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We study a nonlinear quenching of turbulent magnetic diffusion and effective drift velocity of large-scale
magnetic field in a developed two-dimensional MHD turbulence at large magnetic Reynolds numbers. We
show that transport of the mean-square magnetic potential strongly changes quenching of turbulent magnetic
diffusion. In particularly, the catastrophic quenching of turbulent magnetic diffusion does not occur for the
large-scale magnetic fields B�Beq/�Rm when a divergence of the flux of the mean-square magnetic potential
is not zero, where Beq is the equipartition mean magnetic field determined by the turbulent kinetic energy and
Rm is the magnetic Reynolds number. In this case the quenching of turbulent magnetic diffusion is independent
of magnetic Reynolds number. The situation is similar to three-dimensional MHD turbulence at large magnetic
Reynolds numbers whereby the catastrophic quenching of the � effect does not occur when a divergence of the
flux of the small-scale magnetic helicity is not zero.
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INTRODUCTION

The magnetic fields of the Sun, solar type stars, galaxies
and planets are believed to be generated by a dynamo pro-
cess due to the simultaneous action of the � effect �the heli-
cal motions of turbulence� and differential rotation �see, e.g.,
�1–6��. The kinematic stage of the mean-field dynamo, i.e.,
the growth of a weak mean magnetic field with negligible
effect on the turbulent flows, is well understood, while the
nonlinear stage of dynamo evolution is a topic of intensive
discussions �for reviews, see �7–9��. The most contentious
issue is the question of the equilibrium magnetic field
strength at which dynamo action saturates. In particular, the
problem of catastrophic quenching of the � effect in a
developed three-dimensional magnetohydrodynamic �MHD�
turbulence with large magnetic Reynolds numbers has been
intensively discussed in astrophysics and magnetohydrody-
namics during last years �see, e.g., �10–13��. The cata-
strophic quenching implies very strong reduction of the �
effect during the growth of the mean magnetic field so that
the dynamo generated magnetic field should be saturated at a
very low level. However, this is in contradiction with obser-
vations of the magnetic fields of the Sun, stars and galaxies.

In a two-dimensional MHD turbulence with imposed
large-scale magnetic field at large magnetic Reynolds num-
bers, the catastrophic quenching can occur for turbulent mag-
netic diffusion �see, e.g., �10,14��. In particular, small-scale
magnetic fluctuations strongly affect the large-scale magnetic
field dynamics even for very weak mean fields. This causes a
strong reduction of turbulent magnetic diffusion �10�. This
conclusion is based on Zeldovich theorem �16�. In a two-
dimensional MHD turbulence energy is transferred from
large-scale stirring to small scales and dissipated due to an
Alfvenized cascade, whereby eddy energy is converted to
Alfven wave energy �see, e.g., �17,18��. The above discussed

quenching is caused by the tendency of the mean magnetic
field to Alfvenize the turbulence.

A principal difference between two-dimensional and
three-dimensional MHD turbulence is related to different in-
tegral of motions for these kind of turbulence. In particular,
square of total �small-scale and large-scale� magnetic poten-
tial is conserved in two-dimensional MHD turbulence, while
total �small-scale and large-scale� magnetic helicity is con-
served in three-dimensional MHD turbulence. The magnetic
helicity and the � effect can be positive and negative, while
the squared magnetic potential is only positive. A compre-
hensive comparison between two-dimensional and three-
dimensional MHD turbulence has been performed in �14,15�.

It has been recently recognized �19,20� that in three-
dimensional MHD turbulence the catastrophic quenching of
the � effect does not arises when a divergence of the flux of
magnetic helicity is not zero �see also �9,21,22��. In the
present study we show that in a developed two-dimensional
MHD turbulence with large magnetic Reynolds numbers
Rm, a nonzero divergence of the flux of the mean-square
magnetic potential strongly changes a balance in the equa-
tion for these fluctuations and results in that the catastrophic
quenching of turbulent magnetic diffusion does not occur for
the magnetic fields B�Beq/�Rm, where Beq is the equipar-
tition mean magnetic field determined by the turbulent ki-
netic energy.

