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The nonlinear theory of a “shear-current” effect in a nonrotating and nonhelical homogeneous turbulence

with an imposed mean velocity shear is developed. The shear-current effect is associated with theW̄ 3 J̄ term
in the mean electromotive force and causes the generation of the mean magnetic field even in a nonrotating and

nonhelical homogeneous turbulence(whereW̄ is the mean vorticity andJ̄ is the mean electric current). It is
found that there is no quenching of the nonlinear shear-current effect contrary to the quenching of the nonlinear
a effect, the nonlinear turbulent magnetic diffusion, etc. During the nonlinear growth of the mean magnetic

field, the shear-current effect only changes its sign at some valueB̄* of the mean magnetic field. The magnitude

B̄* determines the level of the saturated mean magnetic field which is less than the equipartition field. It is
shown that the background magnetic fluctuations due to the small-scale dynamo enhance the shear-current

effect and reduce the magnitudeB̄* . When the level of the background magnetic fluctuations is larger than 1/3
of the kinetic energy of the turbulence, the mean magnetic field can be generated due to the shear-current effect
for an arbitrary exponent of the energy spectrum of the velocity fluctuations.
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I. INTRODUCTION

The magnetic fields of the Sun, solar-type stars, galaxies,
and planets are believed to be generated by a dynamo pro-
cess(see, e.g.,[1–10]). In the framework of the mean-field

approach, the large-scale magnetic fieldB̄ is determined by
the induction equation

] B̄

] t
= = 3 fŪ 3 B̄ +EsB̄d − h = 3 B̄g, s1d

whereŪ is the mean velocity andh is the magnetic diffusion
due to the electrical conductivity of fluid. The mean electro-

motive forceEsB̄d=ku3bl is given by

EisB̄d = ai jsB̄dB̄j − hi jsB̄ds= 3 B̄d j + fVeffsB̄d 3 B̄gi

− fdsB̄ds= 3 B̄dgi − ki jksB̄ds] B̂d jk, s2d

whereu andb are fluctuations of the velocity and magnetic
field, respectively, angular brackets denote ensemble averag-

ing, s]B̂di j =s¹iB̄j +¹ jB̄id /2 is the symmetric part of the gra-

dient tensor of the mean magnetic field¹iB̄j—i.e., ¹iB̄j

=s]B̂di j +«i jns=3 B̄dn/2—and «i jk is the Levi-Cività tensor.

Hereai jsB̄d andhi jsB̄d determine thea effect and turbulent

magnetic diffusion, respectively,VeffsB̄d is the effective drift

velocity of the magnetic field,ki jksB̄d describes a contribu-
tion to the mean electromotive force related to the symmetric
parts of the gradient tensor of the mean magnetic field,

s]B̂di j , and arises in an anisotropic turbulence, and thedsB̄d

term determines a nontrivial behavior of the mean magnetic
field in an anisotropic turbulence.

The mean magnetic field can be generated in a helical
rotating turbulence due to thea effect described by the
ai jsB̄dB̄j term in the mean electromotive force. When the
rotation is nonuniform, the generation of the mean magnetic
field is caused by theaV dynamo. For a rotating nonhelical
turbulence thed term in the mean electromotive force de-
scribes theV3J effect which causes a generation of the
mean magnetic field if rotation is a nonuniform(see
[11–15]), whereV is the angular velocity andJ is the mean
electric current.

For a nonrotating and nonhelical turbulence thea effect
and theV3J effect vanish. However, a mean magnetic field
can be generated in a nonrotating and nonhelical turbulence
with an imposed mean velocity shear due to the “shear-
current” effect [16], described by thed term in the mean
electromotive force. In order to elucidate the physics of the
shear-current effect, we compare thea effect in theaV dy-
namo with thed term caused by the shear-current effect. The
a term in the mean electromotive force, which is responsible
for the generation of the mean magnetic field, readsEi

a

;aB̄i ~−sV ·LdB̄i (see, e.g.,[3,15], whereL= = ku2l / ku2l
determines one of the inhomogeneities of the turbulence. The
d term in the electromotive force caused by the shear-current

effect is given byEi
d;−fd3 s=3 B̄dgi ~−sW̄ ·= dB̄i [see Eq.

(8) below and[16]], where thed term is proportional to the

mean vorticity W̄ = = 3 Ū. The mean vorticityW̄ in the
shear-current dynamo plays the role of a differential rotation
and the inhomogeneity of the mean magnetic field plays the
role of the inhomogeneity of turbulence. During the genera-
tion of the mean magnetic field in both cases(in the aV
dynamo and in the shear-current dynamo), the mean electric
current along the original mean magnetic field arises. Thea
effect is related to the hydrodynamic helicity~sV ·Ld in an
inhomogeneous turbulence. The deformations of the mag-
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netic field lines are caused by upward and downward rotating
turbulent eddies in theaV dynamo. Since the turbulence is
inhomogeneous(which breaks a symmetry between the up-
ward and downward eddies), their total effect on the mean
magnetic field does not vanish and it creates the mean elec-
tric current along the original mean magnetic field.

In a turbulent flow with an imposed mean velocity shear,
the inhomogeneity of the original mean magnetic field
breaks a symmetry between the influence of upward and
downward turbulent eddies on the mean magnetic field. The
deformations of the magnetic field lines in the shear-current
dynamo are caused by upward and downward turbulent ed-
dies which result in the mean electric current along the mean
magnetic field and produce the magnetic dynamo.

The shear-current effect was studied in[16] in a kinematic
approximation. Kinematic dynamo models predict a field
that grows without limit, and they give no estimate of the
magnitude for the generated magnetic field. In order to find
the magnitude of the field, the nonlinear effects which limit
the field growth must be taken into account.

The main goal of this study is to develop a nonlinear
theory of the shear-current effect. We demonstrated that the
nonlinear shear-current effect is a very important nonlinear-
ity in a mean-field dynamo. During the nonlinear growth of
the mean magnetic field, the shear-current effect changes its
sign, but there is no quenching of this effect contrary to the
quenching of the nonlineara effect, the nonlinear turbulent
magnetic diffusion, etc. The nonlinear shear-current effect
determines the level of the saturated mean magnetic field.
This paper is organized as follows. First, we discuss qualita-
tively a mechanism for the shear-current effect(Sec. II). In
Sec. III we formulate the governing equations, the assump-
tions, and the procedure of the derivation of the nonlinear
mean electromotive force in a turbulent flow with a mean
velocity shear. In Sec. IV we analyze the coefficients defin-
ing the mean electromotive force for a shear-free turbulence
and for a sheared turbulence, and consider the implications
of the obtained results of the mean-field magnetic dynamo.
The nonlinear saturation of the mean magnetic field and as-
trophysical applications of the obtained results are discussed
in Sec. V.

II. SHEAR-CURRENT EFFECT

In order to describe the shear-current effect we need to
determine the mean electromotive force. The general form of
the mean electromotive force in a turbulent flow with a mean
velocity shear can be obtained even from simple symmetry
reasoning. Indeed, the mean electromotive force can be writ-
ten in the form

Ei = aij B̄j + bijkB̄j ,k, s3d

whereB̄j ,i =¹iB̄j and we neglected terms,Os¹2B̄kd. Follow-
ing [17] we rewrite Eq.(3) for the mean electromotive force
in the form of Eq.(2) with

ai jsB̄d =
1

2
saij + ajid, Vk

effsB̄d =
1

2
«kjiaij , s4d

hi jsB̄d =
1

4
s«ikpbjkp + « jkpbikpd, di =

1

4
sbjji − bjij d, s5d

ki jksB̄d = −
1

2
sbijk + bikjd, s6d

where we used the identityB̄j ,i =s]B̂di j +«i jns=3 B̄dn/2. Note
that the separation of terms in Eqs.(3)–(6) is not unique,
because a gradient term can always be added to the electro-
motive force. Let us consider a homogeneous, nonrotating,
and nonhelical turbulence. Then in the kinematic approxima-
tion the tensoraij vanishes. This implies thatai j =0 and
Vk

eff=0. The mean electromotive forceE is a true vector,

whereas the mean magnetic fieldB̄ is a pseudovector. Thus,
the tensorbijk is a pseudotensor[see Eq.(3)]. For homoge-
neous, isotropic, and nonhelical turbulence the tensorbijk
=hT«i jk, wherehT=u0l0/3 is the coefficient of isotropic tur-
bulent magnetic diffusion andu0 is the characteristic turbu-
lent velocity in the maximum scale of turbulent motions,l0.
In a turbulent flow with an imposed mean velocity shear, the

