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We studied the effect of the turbulent heat flux on the Reynolds stresses in a rotating turbulent convection.
To this end we solved a coupled system of dynamical equations which includes the equations for the Reynolds
stresses, the entropy fluctuations, and the turbulent heat flux. We used a spectral � approximation in order to
close the system of dynamical equations. We found that the ratio of the contributions to the Reynolds stresses
caused by the turbulent heat flux and the anisotropic eddy viscosity is of the order of �10�L� / l0�2, where l0 is
the maximum scale of turbulent motions and L� is the fluid density variation scale. This effect is crucial for the
formation of the differential rotation and should be taken into account in the theories of the differential rotation
of the Sun, stars, and planets. In particular, we demonstrated that this effect may cause the differential rotation
which is comparable with the typical solar differential rotation.
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I. INTRODUCTION

Solar and stellar magnetic fields are believed to originate
in a dynamo, driven by the joint action of the mean hydro-
dynamic helicity of turbulent convection and differential ro-
tation �see, e.g., �1–5�, and references therein�. It was sug-
gested in �6� that the differential rotation of the Sun is caused
by an anisotropic eddy viscosity which was described phe-
nomenologically in �6–9�. A theory of the differential rota-
tion based on the idea of the anisotropic eddy viscosity was
developed in a number of papers �see, e.g., �10–12�, and
references therein�. However, there is an additional effect
which can strongly modify the differential rotation. In par-
ticular, the direct effect of the turbulent heat flux on the
Reynolds stresses in a rotating turbulent convection is crucial
for formation of the differential rotation.

The effect of rotation on a hydrodynamic turbulence was
studied in numerous papers �see, e.g., �10,13��. However, a
relation to the turbulent convection was made in previous
theories of the differential rotation only phenomenologically,
using the equation

�u�2� � g�0�uz�s�� , �1�

which follows from the mixing-length theory. Here �uz�s�� is
the vertical turbulent heat flux, u� and s� are fluctuations of
fluid velocity and entropy, g is the acceleration of gravity,
and �0 is the characteristic correlation time of turbulent ve-
locity field. Equation �1� implies that the vertical turbulent
heat flux plays a role of a stirring force for the turbulence.
However, a more sophisticated approach implies a solution
of a coupled system of dynamical equations which includes
the equations for the Reynolds stresses �ui�uj��, the turbulent
heat flux �s�ui��, and the entropy fluctuations �s�2� in a rotat-
ing turbulent convection. The latter has not been taken into
account in the previous theories of the differential rotation.

The goal of this study is to analyze the effect of the tur-
bulent heat flux on the Reynolds stresses in a rotating turbu-
lent convection and on formation of the differential rotation.
We demonstrated that this effect is crucial for the formation
of the differential rotation, and it should be taken into ac-
count in theories of the differential rotation of the Sun, stars,
and planets. In particular, we found that the ratio of the con-
tributions to the Reynolds stresses caused by the turbulent
heat flux and the anisotropic eddy viscosity is of the order of
�10�L� / l0�2 for ��0�1, where l0 is the maximum scale of
turbulent motions �the integral scale of turbulence�, � is the
rotation rate, L� is the fluid density variation scale, i.e.,
���0� /�0=−L�

−1e, �0 is the fluid density, and e is the unit
vector in the direction of the fluid density inhomogeneity.
The turbulent heat flux contribution to the Reynolds stresses
changes its sign when the direction of the vertical turbulent
heat flux changes. This is the key difference from previous
theories of the differential rotation. The effect of the turbu-
lent heat flux on the Reynolds stresses in a turbulent convec-
tion may cause the differential rotation which is comparable
with the typical differential rotation of the Sun. The data of
the solar differential rotation are obtained from surface ob-
servations of the solar angular velocity �see, e.g., �14,15��
and from helioseismology based on measurements of the fre-
quency of p-mode oscillations �see, e.g., �16–19��.

The mechanism of the differential rotation that is associ-
ated with the effect of the turbulent heat flux on Reynolds
stresses in a rotating turbulent convection is as follows. Let
us split the total rotation of fluid into a constant component
� �uniform rotation� and the differential rotation ��. The
uniform rotation causes the counter-rotation turbulent heat
flux �i.e., the toroidal turbulent heat flux, �s�u���, directed
opposite to the background rotation ��. Therefore there is a
correlation of fluctuations of the entropy s� and the toroidal
component of the velocity, u�� . Here r, 	, and � are the
spherical coordinates.