This paper is organized as follows. In Sec. II we formu-
late the governing equations, the assumptions, the procedure
of the derivations. In Sec. III we determine the nonlinear
turbulent magnetic diffusion coefficients and the nonlinear
drift velocities of the mean magnetic field in a developed
two-dimensional MHD turbulence. Finally, we draw conclu-
sions in Sec. IV. In Appendix A we perform the derivation of
the nonlinear turbulent magnetic diffusion and the nonlinear
drift velocities of the mean magnetic field and in Appendix B
we present the nonlinear functions used in Sec. III and their
asymptotic formulas.
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GOVERNING EQUATIONS AND THE PROCEDURE
OF DERIVATION

Let us consider a developed two-dimensional MHD tur-
bulence with large hydrodynamic and magnetic Reynolds
numbers. We study nonlinear quenching of the turbulent
magnetic diffusion and the effective drift velocity of the
magnetic field. We use a mean field approach whereby the
velocity, pressure and magnetic field are separated into the
mean and fluctuating parts. In a two-dimensional MHD tur-
bulence the mean magnetic field is B=�� �A�x ,y�e�, where
A�x ,y� is the mean magnetic potential and e is the unit vector
perpendicular to the plane of the two-dimensional MHD tur-
bulence, i.e., it is directed along z axis. The equation for the
evolution of the mean magnetic potential for an incompress-
ible turbulent flow with a zero mean velocity reads

�A

�t
+ div�ua� = ��A , �1�

where u are the velocity fluctuations and � is the magnetic
diffusion caused by an electrical conductivity of a fluid. The
mean electromotive force is Ez= �u�b�z=−div �a, where the
spatial flux of magnetic potential �a= �ua� and magnetic
fluctuations b=�� �a�x ,y�e� are described by the fluctua-
tions of the magnetic potential a�x ,y�. The mean electromo-
tive force Ez�B� in a two-dimensional MHD turbulence is
given by

Ez�B� = ��Veff�B� � B�i − �ij�B��� � B� j	ei, �2�

where the nonlinear turbulent magnetic diffusion �ij�B� and
the nonlinear effective drift velocity Veff�B� of the mean
magnetic field are determined in Sec. III.

In order to derive equations for the nonlinear turbulent
magnetic diffusion and the nonlinear effective drift velocity
of the mean magnetic field in a two-dimensional MHD tur-
bulence we use a procedure outlined below �see Appendix A
for details�. This procedure is similar to that used in �23� for
a study of a three-dimensional MHD turbulence. We use
equations for fluctuations of velocity and magnetic field

�u�t,x�
�t

= −
�p

�
+

1

��
��b · ��B + �B · ��b� + uN + F ,

�3�

�b�t,x�
�t

= �B · ��u − �u · ��B + bN, �4�

where � is the fluid density, F is a random external stirring
force, uN and bN are the nonlinear terms which include the
molecular dissipative terms, and p is the fluctuations of total
�hydrodynamic and magnetic� pressure. Hereafter we omit
the magnetic permeability of the fluid � and include �−1/2 in
the definition of magnetic field, we also omit the density � of
incompressible fluid and include �1/2 in the definition of ve-
locity field. We rewrite Eqs. �3� and �4� in a Fourier space
and derive equations for the two-point second-order correla-
tion functions of the velocity fluctuations �uiuj�, the magnetic
fluctuations �bibj� and the cross-helicity �biuj�. The equations

for these correlation functions are given by Eqs. �A1�–�A3�
in Appendix A.

The second-moment equations include the first-order spa-

tial differential operators N̂ applied to the third-order mo-
ments M�III�. A problem arises how to close the system, i.e.,

how to express the set of the third-order terms N̂M�III�

through the lower moments M�II� �see, e.g., �24–26��. We use
the spectral � approximation which postulates that the devia-

tions of the third-moment terms, N̂M�III��k�, from the contri-
butions to these terms afforded by the background turbu-

lence, N̂M�III,0��k�, are expressed through the similar
deviations of the second moments, M�II��k�−M�II,0��k�:

N̂M�III��k� − N̂M�III,0��k� = −
1

��k�
�M�II��k� − M�II,0��k��

�5�

�see, e.g., �23,26–29��, where ��k� is the scale-dependent re-
laxation time, which can be identified with the correlation
time of the turbulent velocity field, and the quantities with
the superscript �0� correspond to the background turbulence.
A justification of the � approximation for different situations
has been performed in numerical simulations and analytical
studies in �9,30–34�.

Next, we split all second-order correlation functions,
M�II�, into symmetric and antisymmetric parts with respect to
the wave vector k. We assume that the characteristic time of
variation of the mean magnetic field B is substantially larger
than the correlation time ��k� for all turbulence scales. This
allows us to get a stationary solution for the equations for the
second-order moments, M�II�. We use a model of the back-
ground anisotropic and inhomogeneous two-dimensional
MHD turbulence determined by Eqs. �A16� and �A17� in
Appendix A.