tensorbijk depends on the true tensor¹ jŪi. In this case tur-

bulence is anisotropic. The tensor¹ jŪi can be written as a

sum of the symmetric and antisymmetric parts—i.e.,¹ jŪi

=s]Ûdi j −s1/2d«i jkW̄k, where s]Ûdi j =s¹iŪj +¹ jŪid /2 is the

true tensor and the mean vorticityW̄ is a pseudovector. Now

we take into account the effect which is linear in¹ jŪi. Thus,
the pseudotensorbijk in the kinematic approximation has the
form

bijk = hT«i jk + l0
2fD1«i jms] Ûdmk+ D2«ikms] Ûdmj

+ D3« jkms] Ûdmi + D4di j W̄k + D5dikW̄jg, s7d

whereDk are the unknown coefficients,di j is the Kronecker

tensor, and the term~d jkW̄i vanishes since= ·B̄=0 [see Eq.
(3)]. Using Eqs.(4)–(6) we determine the turbulent coeffi-
cients defining the mean electromotive force for a homoge-
neous and nonhelical turbulence with a mean velocity shear:

hi j = hTdi j − 2l0
2h0s] Ûdi j , d = l0

2d0W̄ , s8d

ki jk = l0
2fk1di j W̄k + k2«i jms] Ûdmkg, s9d

where h0=sD1−D2−2D3d /4 ,d0=sD4−D5d /2 ,k1=−sD4

+D5d, andk2=−sD1+D2d. The second term in the tensorhi j

describes an anisotropic part of turbulent magnetic diffusion
caused by the mean velocity shear, while the first term in the
tensorhi j is the isotropic contribution to turbulent magnetic
diffusion. Thed term for the mean electromotive force de-
scribes the shear-current effect which can cause the mean-
field magnetic dynamo. Indeed, consider a homogeneous

divergence-free turbulence with a mean velocity shear,Ū
=s0,Sx,0d andW̄ =s0,0,Sd. Let us study a simple case when

the mean magnetic field isB̄=(B̄xszd ,B̄yszd ,0). The mean
magnetic field in the kinematic approximation is determined
by
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] B̄x

] t
= − Sl0

2s0B̄y9 + hTB̄x9, s10d

] B̄y

] t
= SB̄x + hTB̄y9, s11d

whereB̄9=]2B̄/]z2 and

s0 = d0 − h0 −
k1

2
−

k2

4
=

1

2
sD2 + D3 + 2D4d. s12d

In Eq. (11) we took into account that the characteristic spatial
scaleLB of the mean magnetic field variations is much larger
than the maximum scale of turbulent motions,l0. Equation
(12) was obtained in[16] in the kinematic approximation.
We seek a solution of Eqs.(10) and (11) in the form
~ expsgt+ iKzzd, where the growth rateg of the magnetic
dynamo instability is given by

g = Sl0Kz
Îs0 − hTKz

2. s13d

The first terms~SB̄xd on right-hand side(RHS) of Eq. (11)
describes the shear motions. This effect is similar to the dif-

ferential rotation because=3 sŪ3 B̄d=SB̄xey. The magnetic
dynamo instability is determined by a coupling between the
components of the mean magnetic field. In particular, the

inhomogeneous magnetic fieldB̄y generates the fieldB̄x due
to the shear-current effect[described by the first term on the
RHS of Eq.(10)]. This is similar to thea effect. On the other

hand, the fieldB̄x generates the fieldB̄y due to the pure shear
effect [described by the first term on the RHS of Eq.(11)],
like the differential rotation inaV dynamo. It follows from

Eqs.(10) and (11) that for the shear-current dynamo,B̄x/ B̄y
, l0/LB!1. Note that in theaV dynamo, the poloidal com-
ponent of the mean magnetic field is much smaller than the
toroidal field.

The magnetic dynamo instability due to the shear-current
effect is different from that for theaV dynamo. Indeed, the
dynamo mechanism due to the shear-current effect acts even
in homogeneous nonhelical turbulence, while thea effect
vanishes for homogeneous turbulence.

The shear-current effect was studied in[16] in the kine-
matic approximation using two different methods: thet ap-
proximation (the Orszag third-order closure procedure) and
the stochastic calculus(the path integral representation of the
solution of the induction equation, Feynman-Kac formula,
and Cameron-Martin-Girsanov theorem). The d term in the
electromotive force which is responsible for the shear-
current effect was also independently found in[18] in a prob-
lem of a screw dynamo using the modified second-order cor-
relation approximation.

III. GOVERNING EQUATIONS AND THE PROCEDURE
OF THE DERIVATION OF THE NONLINEAR

EFFECTS

Now let us develop a nonlinear theory of the shear-current
effect. In order to derive equations for the nonlinear coeffi-

cients defining the mean electromotive force in a homoge-
neous turbulence with a mean velocity shear, we will use a
mean-field approach in which the magnetic and velocity
fields are divided into mean and fluctuating parts, where the
fluctuating parts have zero mean values. The procedure of
the derivation of equation for the nonlinear mean electromo-
tive force is as follows(for details, see Appendix A). We
consider the case of large hydrodynamic and magnetic Rey-
nolds numbers. The momentum equation and the induction
equation for the turbulent fields are given by

] ust,xd
] t

= −
=ptot

r
+

1

mr
fsb · = dB̄ + sB̄ · = dbg − sŪ · = du

− su · = dŪ + uN + F, s14d

] bst,xd
] t

= sB̄ · = du − su · = dB̄ − sŪ · = db + sb · = dŪ

+ bN, s15d

where u and b are fluctuations of velocity and magnetic

field, respectively,B̄ is the mean magnetic field,Ū is the
mean velocity field,r is the fluid density,m is the magnetic
permeability of the fluid,F is a random external stirring
force, uN and bN are the nonlinear terms which include the

molecular dissipative terms,ptot=p+m−1sB̄ ·bd are the fluc-
tuations of total pressure, andp are the fluctuations of fluid
pressure. The velocityu satisfies the equation= ·u=0. Here-
after we omitm in the equations; i.e., we includem−1/2 in the
definition of the magnetic field. We study the effect of a
mean velocity shear on the mean electromotive force.

Using Eqs.(14) and (15) written in a Fourier space we
derive equations for the correlation functions of the velocity
field f ij =kuiujl, the magnetic fieldhij =kbibjl, and the cross-
helicity gij =kbiujl. The equations for these correlation func-
tions are given by Eqs.(A1)–(A3) in Appendix A. We split
the tensorsf ij ,hij , and gij into nonhelical, f ij , and helical,
f ij

sHd, parts. The helical part of the tensorhij
sHd for magnetic

fluctuations depends on the magnetic helicity, and it is deter-
mined by the dynamic equation which follows from the mag-
netic helicity conservation arguments(see, e.g.,[19–24]).
The characteristic time of evolution of the nonhelical part of
the magnetic tensorhij is of the order of the turbulent corre-
lation timet0= l0/u0, while the relaxation time of the helical
part of the magnetic tensorhij

sHd is of the order oft0Rm (see,
e.g.,[22]), where Rm=l0u0/h@1 is the magnetic Reynolds
number andu0 is the characteristic turbulent velocity in the
maximum scalel0 of turbulent motions.

Then we split the nonhelical parts of the correlation func-
tions f ij ,hij , and gij into symmetric and antisymmetric ten-
sors with respect to the wave vectork, e.g., f ij = f ij

ssd+ f ij
sad,

where the tensorf ij
ssd=ff ijskd+ f ijs−kdg /2 describes the sym-

metric part of the tensor andf ij
sad=ff ijskd− f ijs−kdg /2 deter-

mines the antisymmetric part of the tensor.
Equations for the second moments contain higher mo-

ments, and a problem of closing the equations for the higher
moments arises. Various approximate methods have been
proposed for the solution of problems of this type(see, e.g.,
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[25–27]). The simplest procedure is thet approximation,
which is widely used in the theory of kinetic equations and in
passive scalar turbulence and magnetohydrodynamic turbu-
lence (see, e.g.,[27–33]). This procedure allows us to ex-
press the deviations of the third moments from the back-
ground turbulence in terms of the corresponding deviations
of the second moments, e.g.,

f ij
N − f ij

Ns0d = − sf ij − f ij
s0dd/tskd, s16d

where the termf ij
N is related with the third moment(see Ap-

pendix A). The superscript(0) corresponds to the back-

ground turbulence(with B̄=0), andtskd is the characteristic
relaxation time of the statistical moments. We applied thet
approximation only for the nonhelical parthij of the tensor of
magnetic
fluctuations.