The counter-rotation turbulent heat flux is similar to the
counterwind turbulent heat flux �in the direction opposite to
the mean wind� which is well-known in the atmospheric
physics. The counter-rotation turbulent heat flux arises by the
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following reason. In turbulent convection an ascending fluid
element has larger temperature than that of surrounding fluid
and smaller toroidal fluid velocity, while a descending fluid
element has smaller temperature and larger toroidal fluid ve-
locity. This causes the turbulent heat flux in the direction
opposite to the toroidal mean fluid flow �i.e., opposite to
rotation�. The counter-rotation turbulent heat flux is deter-
mined by Eq. �24� in Sec. III.

The entropy fluctuations cause fluctuations of the buoy-
ancy force, and this results in increased fluctuations of the
vertical and meridional components of the velocity which are
correlated with the fluctuations of the toroidal component of
the velocity. These produce the off-diagonal components of
the Reynolds stress tensor, �ur�u��� and �u	�u���, and create the
toroidal component of the effective force which causes for-
mation of the differential rotation �� in turbulent convec-
tion.

This paper is organized as follows. In Sec. II we formu-
lated the governing equations, the assumptions, the proce-
dure of the derivation, and described the effect of the turbu-
lent heat flux on the Reynolds stresses. In Sec. III we
developed the theory of the differential rotation based on this
effect. In Sec. IV we made estimates for the solar differential
rotation. In Appendixes A and B we performed a detailed
derivation of the effect of the turbulent heat flux on the Rey-
nolds stresses in the rotating turbulent convection.

II. EFFECT OF THE TURBULENT HEAT FLUX
ON THE REYNOLDS STRESSES

In order to study the effect of the turbulent heat flux on
the Reynolds stresses we considered turbulent convection
with large Rayleigh and Reynolds numbers. We employed a
mean-field approach whereby the velocity, pressure, and en-
tropy are separated into the mean and fluctuating parts,
where the fluctuating parts have zero mean values. The large-
scale fluid motions are determined by the mean-field equa-
tions, which follow from the momentum and entropy equa-
tions for instantaneous fields by averaging over an ensemble
of fluctuations. The mean-field equations are given by

� �

�t
+ U · �	Ui = − �i� P

�0
	 − gS + 2U 
 �

− �� j + L�
−1ej��ui�uj�� + f��U� , �2�

� �

�t
+ U · �	S = − �� j + L�

−1ej��suj� −
1

T0
� · F��U,S� ,

�3�

where Eq. �2� is written in the reference frame uniformly
rotating with the angular velocity �. Here the mean fields U,
P, T, and S are the fluid velocity, pressure, temperature, and
entropy, respectively, �0f��U� is the mean molecular viscous
force, and F��U ,S� is the mean heat flux that is associated
with the molecular thermal conductivity. The mean fluid ve-
locity U for a low Mach number flow satisfies the equation
div��0U�=0. Equations �2� and �3� are written in the anelas-
tic approximation, which is a combination of the Boussinesq

approximation and the condition div��0U�=0. The variables
with the subscript “0” correspond to the hydrostatic nearly
isentropic basic reference state, i.e., �P0=�0g and
g · ��
P0�−1� P0−�0

−1��0�
0, where 
 is the ratio of spe-
cific heats. The turbulent convection is regarded as a small
deviation from a well-mixed adiabatic reference state.

In order to get a closed system of the mean-field equations
we have to determine the dependencies of the Reynolds
stresses �ui��t ,x�uj��t ,x�� and the turbulent heat flux
�s��t ,x�ui��t ,x�� on the mean fields. To this end we used
equations for fluctuations of velocity and entropy in a rotat-
ing turbulent convection, which are obtained by subtracting
Eqs. �2� and �3� for the mean fields from the corresponding
equations for the instantaneous fields. The equations for fluc-
tuations of velocity and entropy are given by

�u�

�t
= − �U · ��u� − �u� · ��U − �� p�

�0
	 − gs�

+ 2u� 
 � + UN, �4�

�s�

�t
= −

�b
2

g
�u� · e� − �U · ��s� + SN, �5�

where UN= ��u� ·��u��− �u� ·��u�+ f��u�� and SN= ��u ·��s�
− �u ·��s− �1/T0�� ·F��u� ,s�� are the nonlinear terms which
include the molecular dissipative terms, �b

2=−g ·�S is the
Brunt-Väisälä frequency, p� are fluctuations of fluid pressure,
and the fluid velocity fluctuations u� satisfy the equation
div��0u��=0.

To study the rotating turbulent convection we performed
the derivations which include the following steps: �i� using
new variables for fluctuations of velocity v=��0u� and en-
tropy s=��0s�; �ii� derivation of the equations for the second
moments M�II� of the velocity fluctuations �viv j�, the entropy
fluctuations �s2�, and the turbulent heat flux �vis� in the k
space; �iii� application of the spectral closure �see Eq. �6�
below� and solution of the derived second-moment equations
in the k space; and �iv� returning to the physical space to
obtain formulas for the Reynolds stresses and the turbulent
heat fluxes as the functions of the rotation rate � �see Ap-
pendix A for details�.

