1��y� are given by Eq. �A34�. The mag-

netic stress tensor is given by Eqs. �19�, where the aniso-
tropic contribution �ij

A to the magnetic stress tensor is deter-
mined by

�ij
A =

1

2
�eij��2C1

�1� + A1
�1� + A2

�1��

+ cos ��ei� j + ej�i���2C3
�1� − A2

�1��� , �A22�

and the nonlinear coefficients qp�B� and qs�B� are given by

qp�B� =
1

12B2 ��1 − ���A1
�0��0� − A1

�0��4B� − A2
�0��4B��

+ 2a*���6C1
�1� − 2A1

�1� − A2
�1��

+ cos2���6C3
�1� + A2

�1���� , �A23�

qs�B� = −
1

12B2 ��1 − ��A2
�0��4B�

+ 6a*���C3
�1�� + cos2���C2

�1���� . �A24�

The asymptotic formulas for these coefficients are given by
Eqs. �20�–�25�.

In order to study the large-scale instability we use the
equation of motion, the induction equation, and the equation
for the mean entropy:

DUi

Dt
= − �i	 P̃tot

�0

 +

1

�0
��1 − qp�B��

B2

2
��ei + �B · ��

���1 − qs�B��Bi� + � j�2�0�T�B���U�ij� + � j�ij
A�

− gS − �T�B���eidiv U , �A25�

�B

�t
= � � �U � B − �T�B��� � B�� , �A26�

DS

Dt
= − � · F̂�s�, �A27�

where �T�B� is the turbulent magnetic diffusion, D /Dt

=� /�t+ �U ·��, and F̂�s�=−�ij
�T��B��S is the turbulent heat

flux, �ij
�T� is the tensor for the nonlinear turbulent thermal

diffusivity, and

P̃tot = Pk + �1 − qp�B��
B2

2
− �T�B��0 div U ,

Pk is the mean fluid pressure, 2��U�ij =�iUj +� jUi, and
�T�B� is the turbulent viscosity. The turbulent viscosity �T�B�
in Eq. �A25� is given by
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�T�B� = �T�2A1
�1� + �1 + ��A2

�1� − 2�1 − ��H�A1�

−
1

6
��1 − 29��C1

�1� − 4�7 − 8��H�C1�

+ �1 − 3��G�C1� − 2�1 − ��Q�C1���
y=4B

.

�A28�

The explicit form of the functions H�X�, G�X�, and Q�X� is
given in �30�. The asymptotic formula for �T�B� for a weak
mean magnetic field, B�Beq/4, is given by �T�B�=�T�1
+2��, and for B�Beq/4 it is given by �T�B�= ��T /4B��1
+��. The turbulent heat flux F̂i

�s��B�=−�ij
�T��B�� jS and the

tensor for the nonlinear turbulent thermal diffusivity,

�ij
�T��B� =

�*
�T�

4
��2A1

�0��2B� + A2
�0��2B���ij − A2

�0��2B��ij� ,

�A29�

where �*
�T�=u0l0 /3 and �ij =BiBj /B2. The asymptotic formula

for �ij
�T��B� for B�Beq/2Rm1/4 reads

�ij
�T��B� =

�*
�T�

20
�2�10 − �2 ln Rm��ij + �2 ln Rm�ij� ,

�A30�

where �=�8B /Beq. When Beq/2Rm1/4�B�Beq/2, the
function �ij

�T��B� is

�ij
�T��B� =

�*
�T�

5
��5 − 2�2�ln ����ij + �2�ln ���ij� , �A31�

and when B�Beq/2, it is

�ij
�T��B� = �*

�T�
�2


4�
��ij + �ij� . �A32�

In order to integrate in Eqs. �A10�–�A14� over the angles in
k space we used the following identity:

K̄ij =� kij sin �

1 + a cos2�
d�d� = Ā1�ij + Ā2�ij,

K̄ijmn =� kijmn sin �

1 + a cos2�
d�d�

= C̄1��ij�mn + �im� jn + �in� jm�

+ C̄2�ijmn + C̄3��ij�mn + �im� jn

+ �in� jm + � jm�in + � jn�im + �mn�ij� ,

H̄ijmn�a� =� kijmn sin �

�1 + a cos2��2d�d� = K̄ijmn�a� + a
�

�a
K̄ijmn�a� ,

Ḡijmn�a� =� kijmn sin �

�1 + a cos2��3d�d� = H̄ijmn�a� +
a

2

�

�a
H̄ijmn�a� ,

where a=�2 / �̄�k�, and

Ā1 =
2


a
��a + 1�

arctan��a�
�a

− 1� ,

Ā2 = −
2


a
��a + 3�

arctan��a�
�a

− 3�
C̄1 =




2a2��a + 1�2arctan��a�
�a

−
5a

3
− 1� ,

C̄2 = Ā2 − 7Ā1 + 35C̄1, C̄3 = Ā1 − 5C̄1

�for details, see �30��. The functions An
�m���� are given by

An
�0���� =

3�2



�

�

�Rm1/4 Ān�X2�
X3 dX , �A33�

An
�1���� =

3�4



�

�

�Rm1/4 Ān�X2�
X5 dX , �A34�

and similarly for Cn
�m����, where X2=�2�k /k0�2/3=a. The ex-

plicit form of the functions An
�m���� and Cn

�m���� for m=1,2
are given in �30�, and the functions A1

�0���� and A2
�0���� are

given by

A1
�0���� =

1

5�2 + 2
arctan �

�3 �3 + 5�2� −
6

�2 − �2 ln Rm

− 2�2 ln	 1 + �2

1 + �2�Rm

� , �A35�

A2
�0���� =

2

5�2 −
arctan �

�3 �9 + 5�2� +
9

�2 − �2 ln Rm

− 2�2 ln	 1 + �2

1 + �2�Rm

� , �A36�

where �=�8B /Beq. For B�Beq/4Rm1/4 these functions are
given by

A1
�0���� 
 2 −

1

5
�2 ln Rm,

A2
�0���� 
 −

2

5
�2�ln Rm +

2

15
� .

For Beq/4Rm1/4�B�Beq/4 these functions are given by

A1
�0���� 
 2 +

2

5
�2�2 ln � −

16

15
+

4

7
�2� ,

A2
�0���� 


2

5
�2�4 ln � −

2

15
− 3�2� ,

and for B�Beq/4 they are given by

A1
�0���� 





�
−

3

�2 , A2
�0���� 
 −




�
+

6

�2 .
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