In this study we consider an intermediate nonlinearity
which implies that the mean magnetic field is not strong
enough in order to affect the correlation time of the turbulent
velocity field. The theory for a very strong mean magnetic
field can be corrected after taking into account a dependence
of the correlation time of the turbulent velocity field on the
mean magnetic field. We assume that the characteristic time

of variation of the mean magnetic fieldB̄ is substantially
larger than the correlation timetskd for all turbulence scales
(which corresponds to the mean-field approach). This allows
us to get a stationary solution for the equations for the sec-
ond momentsf ij ,hij , andgij . For the integration ink space of
these second moments we have to specify a model for the

background turbulence(with B̄=0). We use the following
model for the background homogeneous and isotropic
turbulence: f ij

s0dskd=ku2ls0dWskdsdi j −kijd ,hij
s0dskd=kb2ls0dWskd

3sdi j −kijd, and gij
s0dskd=0, where kij =kikj /k

2,Wskd
=−fdt̄skd /dkg /8pk2,tskd=2t0t̄skd , t̄skd=sk/k0d1−q,1,q,3
is the exponent of the kinetic energy spectrum(e.g.,q=5/3
for the Kolmogorov spectrum), k0=1/l0, and t0= l0/u0,
ef ij

s0dskddk =sku2ls0d /3ddi j , andehij
s0dskddk =skb2ls0d /3ddi j .

Using the derived equations for the second moments
f ij ,hij , andgij we calculate the mean electromotive forceEi

=eẼiskddk, whereẼiskd=«imngnm
ssd skd. For a turbulence with a

mean velocity shear the coefficients defining the mean elec-
tromotive force are the sum of contributions arising from a
shear-free turbulence and sheared turbulence(see Sec. IV).

IV. NONLINEAR MEAN-FIELD DYNAMO
IN A TURBULENCE WITH A MEAN VELOCITY SHEAR

First, let us consider a shear-free nonrotating homoge-
neous and nonhelical turbulence. Using Eqs.(3)–(6), (A35),
and (A36) we derive equations for the mean electromotive
force. The coefficients defining the mean electromotive force
for a shear-free turbulence in a dimensionless form are given
by

ai j
smd = asmdsB̄ddi j , s17d

Veff = VAsB̄d + h̃sB̄d
sB̄ · = dB̄

B̄2
, s18d

hi j = hAsB̄ddi j , s19d

whereh̃sB̄d=−s1/2ds1+edA2
s1ds4B̄d, the functionshAsB̄d and

VAsB̄d are determined by Eqs.(22) and(24) respectively, the
functionsAk

s1dsyd are determined by Eqs.(C1) in Appendix C,
and the parametere=kb2ls0d / ku2ls0d is the ratio of the mag-
netic and kinetic energies in the background turbulence. The

function asmdsB̄d=xscdsB̄dfsmdsÎ8B̄d is the magnetic part of
the a effect, wherefsmdsyd=s3/y2ds1−arctany/yd is the
quenching function of the magnetic part of thea effect (see

[31,34]), and the dimensionless functionxscdsB̄d
=st /3mru0dkb ·s=3bdl. The functionxscdsB̄d is determined
by the dynamic equation which follows from the magnetic
helicity conservation arguments(see, e.g.,[19–24]). Note
that in a homogeneous and nonhelical background turbulence
the hydrodynamic partai j

sud of the a effect vanishes. In a
turbulence without a uniform rotation or a mean velocity

shear, thedsB̄d term and theki jksB̄d term in the mean elec-
tromotive force vanish.

We adopt here the dimensionless form of the mean dy-
namo equations; in particular, length is measured in units of

L, time is measured in units ofL2/hT,B̄ is measured in units

of the equipartition energyB̄eq=Îmru0, and the nonlinear
turbulent magnetic diffusion coefficients are measured in
units of the characteristic value of the turbulent magnetic
diffusivity hT= l0u0/3. Note thatL,LB, where LB is the
characteristic scale of the mean magnetic field variations.

Now we consider a small-scale homogeneous turbulence

with a mean velocity shear,Ū=Sxey and W̄ =Sez. In Carte-

sian coordinates the mean magnetic fieldB̄=Bsx,zdey+ =
3 fAsx,zdeyg is determined by the dimensionless dynamo
equations

] A

] t
= S l0

L
D2

S*s0sB̄dsŴ · = dB + asmdsB̄dB − „VAsB̄d · = …A

+ hAsB̄dDA, s20d

] B

] t
= − S*sŴ · = dA + = · fhBsB̄d = Bg, s21d

whereS* =SL2/hT andŴ =W̄ /W̄, and the functions0sB̄d is
determined below. The nonlinear turbulent magnetic diffu-
sion coefficients and the nonlinear drift velocities of the
mean magnetic field are given by

hAsB̄d = A1
s1ds4B̄d + A2

s1ds4B̄d, s22d

hBsB̄d = A1
s1ds4B̄d + 3s1 − edFA2

s1ds4B̄d −
1

2p
Ā2s16B̄2dG ,

s23d
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VAsB̄d = −
LsBd

2
Fs2 − 3edA2

s1ds4B̄d − s1 − ed
3

2p
Ā2s16B̄2dG ,

s24d

whereLsBd= = B̄2/ B̄2, the parameter 0øeø1, and the func-

tions Āksyd andAk
s1dsyd are determined by Eqs.(B6) and(C1)

in Appendixes B and C. For derivations Eqs.(22)–(24) we
used Eqs.(18) and (19). Note that in Eqs.(22)–(24) we ne-
glected small contributions,Ofsl0/Ld2g caused by the mean
velocity shear. The nonlinear turbulent magnetic diffusion
coefficientshA and hB and the nonlinear effective drift ve-
locity VA of mean magnetic field for different value of the
parametere are shown in Figs. 1 and 2. The background
magnetic fluctuations caused by the small-scale dynamo re-
sult in an increase of the nonlinear turbulent magnetic diffu-
sion coefficienthB, and they do not affect the nonlinear tur-
bulent magnetic diffusion coefficienthA (see Fig. 1). On the
other hand, the background magnetic fluctuations strongly
affect the nonlinear effective drift velocityVA of the mean
magnetic field. In particular, whene.1/2, the velocityVA is
negative(i.e., it is diamagnetic velocity) which causes a drift

of the magnetic field componentsB̄x andB̄z from the regions

with a high intensity of the mean magnetic fieldB̄. When
0,e,1/2, the effective drift velocityVA is paramagnetic
velocity for a weak mean magnetic field(see Fig. 2). For

strong fieldsB̄. B̄eq/2, the effective drift velocityVA is dia-

magnetic for an arbitrary level of background magnetic fluc-
tuations.

The asymptotic formulas for the magnetic part of thea
effect, the nonlinear turbulent magnetic diffusion coeffi-
cients, and the nonlinear drift velocity of the mean magnetic

field for B̄! B̄eq/4 are given by

ai j
smdsB̄d = xscdsB̄dS1 −

3b2

5
Ddi j ,

hAsB̄d = 1 −
12

5
b2, hBsB̄d = 1 −

4

5
s5 − 4edb2,

VAsB̄d =
4

5
s1 − 2edb2LsBd,

and for B̄@ B̄eq/4 they are given by

ai j
smdsB̄d = xscdsB̄d

3p

2b2di j ,

hAsB̄d =
1

b2, hBsB̄d =
2s1 + ed

3b
,

VAsB̄d = −
1 + e

3b
LsBd,

whereb=Î8B̄.

The nonlinear coefficients0sB̄d defining the shear-current
effect is determined by Eqs.(A51) in Appendix A. The non-

linear dependence of the parameters0sB̄d is shown in Fig. 3
for different values of the parametere. The background mag-
netic fluctuations caused by the small-scale dynamo and de-

scribed by the parametere increase the parameters0sB̄d.
Note that the parameters0sB̄d is determined by the contribu-

tions from thedsB̄d term, thehi jsB̄d term, and theki jksB̄d
term in the mean electromotive force. The asymptotic for-

mula for the parameters0sB̄d for a weak mean magnetic field

B̄! B̄eq/4 is given by

FIG. 1. The nonlinear turbulent magnetic diffusion coefficients
hA (a) andhB (b) for e=0 (solid lines) ande=1 (dashed lines). The
functionhA is independent of the parametere. The nonlinear turbu-
lent magnetic diffusion coefficients are measured in units of the
characteristic value of the turbulent magnetic diffusivityhT

= l0u0/3.