The second-moment equations include the first-order spa-

tial differential operators N̂ applied to the third-order mo-
ments M�III�. A problem arises how to close the system, i.e.,

how to express the set of the third-order terms N̂M�III�

through the lower moments M�II� �see, e.g., �20–22��. Various
approximate methods have been proposed in order to solve
it. A widely used spectral � approximation ��20,23–27�� pos-
tulates that the deviations of the third-moment terms,

N̂M�III��k�, from the contributions to these terms afforded by

the background turbulent convection, N̂M0
�III��k�, are ex-

pressed through the similar deviations of the second mo-
ments, M�II��k�−M0

�II��k�:
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N̂M�III��k� − N̂M0
�III��k� = −

M�II��k� − M0
�II��k�

��k�
, �6�

where ��k� is the characteristic relaxation time, which can be
identified with the correlation time of the turbulent velocity
field. The background turbulent convection �which corre-
sponds to a nonrotating and shearfree turbulent fluid flow� is
determined by the budget equations and the general structure
of the moments is obtained by symmetry reasoning. The
above procedure �see Appendix A� yields formulas for the
Reynolds stresses and the turbulent heat flux in the rotating
turbulent convection. In particular, this allowed us to deter-
mine the effect of the turbulent heat flux on the Reynolds
stresses.

The differential rotation in the axisymmetric fluid flow is
determined by linearized Eq. �2� for the toroidal component
U��r ,	��r sin 	�� of the mean velocity:

�0
�U�

�t
=

1

r3

�

�r
�r3�r�� +

1

r sin2 	

�

�	
�sin2 	�	��

+ 2�0�U 
 ���, �7�

where the tensor �ij =−�viv j� is determined by the Reynolds
stress tensor. In particular,

�r� � − ej
�ei

r�viv j� = �0�Tr
�

�r
�U�

r
	 + �r�

F + �r�
u , �8�

�	� � − ej
�ei

	�viv j� = �0�T
sin 	

r

�

�	
� U�

sin 	
	 + �	�

F + �	�
u ,

�9�

where er, e	, and e� are the unit vectors along the radial,
meridional, and toroidal directions of the spherical coordi-
nates r, 	, and �. There are three contributions to the tensor
�ij =−�viv j�. In particular, the first term on the right-hand
side of Eqs. �8� and �9� describes the isotropic turbulent vis-
cosity ��T, the second term in Eqs. �8� and �9� determines
the contribution �F to the Reynolds stresses caused by the
turbulent heat flux, and the third term in Eqs. �8� and �9�
determines the contribution �u to the Reynolds stresses
caused by the anisotropy of turbulence due to the nonuni-
form fluid density and uniform rotation.

In Eq. �7� we neglected the small molecular viscosity term
and we took into account that in the axisymmetric fluid flow
��U ,S� /��=0 and �� /� is a small parameter. We assumed
that the toroidal component of the mean velocity is much
larger than the poloidal component. This is typical for the
solar and stellar convective zones. We also took into account
that the fluid density is nonuniform in the radial direction.
The first two terms on the right-hand side of Eq. �7� are the
� component of the divergence of the tensor �ij written for
the axisymmetric fluid flow in spherical coordinates. This is
a standard form of the � component of the divergence of a
tensor in spherical coordinates �see, e.g., �28��.

Let us discuss the contribution, �F, to the Reynolds stress
tensor caused by the turbulent heat flux. The components of
this tensor, �r�

F �−ej
�ei

r�viv j�F and �	�
F =−ej

�ei
	�viv j�F, were

determined in Appendix A. They are given by

�r�
F =

1

6
�0�0

2gF*� sin 	��1��� + cos2 	�2���� , �10�

�	�
F =

1

3
�0�0

2gF*� sin2 	 cos 	�2��� , �11�

where the tensor �viv j�F determines the contribution to the
Reynolds stresses which vanishes when �s�uz��→0 �see Eq.
�A24� in Appendix A�. Here F*= �s�uz�� is the vertical turbu-
lent heat flux, the parameter �=8��0, �0= l0 /u0 is the char-
acteristic correlation time of turbulent velocity field, and u0
is the characteristic turbulent velocity in the maximum scale
of turbulent motions l0. The functions �1��� and �2��� are
shown in Fig. 1. The formulas for the functions �1��� and
�2��� are given by Eqs. �A28� and �A29� in Appendix A.
The asymptotic formulas for �r�

F and �	�
F for a slow rotation,

8�0��1, are given by

�r�
F 
 �0�0

2gF*� sin 	 ,

�	�
F 
 4�0�0

4gF*�3 sin2 	 cos 	 ,

and for 8�0��1 they are given by

�r�
F 


1

4�
�0gF* sin3 	 ,

�	�
F 


1

2�
�0gF* sin2 	 cos 	 .