In this study, we consider an intermediate nonlinearity
which implies that the mean magnetic field is not enough
strong in order to affect the correlation time of turbulent
velocity field. The theory for a very strong mean magnetic
field can be modified after taking into account a dependence
of the correlation time of the turbulent velocity field on the
mean magnetic field.

Using the solution of the derived second-moment equa-
tions, we determine the mean electromotive force, Ei
=�imn
�bnum�kdk �see Appendix A for details�, where �ijk is
the fully antisymmetric Levi-Civita tensor. This procedure
allows us to determine the nonlinear turbulent magnetic dif-
fusion and the nonlinear effective drift velocity of the mean
magnetic field in a two-dimensional MHD turbulence.

TURBULENT TRANSPORT COEFFICIENTS

The derivation outlined in Sec. II yields the nonlinear
turbulent magnetic diffusion of the mean magnetic field. In
particular, in order to determine the nonlinear turbulent mag-
netic diffusion �ij�B� we use an identity: �ij = ��ikpbjkp

+� jkpbikp� /4, where the tensor bijk is determined by Eq.
�A19� in Appendix A. The nonlinear turbulent magnetic dif-
fusion coefficient along the mean magnetic field, �B, and the
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cross-field turbulent magnetic diffusion coefficient, ��, are
given by

�B = �0��u2��0� − �b2��0��	1�
� , �6�

�� = �0��u2��0� − �b2��0��	�
� , �7�

where �0= l0 /u0 and u0=��u2��0� is the characteristic turbu-
lent velocity in the maximum scale of turbulent motions l0.
The quantities with the superscript �0� correspond to the
background turbulence. The functions 	�
�, 	1�
� and their
asymptotic formulas are given in Appendix B, 
=4�B /Beq�
and Beq=��u2��0� is the equipartition field. More general
equations for �B and �� in the case of an anisotropic back-
ground turbulence are given by Eqs. �A20� and �A21� in
Appendix A. It follows from Eqs. �6� and �7� that in the case
of Alfvenic equipartition, �u2��0�= �b2��0�, the nonlinear turbu-
lent magnetic diffusion vanishes.

The nonlinear turbulent magnetic diffusion depends on a
flux of mean-square magnetic potential. This flux can change
properties of the quenching of the cross-field turbulent mag-
netic diffusion. Indeed, let us determine the parameter �
= �b2��0� / �u2��0� using budget equation for the evolution of
the mean-square magnetic potential �a2�:

��a2�
�t

+ div FA = 2��B2 − 2��b2� , �8�

where the flux FA= �ua2�−���a2� determines the transport
of �a2�. The first term 2��B2 in the right-hand side of Eq. �8�
describes a production of the mean-square magnetic potential
�a2�, while the term −2��b2� determines the resistive dissi-
pation of �a2�. In the absence of the flux of the mean-square
magnetic potential, FA=0, Eq. �8� implies the catastrophic
quenching of the cross-field turbulent magnetic diffusion. In
particular, in a steady-state Eq. �8� reads ��=��b2� /B2.
Since the magnetic energy is less than the kinetic energy,
�b2�� �u2��0�, we get

��

�T
�

1

Rm�B/Beq�2 , �9�

where �T= l0u0 /2 and Rm=u0l0 /� is the magnetic Reynolds
number. This estimate implies a strong quenching of the
cross-field turbulent magnetic diffusion with increasing
Rm�B /Beq�2 due to Alfvenization of turbulence by tangling
of a weak mean magnetic field by velocity fluctuations �14�.

The situation is drastically changed when div FA�0. In-
deed, Eq. �8� is not closed because it depends on the mag-
netic energy �b2�. The energy of magnetic fluctuations �b2�
can be determined in the same way as we derived the cross-
helicity tensor. In particular, �b2� is obtained from Eq. �A8�
given in Appendix A, after the integration in k space. The
result is given by

�b2� =
1

2
��u2��0��1 − 
�
�� + �b2��0��1 + 
�
��	 , �10�

where the function 
�
� and its asymptotic formulas are
given in Appendix B. A more general equation for �b2� for

anisotropic background turbulence is given by Eq. �A22� in
Appendix A.