FIG. 2. The nonlinear effective drift velocityVA of the mean
magnetic field fore=0 (solid line), e=0.3 (dash-dotted line), and
e=1 (dashed line). The velocityVA is measured in units ofhT/L.
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s0sB̄d =
4

45
s2 − q + 3ed, s25d

whereq is the exponent of the energy spectrum of the back-
ground turbulence. In Eq.(25) we neglected the small con-

tribution ,Ofs4B̄/ B̄eqd2g. Equation(25) is in agreement with
that obtained in[16] where the case of a weak mean mag-
netic field ande=0 was considered. Thus, the mean magnetic
field is generated due to the shear-current effect, when the
exponent of the energy spectrum of the velocity fluctuations
is

q , 2 + 3e.

Note that the parameterq varies in the range 1,q,3.
Therefore, when the level of the background magnetic fluc-
tuations caused by the small-scale dynamo is larger than 1/3
of the kinetic energy of the velocity fluctuations, the mean
magnetic field can be generated due to the shear-current ef-
fect for an arbitrary exponentq of the energy spectrum of the
velocity fluctuations. For the Kolmogorov turbulence—i.e.,
when the exponent of the energy spectrum of the background

turbulenceq=5/3—the parameters0sB̄d for B̄! B̄eq/4 is
given by

s0sB̄d =
4

135
s1 + 9ed, s26d

and for B̄@ B̄eq/4 the parameters0sB̄d is

s0sB̄d = −
11

135
s1 + ed. s27d

In Eq. (27) we neglected small contribution,OsB̄eq/4B̄d. It
is seen from Eqs.(25)–(27) that the nonlinear coefficient

s0sB̄d defining the shear-current effect changes its sign at

some value of the mean magnetic fieldB̄=B̄* . For instance,

B̄* =0.6B̄eq for e=0, andB̄* =0.3B̄eq for e=1. The magnitude

B̄* determines the level of the saturated mean magnetic field
during its nonlinear evolution(see Sec. V).

Let us determine the threshold for the generation of the
mean magnetic field due to the shear-current effect. To this
end we introduce the dynamo number in the kinematic
approximation:

D = S l0LS

hT
D2

s0sB̄ = 0d. s28d

Consider the simple boundary conditions for a layer of thick-
ness 2L in the x direction: Bsuxu=1,zd=0 and Asuxu=1,zd
=0, wherex is measured in unitsL. Then Eqs.(20) and(21)
yield

Bst,x,zd = B0expsgtdcossKxxdcossKzzd,

Ast,x,zd = − B0
l0Îs0

L
expsgtdcossKxxdsinsKzzd,

with the critical dynamo numberDcr=p2, where s0sB̄
=0d.0, the growth rate of the mean magnetic field isg
=ÎDKz−Kx

2−Kz
2, the wave vectorK is measured in units of

L−1, and the growth rateg is measured inhT/L2. The mean
magnetic field is generated whenD.Dcr. The maximum
growth rate of the mean magnetic field,gmax=D2/4−Kx

2, is
attained atKz=Km=ÎD /2. The critical dynamo number de-
termines the critical shear of the mean velocity fieldScr
=sp /3Îs0dsu0/Ld. The scenario of a nonlinear evolution of
the mean magnetic field is discussed in Sec. V.

V. DISCUSSION

In the present paper we developed the nonlinear theory of
the shear-current effect in a turbulence with an imposed
mean velocity shear. The shear-current effect is associated

with the W̄ 3 J̄ term in the mean electromotive force and
causes the generation of a mean magnetic field even in a
nonrotating and nonhelical homogeneous turbulence. The
scenario of the mean magnetic field evolution is as follows.
In the kinematic stage, the mean magnetic field grows due to
the shear-current effect from a very small seeding magnetic
field. During the nonlinear growth of the mean magnetic
field, the shear-current effect only changes its sign at some

value B̄* of the mean magnetic field. However, there is no
quenching of the nonlinear shear-current effect contrary to
the quenching of the nonlineara effect, the nonlinear turbu-

lent magnetic diffusion, etc. The magnitudeB̄* is less than
the equipartition field(see below). The background magnetic
fluctuations enhance the shear-current effect and result in a

decrease of the magnitudeB̄* .

The magnitudeB̄* determines the level of the saturated
mean magnetic field. Let us plot the normalized nonlinear

dynamo numberDN
ssB̄d=DssB̄d /DssB̄=0d which determines

the role of the shear-current effect in the mean magnetic

dynamo (see Fig. 4). Here DssB̄d=s0sB̄d / fhAsB̄dhBsB̄dg is

the nonlinear dynamo number. At the pointB̄=B̄* the non-

linear effective dynamo numberDN
ssB̄d=0. Depending on the

level of the background magnetic fluctuations described by

FIG. 3. The dimensionless nonlinear coefficients0sB̄d defining
the shear-current effect for different values of the parametere :e
=0 (solid line), e=0.2 (dash-dotted line), ande=1 (dashed line).
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the parametere, the saturated mean magnetic field varies

from 0.3B̄eq to 0.6B̄eq (see Fig. 4).
Note that the magnetic part of thea effect caused by the

magnetic helicity is a purely nonlinear effect. In this study
we concentrated on the algebraic nonlinearities(the nonlin-
ear shear-current effect, the nonlinear turbulent magnetic dif-
fusion, the nonlinear effective drift velocity of mean mag-
netic field) and do not discuss the effect of magnetic helicity
(the dynamic nonlinearity, see, e.g.,[19–24]) on the nonlin-
ear saturation of the mean magnetic field. This is a subject of
an ongoing separate study. Note that the nonlinear shear-
current effect can affect the flux of magnetic helicity. How-
ever, this remains an open issue.

The shear-current effect may be important in astrophysi-
cal objects like accretion disks where mean velocity shear
comes together with rotation, so that both the shear-current
effect and thea effect might operate. Since the shear-current
effect is not quenched contrary to the quenching of the non-
linear a effect, the shear-current effect might be the only
surviving effect, and it can explain the dynamics of large-
scale magnetic fields in astrophysical bodies with large-scale
shearing motions.

APPENDIX A: THE NONLINEAR MEAN
ELECTROMOTIVE FORCE IN A TURBULENCE

WITH A MEAN VELOCITY SHEAR

We use a mean-field approach whereby the velocity, pres-
sure, and magnetic field are separated into mean and fluctu-
ating parts, where the fluctuating parts have zero mean val-
ues. Let us derive the equations for the second moments. In
order to exclude the pressure term from the equation of mo-
tion (14) we calculate=3 s=3ud. Then we rewrite the ob-
tained equation and Eq.(15) in a Fourier space. We also
apply the two-scale approach, e.g., a correlation function

kuisxdujsydl =E kuisk1dujsk2dlexphisk1 ·x + k2 ·ydjdk1dk2

=E f ijsk,K dexpsik · r + iK ·Rddk dK ,

=E f ijsk,Rdexpsik · r ddk ,

where hereafter we omitted argumentt in the correlation

functions, f ijsk ,Rd= L̂sui ;ujd,

L̂sa;cd =E kask + K /2dcs− k + K /2dlexpsiK ·RddK ,

and R=sx+yd /2 ,r =x−y , K =k1+k2,k =sk1−k2d /2, andR
andK correspond to the large scales andr andk to the small
ones(see, e.g.,[35,36]). This implies that we assumed that
there exists a separation of scales; i.e., the maximum scale of
turbulent motionsl0 is much smaller than the characteristic
scaleL of inhomogeneities of the mean fields. In particular,
this implies thatr ø l0!R. Our final results showed that this
assumption is indeed valid. We derive equations for the fol-
lowing correlation functions:

f ijsk,Rd = L̂sui ;ujd, hijsk,Rd = L̂sbi ;bjd,

gijsk,Rd = L̂sbi ;ujd.