The contribution to the Reynolds stresses, �u, in Eqs. �8�
and �9� is caused by the anisotropy of turbulence due to the
inhomogeneous fluid density and uniform rotation. The ten-
sor �u determines the anisotropic eddy viscosity tensor with
the nonzero off-diagonal components which are given by

�r�
u 


l0
2

15L�
2 ��0u0

2����0�sin 	�a1��� − a2���cos2 	� ,

�12�

FIG. 1. The functions �1���0� �solid� and �2���0�
�dashed�.
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�	�
u 


l0
2

15L�
2 ��0u0

2����0�a2���sin2 	 cos 	 �13�

�see, e.g., �10��, where a1����−1 and a2����2���0�2 for
��0�1, and a1����O����0�−3� and a2����−���0�−1 for
��0�1. The contribution to the Reynolds stresses, �u, due
to the anisotropic eddy viscosity is smaller than that of �F

due to the turbulent heat flux. In particular, the ratio

�F /�u
�10�L� / l0�2 for ��0�1. Note that for fast rotation
rates ���0�1� the validity of Eqs. �12� and �13� is question-
able because the quasilinear approximation used in �10� is
not valid for ��0�1.

For large Rayleigh numbers the contributions of anisotro-
pies decrease in small scales. On the other hand, the rotation
introduces an anisotropy in the turbulent convection. This
causes nonzero off-diagonal components of the Reynolds
stress tensor �see Eqs. �10�–�13�� and results in the redistri-
bution of the turbulent heat flux on the surface of the rotating
body �see Eq. �A30��. Note that the main contribution to the
tensor �ij is at the maximum scale of turbulent motions.
Therefore the contributions to the tensor �ij which depend on
the Reynolds number are negligibly small. In the present
study we investigated the large-scale effects �the differential
rotation�, and the influence of the molecular viscosity and
molecular thermal diffusivity on the large-scale dynamics is
very small in comparison with that of the eddy viscosity and
turbulent thermal diffusivity. Therefore the contributions to
the tensor �ij which depend on the molecular Prandtl number
are also negligibly small.

III. DIFFERENTIAL ROTATION

In the present study for simplicity we have taken into
account only the effect of �F on the differential rotation. Let
us neglect the toroidal component of the Coriolis force in Eq.
�7�. This is valid when the poloidal components of the mean
fluid velocity U	 and Ur are much smaller than u0l0 /L�. This
condition implies that the last term on the right-hand side of
Eq. �7� is much smaller than other terms. Here we took into
account that �r�

F ��0 and the fluid density stratification
length L� is much smaller than the solar radius R�. Therefore
we neglected the effect of the meridional circulations on the
differential rotation, which was studied in �12�, among the
others. For simplicity we also did not take into account the
dependence of the turbulent viscosity on the rate of rotation.
After these simplifications, Eq. �7� in dimensionless form
reads

� �

�t
+

M̂�X�
r2 − Ŵ�r����

�
=

I
r2 , �14�

where

M̂�X� = �X2 − 1�
�2

�X2 + 4X
�

�X
,

Ŵ�r� =
1

�0�r�r4

�

�r
��0�r�r4 �

�r
	 ,

I�r� = I0��3 − r���1��� − 2�2��� + �13 − r���2���X2� ,

I0=�0
2gF* /6�T, �=R� /L�, and X=cos 	. Here length is mea-

sured in units of the solar radius R� and time is measured in
units of R�

2 /�T based on the solar radius and the turbulent
viscosity �T.

The solution of Eq. �14� we seek in the form

��

�
= Ã +

1
��0

�
n=0

�

C2n
3/2�X��

m=3

�

Vm,2n�r�Qm,2n�t� , �15�

where the function Cn
3/2�X� satisfies the equation for the ul-

traspherical polynomials:

�M̂�X� − n�n + 3��Cn
3/2�X� = 0. �16�

The functions Vm,n�r� in Eq. �15� are determined by the equa-
tion of the eigenvalue problem

�L̂n�r� − 
m�Vm,n�r� = 0, �17�

with

L̂n�r� =
d2

dr2 +
4

r

d

dr
+

2�

r
−

�2

4
−

n�n + 3�
r2 .

The constant Ã in Eq. �15� is determined from the conserva-
tion law for the total angular momentum L����r
 ���
+���
r���0�r�dr of the rotating body �e.g., the Sun�. The
functions Qm,2n�t� in Eq. �14� are determined in Appendix B.
They are given by Eqs. �B4�–�B6�.