Equation �8� allows us to determine the energy of mag-
netic fluctuations of the background turbulence self-
consistently. In particular, combining Eq. �10� with the
steady-state solution of Eq. �8� we determine the parameter
�= �b2��0� / �u2��0� �see, e.g., Eq. �A23� in Appendix A for an-
isotropic background turbulence�. When B�Beq/�Rm, the
parameter � is given by

� = 1 −
div FA

4�TB2	�
�
. �11�

Therefore, Eqs. �6�, �7�, and �11� yield the nonlinear turbu-
lent magnetic diffusion in two directions:

�B =
div FA

2B2 �	1�
�
	�
�

� , �12�

�� =
div FA

2B2 , �13�

where �B is the nonlinear turbulent magnetic diffusion along
the mean magnetic field and �� is the cross-field nonlinear
turbulent magnetic diffusion. Remarkably, Eq. �13� can be
obtained directly from Eq. �8� written in a steady state if we
neglect the resistive dissipation term −2��b2� in the right-
hand side of Eq. �8�.

In order to determine the parameter � we use the steady-
state solution of Eq. �8�. However, the steady-state solution
of this equation exists not for all values of the mean mag-
netic field. Indeed, let us plot in Fig. 1 the function 	�
� for
the exponent of the energy spectrum of the background tur-
bulence q=5/3. At B→0.18 Beq the function 	�
� tends to
zero �see Fig. 1�. In the range B�0.18 Beq the steady-state
solution of Eq. �8� does not exist. The turbulent magnetic
diffusion should be positive, which implies that div FA�0.
Therefore, when div FA�0 there is no steady-state solution
of Eq. �8� for B�0.18 Beq as well. More detailed discussion
of this facet is given in Appendix A after Eq. �A26�.

In inhomogeneous turbulence there are also turbulent dia-
magnetic and paramagnetic effects. In particular, an inhomo-
geneity of the velocity fluctuations leads to a transport of
mean magnetic flux from regions with high intensity of the
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FIG. 1. The function 	�B /Beq� for q=5/3.

NONLINEAR TURBULENT MAGNETIC DIFFUSION AND … PHYSICAL REVIEW E 75, 066315 �2007�

066315-3



velocity fluctuations �turbulent diamagnetism, see, e.g.
�3,16��. On the other hand, an inhomogeneity of magnetic
fluctuations due to the small-scale dynamo causes turbulent
paramagnetic velocity, i.e., the magnetic flux is pushed into
regions with high intensity of the magnetic fluctuations �see,
e.g., �35,36��. In order to determine the nonlinear turbulent
diamagnetic and paramagnetic drift velocities Veff�B� of the
mean magnetic field, we use an identity: Vk

�eff�=�kjiaij /2,
where the tensor aij is determined by Eq. �A18� in Appendix
A. The inhomogeneities of the velocity and magnetic fluc-
tuations of the background turbulence are characterized by
the following parameters �i

�v�=�i�u2��0� / �u2��0� and �i
�b�

=�i�b2��0� / �b2��0�. The nonlinear effective drift velocity of
the mean magnetic field is given by

Veff = − 2�T���v� − ���m��	1�
� , �14�

where the function 	1�
� and its asymptotic formulas are
given in Appendix B. When B�Beq/�Rm, Eqs. �11� and
�14� yield

Veff = − 2�T
��v� − ��m� +
div FA

4�TB2	�
�
��m��	1�
� .

�15�

The first term ���v� in Eq. �15� determines the turbulent
diamagnetic drift velocity while the second term ���m� de-
scribes the turbulent paramagnetic drift velocity. The last
term �div FA in Eq. �15� determines the turbulent diamag-
netic drift velocity caused by magnetic fluctuations for B
�0.18 Beq. More general equation for Veff for anisotropic
background turbulence is given by Eq. �A28� in Appendix A.

CONCLUSIONS

In the present study, we investigate nonlinear quenching
of the turbulent magnetic diffusion and the effective drift
velocity of the magnetic field in a developed two-
dimensional MHD turbulence at large magnetic Reynolds
numbers. We elucidate an important role of transport of the
mean-square magnetic potential which strongly changes
quenching properties of turbulent magnetic diffusion. In par-
ticular, we show that the catastrophic quenching of turbulent
magnetic diffusion does not arises for the magnetic fields
B�Beq/�Rm for a nonzero divergence of the flux of the
mean-square magnetic potential. In this case the quenching
of turbulent magnetic diffusion is independent of magnetic
Reynolds number. This is similar to a three-dimensional
MHD turbulence at large magnetic Reynolds numbers
whereby the catastrophic quenching of the � effect does not
occur when a divergence of the flux of the small-scale mag-
netic helicity is not zero. Note that in a two-dimensional
MHD turbulence, the magnetic field may only decay, while
in three-dimensional MHD turbulence magnetic field may
grow by dynamo mechanism.