The equations for these correlation functions are given by

] f ijskd
] t

= isk · B̄dFi j
sMd + I ij

f + I ijmn
s sŪdfmn+ Fij + f ij

N,

sA1d

] hijskd
] t

= − isk · B̄dFi j
sMd + I ij

h + Eijmn
s sŪdhmn+ hij

N,

sA2d

] gijskd
] t

= isk · B̄dff ijskd − hijskd − hij
sHdg + I ij

g + Jijmn
s sŪdgmn

+ gij
N, sA3d

where hereafter we omitted the argumentt and R in
the correlation functions and neglected the terms,Os¹2d.
Here Fi j

sMdskd=gijskd−gjis−kd ,Fijskd=kF̃iskdujs−kdl
+kuiskdF̃js−kdl, and F̃skd=k 3 sk 3Fskdd /k2r. The tensors

I ijmn
s sŪd ,Eijmn

s sŪd, andJijmn
s sŪd are given by

I ijmn
s sŪd = F2kiqdmpd jn + 2kjqdimdpn − dimd jqdnp − diqd jndmp

+ dimd jnkq
]

] kp
G¹pŪq,

Eijmn
s sŪd = sdimd jq + d jmdiqd¹nŪq,

Jijmn
s sŪd = F2kjqdimdpn − dimdpnd jq + d jndpmdiq

+ dimd jnkq
]

] kp
G¹pŪq,

wheredi j is the Kronecker tensor andkij =kikj /k
2. Equations

(A1)–(A3) are written in a frame moving with a local veloc-

ity Ū of the mean flows. In Eqs.(A1) and(A3) we neglected

FIG. 4. The normalized nonlinear dynamo numberDN
ssB̄d for

different values of the parametere :e=0 (solid line), e=0.2 (dash-
dotted line), ande=1 (dashed line).
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small terms which are of the order ofOsu¹2Ūud. The source
termsI ij

f ,I ij
h and I ij

g which contain the large-scale spatial de-
rivatives of the mean magnetic field are given by

I ij
f =

1

2
sB̄ · = dFi j

sPd + fgqjskds2Pinskd − dind

+ gqis− kds2Pjnskd − d jndgB̄n,q − B̄n,qknFi jq
sPd, sA4d

I ij
h =

1

2
sB̄ · = dFi j

sPd − fgiqskdd jn + gjqs− kddingB̄n,q

− B̄n,qknFi jq
sPd, sA5d

I ij
g =

1

2
sB̄ · = dsf ij + hijd + hiqs2Pjnskd − d jndB̄n,q − fnjB̄i,n

− B̄n,qknsf ijq + hijqd, sA6d

where==] /]R ,Fi j
sPdskd=gijskd+gjis−kd, andB̄i,j =¹ jB̄i, the

terms f ij
N,hij

N and gij
N are determined by the third moments

appearing due to the nonlinear terms,f ijq =s1/2d] f ij /]kq,
and similarly forhijq andFi jq

sPd. A stirring force in the Navier-
Stokes turbulence is an external parameter that determines
the background turbulence.

For the derivation of Eqs.(A1)–(A3) we performed sev-
eral calculations that are similar to the following, which
arose, e.g., in computing]gij /]t. The other calculations fol-
low similar lines and are not given here. Let us define
Yijsk ,Rd by

Yijsk,Rd = i E skp + Kp/2dB̄psQdexpsiK ·Rd

3kuisk + K /2 − Qdujs− k + K /2dldK dQ.

sA7d

Next, we introduce the new variables

k̃1 = k + K /2 − Q, k̃2 = − k + K /2,

k̃ = sk̃1 − k̃2d/2 = k − Q/2, K̃ = k̃1 + k̃2 = K − Q.

sA8d

Therefore,

Yijsk,Rd = i E f ijsk − Q/2,K − Qdskp + Kp/2dB̄psQd

3 expsiK ·RddK dQ. sA9d

SinceuQu! uk u, we use the Taylor expansion

f ijsk − Q/2,K − Qd . f ijsk,K − Qd −
1

2

] f ijsk,K − Qd
] ks

Qs

+ OsQ2d, sA10d

and the identities

ff ijsk,RdB̄psRdgK =E f ijsk,K − QdB̄psQddQ,

¹pff ijsk,RdB̄psRdg =E iKpff ijsk,RdB̄psRdgK

3 expsiK ·RddK . sA11d

Therefore, Eqs.(A9)–(A11) yield

Yijsk,Rd . fisk · B̄d + s1/2dsB̄ · ¹ dgf ijsk,Rd

−
1

2
kp

] f ijskd
] ks

B̄p,s. sA12d

We took into account that in Eq.(A3) the terms with sym-
metric tensors with respect to the indexesi and j do not
contribute to the mean electromotive force becauseEm
=«mjigij . In Eqs. (A9)–(A11) we neglected the second and
higher derivatives overR. For the derivation of Eqs.
(A1)–(A3) we also used the identity

iki E f ijSk −
1

2
Q,K − QDŪpsQdexpsiK ·RddK dQ

= −
1

2
Ūp¹i f i j +

1

2
f ij¹iŪp −

i

4
s¹sŪpdS¹i

] f ij

] ks
D

+
i

4
S ] f ij

] ks
Ds¹s¹iŪpd. sA13d

To derive Eq.(A13) we multiply the equation= ·u=0 [writ-

ten in k space foruisk1−Qd] by ujsk2dŪpsQdexpsiK ·Rd, in-
tegrate overK andQ, and average over ensemble of velocity
fluctuations. Herek1=k +K /2 andk2=−k +K /2. This yields

E iSki +
1

2
Ki − QiDKuiSk +

1

2
K − QDujS− k +

1

2
KDL

3 ŪpsQdexpsiK ·RddK dQ = 0. sA14d

Now we introduce the new variablesk̃1 and k̃2 determined
by Eq.(A8). This allows us to rewrite Eq.(A14) in the form

E iSki +
1

2
Ki − QiD f ijSk −

1

2
Q,K − QDŪpsQd

3 expsiK ·RddK dQ = 0. sA15d

Since uQu! uk u, we use the Taylor expansion(A10), and we
also use the following identities, which are similar to Eq.
(A11):

ff ijsk,RdŪpsRdgK =E f ijsk,K − QdŪpsQddQ,

¹pff ijsk,RdŪpsRdg =E iKpff ijsk,RdŪpsRdgK

3 expsiK ·RddK . sA16d

Therefore, Eq.(A15) yields Eq.(A13).
Now we split all tensors into nonhelical,f ij , and helical,

f ij
sHd, parts. Note that the helical part of the tensor of magnetic

fluctuations,hij
sHd, depends on the magnetic helicity and is not

determined by Eq.(A2). The equation for the helical part of
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the tensor of magnetic fluctuations,hij
sHd, follows from the

magnetic helicity conservation arguments(see, e.g.,
[19–24]).

In this study we use thet approximation[see Eq.(16)].
The t approximation is in general similar to eddy-damped
quasinormal Markovian(EDQNM) approximation. How-
ever, some principal difference exists between these two ap-
proaches(see[26,27]). The EDQNM closures do not relax to
equilibrium, and this procedure does not describe properly
the motions in the equilibrium state in contrast to thet ap-
proximation. Within the EDQNM theory, there is no dynami-
cally determined relaxation time and no slightly perturbed
steady state can be approached[27]. In thet approximation,
the relaxation time for small departures from equilibrium is
determined by the random motions in the equilibrium state,
but not by the departure from equilibrium[27]. As follows
from the analysis by[27] the t approximation describes the
relaxation to the equilibrium state(the background turbu-
lence) much more accurately than the EDQNM approach.

1. Shear-free homogeneous turbulence

Consider a turbulence without a mean velocity shear; i.e.,

we omit the tensorsI ijmn
s sŪd ,Eijmn

s sŪd, andJijmn
s sŪd in Eqs.

(A1)–(A3). First we solve Eqs.(A1)–(A3) neglecting the
sourcesI ij

f , I ij
h ,andI ij

g with the large-scale spatial derivatives.
Then we will take into account the terms with the large-scale
spatial derivatives by perturbations. We start with Eqs.
(A1)–(A3) written for nonhelical parts of the tensors and
then consider Eqs.(A1)–(A3) for helical parts of the tensors.