Equation �17� coincides with the equation for the Kepler
problem in quantum mechanics �the hydrogen atom in a
spherically symmetric potential, see, e.g., �29��. The solution
of Eq. �17� is given by

Vm,n�r� = rn exp�− r�/m�F̃�a;b;2r�/m� , �18�

where F̃�a ;b ;y� is the confluent hypergeometric function
with a=n−m+2 and b=2�n+2�. Here we assumed for sim-
plicity that L� is independent of the radius. The characteristic
spatial scale of the mean-field variations is of the order of the
solar radius R� in the main part of the convective zone �ex-
cept for its boundaries�. On the other hand, the fluid density
in the solar convective zone changes very strongly �in six to
seven orders of magnitude�. Therefore in the main part of the
solar convective zone r��1, and Eq. �18� for the eigenfunc-
tions Vm,n�r� reduces to

Vm,n�r� = Arm−2 exp�− r�/m� , �19�

where the eigenvalues 
m are given by


m = −
�2�m2 − 4�

4m2 , �20�

with the integer numbers m�3. Here 
m is measured in units
of �T /R�

2 . The constant A in Eq. �19� is determined from the
condition �rb

1 r4Vm,n
2 �r�dr=1, where rb=Rb /R�, Rb is the ra-

dius of the bottom of the convective zone, and r=R /R� is
the dimensionless radius measured in units of the solar radius
R�. Therefore the differential rotation caused by the effect of
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the turbulent heat flux on the Reynolds stresses in a turbulent
convection is determined by the following equation:

��

�
=

L�

R�

� �0
2gF*

�T
��

m=3

� ��m� �0�Rb�
�0�R����m−2�/2m

− � R

R�

	m−2


��0�Rb�
�0�R� ��m−2�/2m

�f1,m��� + f2,m���cos2 	�� , �21�

where

f1,m��� = K�m���̃1��� − 3K*�m�
L�

R�

�̃2���� ,

f2,m��� = K�m��2����1 − 13K*�m�
L�

R�

� ,

�m =
L�

R�

� 10m

m − 2
	� f1 + f2/5

1 − �Rb/R��5� ,

K�m�=8m2 / �3�m2−4��m+2��, �̃1���=�1���+ �13/10�

�2���, and �̃2���=�1���+5�2���, the parameter K*�m�
is given by Eq. �B7� in Appendix B. In the next section we
use Eq. �21� in order to estimate the solar differential rota-
tion.

IV. DISCUSSION

The effect of the turbulent heat flux on the Reynolds
stresses in a turbulent convection may cause the differential
rotation comparable with the typical differential rotation of
the Sun. Indeed, let us use estimates of governing parameters
taken from models of the solar convective zone, e.g., �30,31�.
More modern treatments make little difference to these esti-
mates. In particular, at depth of the convective zone, H
�1010 cm measured from the top �i.e., at R=0.85R��, the
parameters are the maximum scale of turbulent motions l0
�5.5
109 cm; the characteristic turbulent velocity in the
maximum scale of turbulent motions u0�5.4
103 cm s−1;
the turbulent viscosity �T�1013 cm2 s−1; the fluid density
�0�7.6
10−2 g cm−3; and the fluid density stratification
length L��1010 cm. Thus Eq. �21� yields the following esti-
mates for the solar differential rotation:

� �

�r
��� 
 200�1 + 0.4 cos2 	�

nHz

R�

, �22�

1

r
� �

�	
��� 
 140 sin�2	�

nHz

R�

. �23�

These estimates are in agreement with the data obtained from
surface observations of the solar angular velocity �14,15� and
from helioseismology �16–19�. Therefore the effect of the
turbulent heat flux on the Reynolds stresses in a turbulent
convection is crucial for the formation of the differential ro-
tation and should be taken into account in theories of the
differential rotations of the Sun and solarlike stars.

The mechanism of the differential rotation due to the ef-
fect of the turbulent heat flux on the Reynolds stresses is

related to the counter-rotation turbulent heat flux in turbulent
convection. This flux reads

FCR = −
3F*

8�
�2� arctan �

�
− 1	 + ln�1 + �2��sin 	e�

�24�

�see Eq. �A30��. Therefore the entropy fluctuations correlate
with the toroidal component of the velocity. The entropy
fluctuations result in fluctuations of the buoyancy force that
increases fluctuations of the poloidal components of the ve-
locity �which are correlated with the fluctuations of the tor-
oidal component of the velocity�. These produce the off-
diagonal components of the Reynolds stress tensor which
cause the formation of the differential rotation.
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APPENDIX A: THE REYNOLDS STRESSES IN ROTATING
TURBULENT CONVECTION

We use a mean-field approach whereby the velocity, pres-
sure, and entropy are separated into the mean and fluctuating
parts, where the equations in the new variables for fluctua-
tions of velocity v=��0u� and entropy s=��0s� follow from
Eqs. �4� and �5�:

1
��0

�v�x,t�
�t

= − �� p�

�0
	 +

1
��0

�2v 
 � − �v · ��U

− GUv − gs� + FM + vN, �A1�

�s�x,t�
�t

= −
�b

2

g
�v · e� − GUs + sN, �A2�

where GU= �1/2�div U+U ·�, vN and sN are the nonlinear
terms which include the molecular viscous and dissipative
terms, and p� are fluctuations of fluid pressure. The fluid
velocity fluctuations v satisfy the equation � ·v= �1/2L��

�v ·e�, where ���0� /�0=−L�

−1e. Equations �A1� and �A2�
are written in the anelastic approximation. The variables with
the subscript “0” correspond to the hydrostatic nearly isen-
tropic basic reference state. The turbulent convection is re-
garded as a small deviation from a well-mixed adiabatic ref-
erence state.

Let us derive equations for the second-order moments.
For this purpose we rewrite the momentum equation and the
entropy equation in a Fourier space. In particular,

dvi�k�
dt

= �Dim
� �k� + Iim

U �k��vm�k� + gemPim�k�s�k� + vi
N�k� ,

�A3�
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ds�k�
dt

= − GU�k�s�k� + sN. �A4�

To derive Eq. �A3� we multiplied the momentum equation
written in k-space by Pij�k�=�ij −kij in order to exclude the
pressure term from the equation of motion. Here

Iij
U�k� = 2kin� jUn − � jUi − GU�k��ij ,

GU�k� =
1

2
div U + i�U · k� ,

Dij
��k� = 2�ijm�nkmn,

and �ij is the Kronecker tensor, kij =kikj /k2, and �ijk is the
Levi-Civita tensor. Using Eqs. �A3� and �A4� we derive
equations for the following correlation functions:

f ij�k� = L̂�vi;v j�, Fi�k� = L̂�s;vi� ,

�i�k� = L̂�s;s� ,

where

L̂�a;c� =� �a�t,k + K/2�c�t,− k + K/2��exp�iK · R�dK ,

R and K correspond to the large scales, and r and k to the
small ones. Hereafter we omitted argument t and R in the
correlation functions. The equations for these correlation
functions are given by

�f ij�k�
�t

= �Iijmn
U + Dijmn

� �fmn + Mij
F + N̂ f̃ i j , �A5�

�Fi�k�
�t

= �Iim
U + Dim

� �Fm + gemPim�k���k� + N̂F̃i, �A6�

���k�
�t

= − div�U��k�� + N̂� , �A7�

where

Iijmn
U = Iim

U �k1�� jn + Ijm
U �k2��in

= �2kiq�mp� jn + 2kjq�im�pn − �im� jq�np − �iq� jn�mp

+ �im� jnkq
�

�kp
��pUq − �im� jn�div U + U · �� ,

�A8�

Dijmn
� = Dim

� �k1�� jn + Djm
� �k2��in = 2�qkpq��imp� jn + � jmp�in� ,

�A9�

Mij
F = gem�Pim�k�Fj�k� + Pjm�k�Fi�− k�� , �A10�

and k1=k+K /2, k2=−k+K /2. Note that the correlation
functions f ij, Fi, and � are proportional to the fluid density

�0�R�. Here N̂ f̃ i j, N̂F̃i, and N̂� are the terms which are

related to the third-order moments appearing due to the non-
linear terms. In particular,

N̂ f̃ i j = �Pim�k1�vm
N�k1�v j�k2�� + �vi�k1�Pjm�k2�vm

N�k2�� ,

N̂F̃i = �sN�k1�uj�k2�� + �s�k1�Pim�k2�vm
N�k2�� ,

N̂� = �sN�k1�s�k2�� + �s�k1�sN�k2�� .

When div U=0, Eq. �A8� coincides with that derived in �32�.
The equations for the second-order moments contain

high-order moments and a closure problem arises �see, e.g.,
�20–22��. We apply the spectral � approximation �or the
third-order closure procedure, see, e.g., �20,23–27��. The
spectral � approximation postulates that the deviations of the

third-order-moment terms, N̂f ij�k�, from the contributions to
these terms afforded by the background turbulent convection,

N̂f ij
�0��k�, are expressed through the similar deviations of the

second moments, f ij�k�− f ij
�0��k�, i.e.,

N̂f ij�k� − N̂f ij
�0��k� = −

f ij�k� − f ij
�0��k�

��k�
, �A11�

and similarly for other tensors, where N̂f ij =N̂ f̃ i j

+Mij
F�F�=0� and N̂Fi=N̂F̃i+genPin�k���=0, the superscript

�0� corresponds to the background turbulent convection �i.e.,
a nonrotating turbulent convection with �iUj =0�, and ��k� is
the characteristic relaxation time of the statistical moments.
The quantities F�=0 and ��=0 are for a nonrotating turbulent
convection with nonzero spatial derivatives of the mean ve-
locity. Note that we applied the � approximation �A11� only
to study the deviations from the background turbulent con-
vection which are caused by the spatial derivatives of the
mean velocity and a nonzero rotation. The background tur-
bulent convection is assumed to be known �see below�.