Note that a quenching of turbulent magnetic diffusivity in
a “wavy” magnetohydrodynamic turbulence in two dimen-
sions was recently studied in �37�. They found that the tur-
bulent magnetic diffusivity in the fourth-order does not van-
ish when the magnetic Reynolds number tends to infinity. In

particularly, the second-order �quasilinear� contribution to
the spatial flux of the mean magnetic potential is quenched
as Rm−1, while the fourth-order contribution to the flux is
independent of Rm. This implies that the turbulent magnetic
diffusivity is not quenched catastrophically in the presence of
dispersive waves which can transfer the mean-square mag-
netic potential. These findings are in agreement with our re-
sults.
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APPENDIX A: DERIVATIONS OF THE NONLINEAR
TURBULENT TRANSPORT COEFFICIENTS

We use equations for fluctuations of velocity and mag-
netic field written in a Fourier space and derive equations for
the second moments in two-dimensional MHD turbulence
using a procedure which is similar to that used in �23� for a
study of a three-dimensional MHD turbulence. In order to
exclude the pressure term from the equation of motion �3�
we determine �� ���u�. We also apply the two-scale ap-
proach, e.g., we use large-scale R, K and small-scale r, k
variables �see, e.g., �38��. We assume that there exists a sepa-
ration of scales, i.e., the maximum scale of turbulent motions
l0 is much smaller then the characteristic scale LB of inho-
mogeneities of the mean magnetic field. We derive equations

for the following correlation functions: f ij�k ,R�= L̂�ui ;uj�,
hij�k ,R�= L̂�bi ;bj�, and gij�k ,R�= L̂�bi ;uj�, where

L̂�a;c� =� �a�k + K/2�c�− k + K/2��exp�iK · R�dK .

The equations for these correlation functions are given by

� f ij�k�
�t

= i�k · B��ij
�M� + Iij

f + Fij + N̂f ij , �A1�

�hij�k�
�t

= − i�k · B��ij
�M� + Iij

h + N̂hij , �A2�

�gij�k�
�t

= i�k · B��f ij�k� − hij�k�� + Iij
g + N̂gij , �A3�

where hereafter we omit arguments t and R in the correlation
functions and neglect terms �O��2�. Here �ij

�M��k�=gij�k�
−gji�−k�, Fij�k�= �F̃i�k�uj�−k��+ �ui�k�F̃j�−k��, and F̃�k�
=k� �k�F�k�� /k2�. The stirring force F�k� is an external
parameter that determines the background turbulence. The
source terms Iij

f , Iij
h , and Iij

g which contain the large-scale
spatial derivatives of the mean magnetic field and turbulence
are given by
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Iij
f =

1

2
�B · ���ij

�P� + �gqj�k�„2Pin
�2��k� − �in

�2�
…

+ gqi�− k�„2Pjn
�2��k� − � jn

�2�
…�Bn,q − Bn,qkn�ijq

�P�, �A4�

Iij
h =

1

2
�B · ���ij

�P� − �giq�k�� jn
�2� + gjq�− k��in

�2��Bn,q

− Bn,qkn�ijq
�P�, �A5�

Iij
g =

1

2
�B · ���f ij + hij� + hiq„2Pjn

�2��k� − � jn
�2�
…Bn,q − fnjBi,n

− Bn,qkn�f ijq + hijq� , �A6�

where Pij
�2��k�=�ij

�2�−kij, kij =kikj /k2, �ij
�P��k�=gij�k�+gji�−k�,

and Bi,j =� jBi, the terms N̂f ij, N̂hij, and N̂gij are the third-
order moment terms appearing due to the nonlinear terms,
f ijq= �1/2�� f ij /�kq, and similarly for hijq and �ijq

�P�. For the
derivation of Eqs. �A1�–�A3� we use identities given in �23�.
We take into account that in Eq. �A3� the terms with sym-
metric tensors with respect to the indexes “i” and “j” do not
contribute to the mean electromotive force because Em
=�mjigij.