Thus, we subtract Eqs.(A1)–(A3) written for background

turbulence(for B̄=0) from those forB̄Þ0. Then we use the
t approximation and neglect the terms with the large-scale
spatial derivatives. Next, we assume thathk2!t−1 and nk2

!t−1 for the inertial range of turbulent flow, and we also
assume that the characteristic time of variation of the mean

magnetic fieldB̄ is substantially larger than the correlation
time tskd for all turbulence scales. Thus, we arrive to the
following steady-state solution of the obtained equations:

f̂ i jskd < f ij
s0dskd + itsk · B̄dF̂i j

sMdskd, sA17d

ĥijskd < hij
s0dskd − itsk · B̄dF̂i j

sMdskd, sA18d

ĝijskd < itsk · B̄df f̂ i jskd − ĥijskdg, sA19d

where f̂ i j , ĥij , and ĝij are solutions without the sources
I ij

f , I ij
h, andI ij

g.
Now we split all correlation functions into symmetric and

antisymmetric parts with respect to the wave numberk, e.g.,
f ij = f ij

ssd+ f ij
sad, wheref ij

ssd=ff ijskd+ f ijs−kdg /2 is the symmetric
part and f ij

sad=ff ijskd− f ijs−kdg /2 is the antisymmetric part,
and similarly for other tensors. Thus, Eqs.(A17)–(A19) yield

f̂ i j
ssdskd <

1

1 + 2c
fs1 + cdf ij

s0dskd + chij
s0dskdg, sA20d

ĥij
ssdskd <

1

1 + 2c
fcf ij

s0dskd + s1 + cdhij
s0dskdg, sA21d

ĝij
sadskd <

itsk · B̄d
1 + 2c

ff ij
s0dskd − hij

s0dskdg, sA22d

where cskd=2stk ·B̄d2. The correlation functionsf̂ i j
sadskd ,

ĥij
sadskd, and ĝij

ssdskd vanish if we neglect the large-scale spa-
tial derivatives; i.e., they are proportional to the first-order
spatial derivatives. Equations(A20) and (A21) yield

f̂ i j
ssdskd + ĥij

ssdskd < f ij
s0dskd + hij

s0dskd, sA23d

which is in agreement with the fact that a uniform mean
magnetic field performs no work on the turbulence. A uni-
form mean magnetic field can only redistribute the energy
between hydrodynamic fluctuations and magnetic fluctua-
tion. A change of the total energy of fluctuations is caused by
a nonuniform mean magnetic field.

Next, we take into account the large-scale spatial deriva-
tives in Eqs.(A1)–(A3) by perturbations. Their effect deter-
mines the following steady-state equations for the second

momentsf̃ i j ,h̃ij , andg̃ij :

f̃ i j
sadskd = itsk · B̄dF̃i j

sM,sdskd + tI ij
f , sA24d

h̃ij
sadskd = − itsk · B̄dF̃i j

sM,sdskd + tI ij
h , sA25d

g̃ij
ssdskd = itsk · B̄d„ f̃ i j

sadskd − h̃ij
sadskd… + tI ij

g , sA26d

whereF̃i j
sM,sd=fF̃i j

sMdskd+F̃i j
sMds−kdg /2. The solution of Eqs.

(A24)–(A26) yields

F̃i j
sM,sdskd =

t

1 + 2c
hI ij

g − I ji
g + itsk · B̄dsI ij

f − I ji
f + I ji

h − I ij
hdj.

sA27d

Substituting Eq.(A27) into Eqs.(A24)–(A26) we obtain the
final expressions ink space for the nonhelical parts of the

tensorsf̃ i j
sadskd ,h̃ij

sadskd ,g̃ij
ssdskd, andF̃i j

sM,sdskd. In particular,

F̃mn
sM,sdskd =

tskdWskdku2ls0d

s1 + 2cd2 fs1 + eds1 + 2cdsdnjdmk− dmjdnk

+ knkdmj − kmkdnjd − 2se + 2cdsknjdmk

− kmjdnkdgB̄j ,k. sA28d

The correlation functionsf̃ i j
ssdskd ,h̃ij

ssdskd, andg̃ij
sadskd are of

the order of ,Os¹2d; i.e., they are proportional to the

second-order spatial derivatives. Thusf̂ i j + f̃ i j is the nonheli-
cal part of the correlation functions for a shear-free turbu-
lence and similarly for other second moments.

Now we solve Eqs.(A1)–(A3) for the helical parts of the
tensors for a shear-free turbulence using the same approach
which we used in this section. The steady-state solution of
Eqs.(A1) and (A3) for the helical parts of the tensors reads

f ij
sHdskd < itsk · B̄dFi j

sM,Hdskd, sA29d
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gij
sHdskd < itsk · B̄dff ij

sHdskd − hij
sHdskdg, sA30d

whereFi j
sM,Hdskd=gij

sHdskd−gji
sHds−kd. The tensorhij

sHd is deter-
mined by the dynamic equation(see, e.g.,[19–24]). The so-
lution of Eqs.(A29) and (A30) yields

Fi j
sM,Hdskd = −

2itsk · B̄d
1 + c

hij
sHd. sA31d

Sincehij
sHd is of the order ofOs¹d, we do not need to take

into account the source terms with the large-scale spatial
derivatives[22].

Now we calculate the mean electromotive forceEisr =0d
=s1/2d«inmefFmn

sM,Hdskd+F̃mn
sM,sdskdgdk. Thus,

Ei = «inmE F t

1 + 2c
fImn

g + itsk · B̄dsImn
f − Imn

h dg

−
itsk · B̄d

1 + c
hmn

sHdGdk . sA32d

For the integration ink space of the mean electromotive
force we have to specify a model for the background turbu-

lence(with B̄=0); see Sec. III. After integration ink space

we obtainEi =aij B̄j +bijkB̄j ,k, where

aij = − i«inmE tkjhmn
sHd

1 + c
dk

= xscdsB̄dHfsmdsbdbi j +
1

2
f3 − s1 + b2dfsmdsbdgPijsbdJ ,

sA33d

bijk =
1

2
hT„s1 + ed«i jmfdkmKpp

s1dsÎ2bd − Kkm
s1dsÎ2bdg

+ 2«inkfs1 − edC̃1hKjnj − Kjn
s1dsÎ2bdg…, sA34d

C̃1hXj = 3Xs1dsÎ2bd −
3

2p
X̄s2b2d,

Kij
s1dsbd =

3

2p
E

0

1

K̄ijsast̄ddt̄ dt̄ =
3b4

p
E

b

` K̄ijsX2d
X5 dX,

and all calculations are made forq=5/3,X2=b2sk/k0d2/3=a

=fbu0ktskd /2g2, the functionK̄ij is determined by Eq.(B1)

in Appendix B, e=kb2ls0d / ku2ls0d ,b=4B̄/ su0
Î2mrd ,Pijsbd

=di j −bi j ,bi j =B̄iB̄j / B̄
2,fsmdsbd=s3/b2df1−arctansbd /bg,

andxscdsB̄d;st /3mrdkb ·s¹3bdl is related with current he-
licity. Since a part of the mean electromotive force is deter-

mined by the functionaijsB̄dB̄j andPijsbdB̄j =0, we can drop
the term~Pijsbd in Eq. (A33). Thus, the equations foraij

andbijk are given by

aij = asmdsB̄ddi j , sA35d

bijk = hTfb1«i jk + b2«i jnbnk + b3«inkbnjg , sA36d

whereasmdsB̄d=xscdsB̄dfsmdsbd and

b1 = A1
s1dsÎ2bd + A2

s1dsÎ2bd,

b2 = −
1

2
s1 + edA2

s1dsÎ2bd,

b3 = s1 − edC̄1hA2j − A2
s1dsÎ2bd,

the functionsĀksyd and Ak
s1dsyd being determined by Eqs.

(B6) and(C1) in Appendixes B and C. Equations(A35) and
(A36) yield Eqs.(17)–(19).