The solution of Eqs. �A5�–�A7� after applying the spectral
� approximation reads

f ij�k� = f ij
�0��k� + f ij

F�k� + f ij
U�k� , �A12�

Fi�k� = D̃im
−1���Fm

�0��k� , �A13�

��k� = �1 − ��U · �����0��k� , �A14�

where

f ij
U�k� = �D̃ijmn

−1 ���Imnpq
U �fpq

�0� + fpq
F � , �A15�

f ij
F�k� = �D̃ijmn

−1 ���M̃mn
F �k� , �A16�

M̃ij
F�k� = gem�Pim�k��Fj�k� − Fj

�=0�k��

+ Pjm�k��Fi�− k� − Fi
�=0�− k��� . �A17�

Here D̃ij
−1��� is the inverse of D̃ij���=�ij −�Dij

� and

D̃ijmn
−1 ��� is the inverse of D̃ijmn���=�im� jn−�Dijmn

� , and

D̃ij
−1��� = ������ij + ��ijmk̂m + �2kij� , �A18�
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D̃ijmn
−1 ��� =

1

2
�B1�im� jn + B2kijmn + B3��ipm� jn + � jpn�im�k̂p

+ B4��imkjn + � jnkim� + B5�ipm� jqnkpq

+ B6��ipmkjpn + � jpnkipm�� , �A19�

and k̂i=ki /k, ����=1/ �1+�2�, �=2��k��k ·�� /k, B1=1
+��2��, B2=B1+2−4����, B3=2���2��, B4=2����−B1,
B5=2−B1, and B6=2������−��2���. For derivation of Eqs.
�A12�, �A15�, and �A16� we used a procedure described in
Appendix B in �33�.

For the integration in k-space of the second moments
f ij�k�, Fi�k�, and ��k� we have to specify a model for the
background turbulent convection �i.e., a nonrotating turbu-
lent convection with �iUj =0�. Here we used the following
model of the background turbulent convection:

f ij
�0��k� = �0��u��2�Pij�k�W�k� , �A20�

Fi
�0��k� = 3�0�s�uz��emPim�k�W�k� , �A21�

��0��k� = 2�0��s��2�W�k� , �A22�

where W�k�=E�k� /8�k2, ��k�=2�0�̄�k�, E�k�=−d�̄�k� /dk,
�̄�k�= �k /k0�1−q, 1�q�3 is the exponent of the kinetic en-
ergy spectrum �q=5/3 for Kolmogorov spectrum�, k0=1/ l0,
and l0 is the maximum scale of turbulent motions, �0= l0 /u0,
and u0 is the characteristic turbulent velocity in the scale l0.
Motion in the background turbulent convection is assumed to
be nonhelical.

Equations �A13�, �A16�, and �A17� can be rewritten in the
form

Fi�k� = �0F*
3W�k�
1 + �2 �emPim�k� + ��e 
 k�i� , �A23�

f ij
F�k� = �0��k�gF*

3�W�k�
2�1 + �2�


�B1�Mij
�a� − 2�Mij

�c�� + 2��B1 − 2�Mij
�b�� ,

�A24�

M̃ij
F�k� = �0��k�gF*

3�W�k�
1 + �2 �Mij

�a� − 2�Mij
�b�� , �A25�

where F*= �s�uz��,

Mij
�a� = �e 
 k�iemPjm�k� + �e 
 k� jemPim�k� ,

Mij
�b� = emenPim�k�Pjn�k� ,

Mij
�c� = �e 
 k�i�e 
 k� j ,

and we used the identities:

D̃ijmn
−1 Mij

�a� =
1

2
��B1 − B5�Mij

�a� + 2B3�Mij
�b� − Mij

�c��� ,

D̃ijmn
−1 Mij

�b� =
1

2
�B1Mij

�b� − B3Mij
�a� + B5Mij

�c�� .

In order to integrate over the angles in k-space we used
the following identities:

J̄ij�a� =� kij sin 	

1 + a cos2 	
d	d� = Ā1�ij + Ā2�ij , �A26�

J̄ijmn�a� =� kijmn sin 	

1 + a cos2 	
d	d�

= C̄1��ij�mn + �im� jn + �in� jm� + C̄2�ijmn

+ C̄3��ij�mn + �im� jn + �in� jm + � jm�in + � jn�im

+ �mn�ij� �A27�

�see for details, �33,34��, where �ij =�i� j /�2, �ijmn
=�ij�mn,

Ā1�a� =
2�

a
��a + 1�

arctan��a�
�a

− 1� ,

Ā2�a� = −
2�

a
��a + 3�

arctan��a�
�a

− 3� ,

C̄1�a� =
�

2a2��a + 1�2arctan��a�
�a

−
5a

3
− 1� ,

C̄2�a� = Ā2�a� − 7Ā1�a� + 35C̄1�a� ,

C̄3�a� = Ā1�a� − 5C̄1�a� .