We use the spectral � approximation which postulates that

the deviations of the third-moment terms, N̂M�III��k�, from
the contributions to these terms afforded by the background

turbulence, N̂M�III,0��k�, are expressed through the similar
deviations of the second moments, M�II��k�−M�II,0��k� �see
Eq. �5��. The superscript �0� corresponds to the background
turbulence. First, we solve Eqs. �A1�–�A3� neglecting the
sources Iij

f , Iij
h , Iij

g with the large-scale spatial derivatives.
Then we will take into account the terms with the large-scale
spatial derivatives by perturbations. We assume that
�k2��−1�k� and �k2��−1�k� for the inertial range of turbu-
lent flow, where � is the kinematic viscosity and � is the
magnetic diffusion due to the electrical conductivity of fluid.
We also assume that the characteristic time of variation of
the mean magnetic field B is substantially larger than the
correlation time ��k� for all turbulence scales. We split all
correlation functions into symmetric and antisymmetric parts
with respect to the wave number k, e.g., f ij = f ij

�s�+ f ij
�a�, where

f ij
�s�= �f ij�k�+ f ij�−k�� /2 is the symmetric part and f ij

�a�

= �f ij�k�− f ij�−k�� /2 is the antisymmetric part, and similarly
for other tensors. Thus, in a steady-state Eqs. �A1�–�A3�
yield

f̂ i j
�s��k� �

1

1 + 2�
��1 + ��f ij

�0��k� + �hij
�0��k�� , �A7�

ĥij
�s��k� �

1

1 + 2�
��f ij

�0��k� + �1 + ��hij
�0��k�� , �A8�

ĝij
�a��k� �

i��k · B�
1 + 2�

�f ij
�0��k� − hij

�0��k�� , �A9�

where ��k�=2��k ·B�2, f̂ i j, ĥij, and ĝij are solutions without

the sources Iij
f , Iij

h , and Iij
g . The correlation functions f̂ i j

�a��k�,

ĥij
�a��k�, and ĝij

�s��k� vanish if we neglect the large-scale spa-
tial derivatives, i.e., they are proportional to the first-order
spatial derivatives.

Next, we take into account the large-scale spatial deriva-
tives in Eqs. �A1�–�A3� by perturbations. Their effect deter-
mines the following steady-state equations for the second

moments f̃ i j, h̃ij, and g̃ij:

f̃ i j
�a��k� = i��k · B��̃ij

�M,s��k� + �Iij
f , �A10�

h̃ij
�a��k� = − i��k · B��̃ij

�M,s��k� + �Iij
h , �A11�

g̃ij
�s��k� = i��k · B�� f̃ i j

�a��k� − h̃ij
�a��k�� + �Iij

g , �A12�

where �̃ij
�M,s�= ��̃ij

�M��k�+�̃ij
�M��−k�� /2. The solution of Eqs.

�A10�–�A12� yield

�̃ij
�M,s��k� =

�

1 + 2�
�Iij

g − Iji
g + i��k · B��Iij

f − Iji
f + Iji

h − Iij
h �	 .

�A13�

Substituting Eq. �A13� into Eqs. �A10�–�A12� we obtain the

final expressions in k space for the tensors f̃ i j
�a��k�, h̃ij

�a��k�,
g̃ij

�s��k�, and �̃ij
�M,s��k�. In particular,

�̃mn
�M,s��k� =

��k�W�k��u2��0�

�1 + 2��2 ��1 + ���1 + 2��

���nj
�2��mk

�2� − �mj
�2��nk

�2� + knk�mj
�2� − kmk�nj

�2��

− 2�� + 2���knj�mk
�2� − kmj�nk

�2���Bj,k. �A14�

The correlation functions f̃ i j
�s��k�, h̃ij

�s��k�, and g̃ij
�a��k� are of

the order of �O��2�, i.e., they are proportional to the
second-order spatial derivatives. Thus ĝij + g̃ij is the correla-
tion function of the cross-helicity, and similarly for other
second moments. Now we calculate the mean electromotive

force Ei�r=0�= �1/2��inm
�̃mn
�M,s��k�dk. Thus,

Ei = �inm� �

1 + 2�
�Imn

g + i��k · B��Imn
f − Imn

h ��dk .