2. Turbulence with a mean velocity shear

Now we study the effect of a mean velocity shear on the
mean electromotive force. We take into account the tensors

I ijmn
s sŪd ,Eijmn

s sŪd and Jijmn
s sŪd in Eqs. (A1)–(A3), and we

neglect terms,Os¹2d. The steady-state solution of Eqs.
(A1)–(A3) for the nonhelical parts of the tensors for a
sheared turbulence reads

Nijmn
f sŪdfmn= thisk · B̄dFi j

sMd + I ij
f j, sA37d

Nijmn
h sŪdhmn= th− isk · B̄dFi j

sMd + I ij
hj, sA38d

Nijmn
g sŪdgmn= thisk · B̄dff ijskd − hijskdg + I ij

gj, sA39d

where

Nijmn
f sŪd = dimd jn − tI ijmn

s ,

Nijmn
h sŪd = dimd jn − tEijmn

s ,

Nijmn
g sŪd = dimd jn − tJijmn

s ,

and we use the following notation: the total correlation func-

tion is f ij = f̄ i j + f ij
s. Here f̄ i j = f̂ i j + f̃ i j is the correlation func-

tions for a shear-free turbulence, and the correlation func-
tions f ij

s determines the effect of a mean velocity shear. The
similar notations are for other correlation functions. Now we
solve Eqs.(A37)–(A39) by iterations. This yields

f ij
sskd = thI ijmn

s f̄mn+ isk · B̄dFi j
sM,sd + I ij

sf,sdj, sA40d

hij
sskd = thEijmn

s h̄mn− isk · B̄dFi j
sM,sd + I ij

sh,sdj, sA41d

gij
sskd = thJijmn

s ḡmn+ isk · B̄dff ij
s − hij

sg + I ij
sg,sdj, sA42d

where Fi j
sM,sdskd=gij

sskd−gji
ss−kd) and the source terms

I ij
sf,sd; I ij

f sgij
sd ,I ij

sh,sd; I ij
hsgij

sd and I ij
sg,sd; I ij

gsf ij
s ,hij

sd are deter-
mined by Eqs.(A4)–(A6), wheref ij ,hij , andgij are replaced
by f ij

s ,hij
s, and gij

s, respectively. The solution of Eqs.
(A40)–(A42) yield equation for the symmetric partFi j

sM,s,sd

of the tensor:
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Fi j
sM,s,sdskd =

t

1 + 2c
hsJijmn

s − Jjimn
s dg̃mn+ I ij

sg,sd − I ji
sg,sd

+ itsk · B̄dfsI ijmn
s − I jimn

s d f̃mn+ I ij
sf,sd − I ji

sf,sd

+ I ji
sh,sd − I ij

sh,sdgj, sA43d

where we took into account thatEijmn
s is a symmetric tensor

in indexesi and j . Thus, the effect of a mean velocity shear
on the mean electromotive force, Ei

ssr =0d
;s1/2d«inmeFmn

sM,s,sddk, is determined by

Ei
s = «inmE t

1 + 2c
hJmnpq

s g̃pq + itsk · B̄d

3fImnpq
s f̃ pq + Imn

sf,sd − Imn
sh,sdg + Imn

sg,sdjdk . sA44d

Now we use the following identities:

«impK̄jkqm¹pŪq =
1

2
fC̄1s2Sijk

s1d + 2Sijk
s2d + Sijk

s4d + Sijk
s5dd + C̄3s2Sijk

s6d

+ Sijk
s7ddg,

«i jmK̄kmpq¹pŪq = 2C̄1Sijk
s1d,

«ikpK̄jq¹pŪq =
1

2
fĀ1s2Sijk

s2d + Sijk
s4dd + Ā2s2Sijk

s6d + Sijk
s7ddg,

«imkK̄jmpq¹pŪq = − 2sC̄1Sijk
s2d + C̄3Sijk

s6dd,

«imqK̄mj¹kŪq = «i jmK̄mq¹kŪq =
1

2
Ā1s2Sijk

s1d − Sijk
s5dd,

«ikqK̄mm¹ jŪq =
1

2
s3Ā1 + Ā2ds2Sijk

s2d − Sijk
s4dd,

«imkK̄mq¹ jŪq = − «imqK̄mk¹ jŪq = −
1

2
Ā1s2Sijk

s2d − Sijk
s4dd,

«i jpK̄kq¹pŪq =
1

2
Ā1s2Sijk

s1d + Sijk
s5dd,

«i jqK̄mm¹kŪq =
1

2
s3Ā1 + Ā2ds2Sijk

s1d − Sijk
s5dd,

s«i jqdkp + «i jpdkqdK̄mm¹pŪq = 2s3Ā1 + Ā2dSijk
s1d, sA45d

where

Sijk
s1d = «i jps] Ūdpk, Sijk

s2d = «ikps] Ūdpj,

Sijk
s3d = « jkps] Ūdpi, Sijk

s4d = W̄kdi j , Sijk
s5d = W̄jdik,

Sijk
s6d = «ikpb jqs] Ūdpq, Sijk

s7d = W̄kbi j .

After the integration in Eq.(A44), we obtain

Ei
s = bijk

s B̄j ,k, sA46d

where the tensorbijk
s is given by

bijk
s = l0

2Fo
n=1

7

DnSijk
sndG , sA47d

the coefficientD3=0, and the other coefficients calculated
for q=5/3 aregiven by

D1 =
1

3
FA1

s2d − 3A2
s2d − 18C1

s2d + eSA1
s2d + A2

s2d +
2

3
C1

s2dD
+ C1HA1 + 2A2 +

22

3
C1 − es2A1 + A2 + 6C1dJ

+ C2H− A1 +
1

3
C1 + eSA1 −

11

3
C1DJ − s1 − edC3hC1j

− C0h2A1 − 3C1jG ,

D2 =
1

3
F− sA1

s2d + A2
s2d + 4C1

s2dd + eS− A1
s2d + A2

s2d +
32

3
C1

s2dD
+ C1H− A1 + A2 +

70

3
C1 − 2esA2 + 19C1dJ

+ C2HA1 −
71

3
C1 − eSA1 −

79

3
C1DJ

+ s1 − edSC3h− 2A1 + 7C1j −
16

3
C4hC1j + 8C5hC1jD

+ C0H2A1 −
11

3
C1JG ,

D4 =
1

6
F3A1

s2d + A2
s2d −

14

3
C1

s2d + eS3A1
s2d − A2

s2d −
26

3
C1

s2dD
− C1HA1 + A2 −

4

3
C1 − 2eSA1 + A2 +

2

3
C1DJ + s1 − ed

3sC2hA1 + C1j − C3hC1jd + C0hC1jG ,

D5 =
1

6
FA1

s2d + A2
s2d −

14

3
C1

s2d + eSA1
s2d − A2

s2d −
26

3
C1

s2dD
− C1HA1 − A2 −

4

3
C1 − 2eSA1 − A2 +

2

3
C1DJ + s1 − ed

3sC2hA1 + C1j − C3hC1jd + C0hC1jG ,
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D6 =
1

3
FA2

s2d − 4C3
s2d − eSA2

s2d −
32

3
C3

s2dD + C1H− 3A2 +
70

3
C3

+ 2esA2 − 19C3dJ −
1

3
s71 − 79edC2hC3j − s1 − ed

3SC3hA2 − 7C3j +
16

3
C4hC3j − 8C5hC3jD

+ C0HA2 −
11

3
C3JG ,

D7 =
1

6
FA2

s2d −
14

3
C3

s2d + eS3A2
s2d −

26

3
C3

s2dD + C1HA2 +
4

3

3s1 + edC3J + s1 − edsC2h2A2 + C3j − C3hA2 + C3jd

+ C0hA2 + C3jG . sA48d

The functionsĀksyd and C̄ksyd are determined by Eqs.(B6)
in Appendix B, and the functionsAk

s2dsyd andCk
s2dsyd are de-

termined by Eqs.(D1) in Appendix D. The functionsCkhXj
are given by

C0hXj = −
1

2
s1 + edXs2ds0d + s2 − edXs2dsÎ2bd

−
3

4p
s1 − edX̄s2b2d,

C1hXj = − 3Xs2dsÎ2bd +
3

2p
X̄s2b2d,

C2hXj = 3Xs2dsÎ2bd −
3

4p
f2X̄syd + yX̄8sydgy=2b2,

C3hXj = − 6Xs2dsÎ2bd +
3

4p
f4X̄syd + yX̄8sydgy=2b2,

C4hXj = 4Xs2dsÎ2bd −
1

4p
f8X̄syd + 4yX̄8syd + y2X̄9sydgy=2b2,

C5hXj = −
1

2
Xs2dsÎ2bd +

1

8p
f2X̄syd + yX̄8syd

+ 2y2X̄9sydgy=2b2. sA49d

In Eqs.(A45)–(A49) we took into account that for the shear-

current dynamo,B̄x/ B̄y, l0/LB!1, whereLB is the charac-
teristic scale of the mean magnetic field variations. The non-
linear coefficient defining the shear-current effect is
determined by

s0sB̄d =
1

2
sD2 + 2D4 + D6 + 2D7d. sA50d

Equation(A50) yields

s0sB̄d = f1hA1 + A2j + f2hC1 + C3j, sA51d

where

f1hXj =
1

3
„s1 + edXs2dsÎ2bd + fC0 − s1 − edsC1 − C2 + C3dg

3hXj…, sA52d

f2hXj =
1

9
„s3e − 13dXs2dsÎ2bd + f4C2 − 4C0 − 18C1

+ s1 − eds55C1 − 38C2 + 9C3 − 8C4 + 12C5dghXj….
sA53d

The nonlinear dependence of the parameters0sB̄d deter-
mined by Eq.(A51) is shown in Fig. 3 for different values of
the parametere. The asymptotic formulas for the parameter

s0sB̄d for B̄! B̄eq/4 and B̄@ B̄eq/4 are given by Eqs.
(25)–(27). For the derivation of Eq.(A51) we used the iden-
tities (D2) in Appendix D.