Equation �A24� after the integration in k-space allows us
to determine the contributions of the turbulent heat flux to
the Reynolds stress tensor in turbulent convection. In par-
ticular, the components �r�

F =−ej
�ei

rf ij
F and �	�

F =−ej
�ei

	f ij
F are

given by Eqs. �10� and �11�, respectively, where

�1��� = 2�1��� + �2��/2� , �A28�

�2��� = 2�2��� + �2��/2� , �A29�

�1��� = −
6

�4� arctan �

�
�1 + �2� −

8�2

3
− 1 + 2�S���� ,

�2��� =
6

�4�5
arctan �

�
�1 + �2� +

8�2

3
− 5 − 6�S���� ,

�=8�0� and S���=�0
��arctan y /y�dy. Here we took into ac-

count that �1���=A1
�2����+A2

�2����−C1
�2����−C3

�2���� and
�2���=−C2

�2����−3C3
�2����, where the functions Ak

�p���� and
Ck

�p���� are given by

Ak
�p���� = �6/��p+1��

0

�

ypĀk�y2�dy ,
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Ck
�p���� = �6/��p+1��

0

�

ypC̄k�y2�dy

�see for details, �33,34��. For derivation of Eqs. �10� and �11�
we used the following identities:

ej
�ei

	Mij
�a� = kijm�ei

�ej
� − ei

	ej
	�em

r ,

ej
�ei

	Mij
�b� = kijmnei

�ej
	em

r en
r ,

ej
�ei

	Mij
�c� = − kijej

�ei
	,

�ei
�ej

� − ei
	ej

	�em
r �̂nJ̄ijmn = �C̄2 + 3C̄3�sin2 	 cos 	 ,

�pqjem
r en

req
r�̂iJ̄ijmn = �e 
 �̂�p�C̄1 + C̄3 + cos2 	�C̄2 + 3C̄3�� .

Here �̂i=�i /�. Equation for the turbulent heat flux follows
from Eq. �A23� after integration in k-space:

F =
F*

16
�− x�A1

�1��x� + A2
�1��x��sin 	e�

+ �2A1
�0��x� + A2

�0��x�sin2 	�er

+
1

2
A2

�0��x�sin�2	�e		
x=�/2

, �A30�

where er, e	, and e� are the unit vectors along the radial,
meridional, and toroidal directions, respectively. The first
term in Eq. �A30� describes the counter-rotation turbulent
heat flux, which is given by Eq. �24�.

APPENDIX B: THE FUNCTIONS Qm,2n„t…

The equation for the functions Qm,2n�t� follows from Eqs.
�14�–�17�. In particular,

dQm,0�t�
dt

= − 

m
Qm,0 + I0�R�

L�

K1�m��3��� + K2�m��4���� ,

�B1�

dQm,2�t�
dt

= − 

m
Qm,2 −
2

15
I0�2����R�

L�

K1�m� − 13K2�m�� ,

�B2�

dQm,2n�t�
dt

= − 

m
Qm,2n, �B3�

with the integer numbers n�1 in Eq. �B3�, where �3���=
−�1���− �3/2��2���, �4���=3�1���+ �35/2��2���,
K1�m�=�rb

1 r3��0�r�Vm,2n�r�dr, and K2�m�=�rb

1 r2��0�r�

Vm,2n�r�dr. A steady state solution of Eqs. �B1�–�B3� is
given by

Qm,0�t� =
I0



m
�R�

L�

K1�m��3��� + K2�m��4���� , �B4�

Qm,2�t� = −
2I0

15

m

�2����R�

L�

K1�m� − 13K2�m�� ,

�B5�

Qm,2n�t� = 0, �B6�

where n�1 in Eq. �B6�. The ratio K*�m�=K2�m� /K1�m� is
given by

K*�m� =
rb

2Em�r0� − 1

rb
3Em�r0� − 1

, �B7�

where

Em�r0� = exp� �2 + m��1 − rb�R�

2mL�
	 ,

and rb=Rb /R�.
The function Cn

3/2�X� entering in Eq. �15� has the follow-
ing properties:

�
−1

1

�1 − X2�Cn
3/2�X�Cl

3/2�X�dX =
�n + 1��n + 2�

n + 3/2
�nl,

�B8�

and C0
3/2�X�=1, C2

3/2�X�= �3/2��5X2−1�. Note that due to the
condition �B8�, the function C0

3/2�X� only contributes to the
total angular momentum of the Sun.
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