�A15�

We use the following model of the background aniso-
tropic and inhomogeneous two-dimensional MHD turbu-
lence:

�uiuj��0��k� = �u2��0�Wv�k���1 − �v�
�ij
�2� − kij

+
i

2k2 �ki� j
�v� − kj�i

�v��� + �v
ij��k · B�� ,

�A16�
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�bibj��0��k� = �b2��0�Wm�k���1 − �m�
�ij
�2� − kij

+
i

2k2 �ki� j
�m� − kj�i

�m��� + �m
ij��k · B�� ,

�A17�

where �ij
�2�=�ij −eiej, �ij is the Kronecker tensor, ei is the unit

vector which is perpendicular to the plane of the two-
dimensional MHD turbulence, kij =kikj /k2, �v and �m are the
degrees of anisotropy of the velocity and magnetic fluctua-
tions of the background turbulence, and �v��m, 
ij
=BiBj /B2, Wv�k�=Wm�k�=E�k� /2�k. The energy spectrum
of the velocity and magnetic fluctuations is E�k�=k0

−1�q−1�
��k /k0�−q, the turbulent correlation time is ��k�
=2�0�k /k0�1−q, where 1�q�3 is the exponent of the energy
spectrum, k0=1/ l0, and l0 is the maximum scale of turbulent
motions, �0= l0 /u0, u0 is the characteristic turbulent velocity
in the scale l0. The inhomogeneities of the velocity and mag-
netic fluctuations of the background turbulence are charac-
terized by �i

�v�=�i�u2��0� / �u2��0� and �i
�b�=�i�b2��0� / �b2��0�.

Note that �uibj��0��k�=0. In Eqs. �A16� and �A17� we ne-
glected small quadratic terms in the parameters �i

�v� and �i
�b�.

After the integration in k-space we obtain Ei=aijBj
+bijkBj,k, where Bj,k=�kBj and

aij = 2�T��1 − �v��n
�v� − ��1 − �m��n

�m���ipnKpj
�1�,

�A18�

bijk = 2�T��1 − �v + ��1 − �m����ijkKpp
�1� − �ijpKpk

�1��

− 2��1 − �m��inkKnj
�1� + 2�inkK̃nj

�1��1 − �v − ��1 − �m���

+ 2�T
pk���v + ��m��ijp − 2��m�inp�e � �̂�n�e � �̂� j� .

�A19�

Here �̂=B /B,

Kij
�1� =

1

�
�

Rm−c

1

xKij�y�x��dx ,

K̃ij
�1� =

1

�
�

Rm−c

1

xy�x�
dKij�y�

dy
dx ,

Kij�y� = �
0

2� kij

1 + y cos2�
d� = D1�y��ij

�2� + D2�y�
ij ,

D1�y� =
2�

y
��y + 1 − 1�, D2�y� =

2�

y 
2 −
y + 2
�y + 1

� ,

y�x� =
2
2

x� , � =
2�2 − q�

q − 1
, c =

q − 1

3 − q
,


=4�B /Beq� and Beq=��u2��0� is the equipartition field. For
q=5/3, the parameters �=1 and c=1/2, and for q=3/2 the
parameters �=2 and c=1/3.

To determine the nonlinear turbulent magnetic diffusion
�ij�B� we use an identity �ij = ��ikpbjkp+� jkpbikp� /4. The non-
linear turbulent magnetic diffusion coefficient along the
mean magnetic field, �B, and the cross-field turbulent mag-
netic diffusion coefficient, ��, are given by

�B = 2�T��v − ��m + �1 − �v − ��1 − �m��	1�
�	 ,

�A20�

�� = 2�T�1 − �v − ��1 − �m��	�
� , �A21�

where �T= l0u0 /2, the functions 	�
�, 	1�
� and their
asymptotic formulas are given in Appendix B, 
=4�B /Beq�,
Beq=��u2��0� is the equipartition field and the parameter �
= �b2��0� / �u2��0�. To derive Eqs. �A20� and �A21� we used the
following identities:

ei�ijp
pk�kBj = �xA, ei�ipk
pj�kBj = �yA ,

ei�inp
pk�kBj�e � �̂�n�e � �̂� j = �xA ,

where B=exB. The nonlinear turbulent magnetic diffusion
coefficients �B and �� for �v=�m=0 are given in Sec. III
�see Eqs. �6� and �7��.

Now we determine the parameter �= �b2��0� / �u2��0� using
budget equation for the evolution of the mean-square mag-
netic potential �a2� �see Eq. �8��. To this end, we determine
the energy of magnetic fluctuations �b2� which is obtained
from Eq. �A8� by the integration in k space. The result is
given by

�b2� =
�u2��0�

2
��1 − �v��1 − 
�
��

+ ��1 + �m + 
�
��1 − �m��	 , �A22�

where the function 
�
� and its asymptotic formulas are
given in Appendix B. Combining Eq. �A22� with the steady-
state solution of Eq. �8� we determine the parameter S���
�1−�v−��1−�m�:

S��� = 2
 1 − �v

1 − �m + Rm
div FA

4�TBeq
2 �
1 + �m

1 − �m + 
�
�

+ 2 Rm 	�
�
B2

Beq
2 �−1

. �A23�

When B�Beq/�Rm, Eq. �A23� yields the parameters �:

� =
1

1 − �m
1 − �v −
div FA

4�TB2	�
�� . �A24�

Using Eqs. �A20�, �A21�, and �A24� we obtain the nonlinear
turbulent magnetic diffusion in two directions:

�B =
2�T

1 − �m
�v − �m +
div FA

4�TB2	�
�
��m + �1 − �m�	1�
��� ,

�A25�
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�� =
div FA

2B2 . �A26�

Note that there is a small range of the magnitudes of the
mean magnetic field when there can be an anomalous behav-
ior of the nonlinear turbulent magnetic diffusion. At B
→0.18 Beq the function 	�
� changes sign �see Fig. 1�. On
the other hand, the function S��� changes sign for a slightly
larger value of the magnetic field B�0.18 Beq �see Eq.
�A23��. Therefore, this implies that at B�0.18 Beq the non-
linear turbulent magnetic diffusion can be anomalously large.
The width of the range of the anomalous behavior of the
nonlinear turbulent magnetic diffusion is very small, �B
�1/Rm. In this range the steady-state solution of Eq. �8� for
B�0.18 Beq does not exist.

To determine the nonlinear effective drift velocity Veff�B�
of the mean magnetic field we use an identity: Vk

�eff�

=�kjiaij /2, which yields

Veff = − 2�T��1 − �v���v� − ��1 − �m���m��	1�
� ,

�A27�

where the function 	1�
� and its asymptotic formulas are
given in Appendix B. When B�Beq/�Rm, Eqs. �A24� and
�A27� yield

Veff = − 2�T
�1 − �v����v� − ��m��

+
div FA

4�TB2	�
�
��m��	1�
� . �A28�

The nonlinear effective drift velocity Veff�B� of the mean
magnetic field for �v=�m=0 is given in Sec. III �see Eq.
�15��.

APPENDIX B: FUNCTIONS �„�…, �1„�…, AND �„�…

In this section we present the functions 	�
�, 	1�
�, and

�
� used in Sec. III:

	�
� =
1

�
�

Rm−c

1

x
1 + 2y�x�
d

dy
��D1�y� + D2�y��dx ,

	1�
� =
1

�
�

Rm−c

1

x
1 + 2y�x�
d

dy
�D1�y�dx ,


�
� =
1

2�
�

Rm−c

1

�2D1�y� + D2�y��dx .

These functions for q=5/3 are given by

	�
� =

4

6
�M�
� − M�
 Rm1/4�� +

25

2
L�
,Rm� , �B1�

	1�
� =
1

6
2 �2 − �2 − 5
2�1 − 3
2���2
2 + 1	 +
5

2
L�
,Rm� ,

�B2�


�
� =
1

2

�2
2 + 1 −

2


2L�
,Rm�� , �B3�

L�
,Rm� = 
4
ln
�2
2�Rm + 1 − 1

�2
2�Rm + 1 + 1
− ln

�2
2 + 1 − 1
�2
2 + 1 + 1

� ,

�B4�

M�y� =
1

y4�2y2 + 1
�5�1 − 5y2�1 + 6y2�� +

2

y2 �1 − �2y2 + 1�� .

�B5�

Asymptotic formulas for the functions 	�
�, 	1�
�, and

�
� are as follows. For 
�Rm−1/4 these functions are
given by

	�
� =
1

2

1 − 9
2 +

25

2

4 ln Rm� ,

	1�
� =
1

2

1 − 3
2 +

5

2

4 ln Rm� ,


�
� = 1 −
1

2

2 ln Rm,

for Rm−1/4�
�1 they are given by

	�
� =
1

2
�1 − 9
2 + 50
4�ln 
�� ,

	1�
� =
1

2
�1 − 3
2 + 10
4�ln 
�� ,


�
� = 1 − 2
2�ln 
� ,

and for 
�1 these functions are given by

	�
� = −
1

3
2
1 −
1.7



� ,

	1�
� =
1

3
2 , 
�
� = −
0.24



.
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