APPENDIX B: THE IDENTITIES USED
FOR THE INTEGRATION IN k SPACE

To integrate over the angles ink space we used the fol-
lowing identities:

K̄ij =E kijsinu

1 + a cos2u
du dw = Ā1di j + Ā2bi j , sB1d

K̄ijmn =E kijmnsinu

1 + a cos2u
du dw = C̄1sdi jdmn+ dimd jn + dind jmd

+ C̄2bi jmn + C̄3sdi jbmn+ dimb jn + dinb jm + d jmbin

+ d jnbim + dmnbi jd, sB2d

H̄ijmnsad =E kijmnsinu

s1 + a cos2ud2du dw

= − S ]

] b
E kijmnsinu

b + a cos2u
du dwD

b=1

= K̄ijmnsad + a
]

] a
K̄ijmnsad, sB3d

Ḡijmnsad =E kijmnsinu

s1 + a cos2ud3du dw

= −
1

2
S ]

] b
E kijmnsinu

sb + a cos2ud2du dwD
b=1

= H̄ijmnsad +
a

2

]

] a
H̄ijmnsad, sB4d
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Q̄ijmnsad =E kijmnsinu

s1 + a cos2ud4du dw

= −
1

3
S ]

] b
E kijmnsinu

sb + a cos2ud3du dwD
b=1

= Ḡijmnsad +
a

3

]

] a
Ḡijmnsad, sB5d

wherea=fbu0ktskd /2g2,b̂i =bi /b ,bi j =b̂ib̂ j, and

Ā1 =
2p

a
Fsa + 1d

arctansÎad
Îa

− 1G ,

Ā2 = −
2p

a
Fsa + 3d

arctansÎad
Îa

− 3G ,

C̄1 =
p

2a2Fsa + 1d2arctansÎad
Îa

−
5a

3
− 1G ,

C̄2 = Ā2 − 7Ā1 + 35C̄1,

C̄3 = Ā1 − 5C̄1. sB6d

In the case ofa!1 these functions are given by

Ā1sad ,
4p

3
S1 −

1

5
aD, Ā2sad , −

8p

15
a,

C̄1sad ,
4p

15
S1 −

1

7
aD, C̄2sad ,

32p

315
a2,

C̄3sad , −
8p

105
a.

In the case ofa@1 these functions are given by

Ā1sad ,
p2

Îa
−

4p

a
, Ā2sad , −

p2

Îa
+

8p

a
,

C̄1sad ,
p2

4Îa
−

4p

3a
, C̄2sad ,

3p2

4Îa
−

32p

3a
,

C̄3sad , −
p2

4Îa
+

8p

3a
.

APPENDIX C: THE FUNCTIONS Aa
„1…
„b… AND Ca

„1…
„b…

The functionsAn
s1dsbd are defined as

An
s1dsbd =

3b4

p
E

b

` ĀnsX2d
X5 dX,

and similarly forCn
s1dsbd, where

X2 = b2sk/k0d2/3 = a = fbu0ktskd/2g2,

and we took into account that the inertial range of the turbu-
lence exists in the scales:ldø r ø l0. Here the maximum scale

of the turbulencel0!LB, and ld= l0Re3/4 is the viscous scale
of turbulence, andLB is the characteristic scale of variations
of the nonuniform mean magnetic field. For very large Rey-
nolds numberskd= ld

−1 is very large and the turbulent hydro-
dynamic and magnetic energies are very small in the viscous
dissipative range of the turbulence 0ø r ø ld. Thus we inte-

grated in Ān over k from k0= l0
−1 to `. We also used the

identity

E
0

1

Ān„ast̄d…t̄ dt̄ =
2p

3
An

s1dsbd,

and similarly forCn
s1dsbd. The functionsAa

s1dsbd andCa
s1dsbd

are given by

A1
s1dsbd =

6

5
Farctanb

b
S1 +

5

7b2D +
1

14
Lsbd −

5

7b2G ,

A2
s1dsbd = −

6

5
Farctanb

b
S1 +

15

7b2D −
2

7
Lsbd −

15

7b2G ,

C1
s1dsbd =

3

10
Farctanb

b
S1 +

10

7b2 +
5

9b4D +
2

63
Lsbd −

235

189b2

−
5

9b4G ,

C2
s1dsbd = A2

s1dsbd − 7A1
s1dsbd + 35C1

s1dsbd,

C3
s1dsbd = A1

s1dsbd − 5C1
s1dsbd, sC1d

where Lsbd=1−2b2+2b4lns1+b−2d. For b!1 these func-
tions are given by

A1
s1dsbd , 1 −

2

5
b2, A2

s1dsbd , −
4

5
b2,

C1
s1dsbd ,

1

5
S1 −

2

7
b2D, C2

s1dsbd , −
32

105
b4ln b,

C3
s1dsbd , −

4

35
b2,

and forb@1 they are given by

A1
s1dsbd ,

3p

5b
−

2

b2, A2
s1dsbd , −

3p

5b
+

4

b2 ,

C1
s1dsbd ,

3p

20b
−

2

3b2, C2
s1dsbd ,

9p

20b
,

C3
s1dsbd , −

3p

20b
+

4

3b2 .

Here we used that forb!1 the function Lsbd,1−2b2

−4b4ln b, and forb@1 the functionLsbd,2/3b2. We also
use the identity
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E
0

1

H̄ijmnsast̄ddt̄4S k

k0
D2

dt̄ = 2pKijmn
s1d sbd − K̄ijmnsb2d.

APPENDIX D: THE FUNCTIONS Aa
„2…
„b… AND Ca

„2…
„b…

The functionsAn
s2dsbd are defined as

An
s2dsbd =

3b6

p
E

b

` ĀnsX2d
X7 dX,

and similarly forCn
s2dsbd. We used the identity

E
0

1

Ān„ast̄d…t̄2dt̄ =
2p

3
An

s2dsbd,

and similarly forCn
s2dsbd. The functionsAa

s2dsbd andCa
s2dsbd

are given by

A1
s2dsbd = Fs1;− 1;0d,

A2
s2dsbd = Fs− 1;3;0d,

C1
s2dsbd = s1/4dFs1;− 2;1d,

C2
s2dsbd = s1/4dFs3;− 30;35d,

C3
s2dsbd = s1/4dFs− 1;6;− 5d, sD1d

where

Fsa;s;gd = pfaJ0
s2dsbd + sJ2

s2dsbd + gJ4
s2dsbdg,

J0
s2dsbd =

1

7p
S1 + 6

arctanb

b
−

3b2

2
LsbdD ,

J2
s2dsbd =

7

9
J0

s2dsbd + L̃sbd,

J4
s2dsbd =

9

11
SJ2

s2dsbd −
1

b2L̃sbd −
4

9pb2D ,

L̃sbd =
2

3pb2S1 −
arctanb

b
s1 + b2dD .

For b!1 the functionsJa
s2dsbd are given by

J0
s2dsbd ,

1

p
S1 −

1

2
b2D ,

J2
s2dsbd ,

1

3p
S1 −

9

10
b2D ,

J4
s2dsbd ,

1

5p
S1 −

15

14
b2D ,

and forb@1 they are given by

J0
s2dsbd ,

3

7b
−

3

4pb2 ,

J2
s2dsbd ,

3

4pb2 ,

J4
s2dsbd ,

1

4pb2 .

For b!1 the functionsAa
s2dsbd andCa

s2dsbd are given by

A1
s2dsbd ,

2

3
S1 −

3

10
b2D, A2

s2dsbd , −
2

5
b2,

C1
s2dsbd ,

2

15
S1 −

3

14
b2D, C2

s2dsbd , Osb4d,

C3
s2dsbd , −

2

35
b2,

and forb@1 they are given by

A1
s2dsbd ,

3p

7b
−

3

2b2, A2
s2dsbd ,

3p

7b
+

3

b2 ,

C1
s2dsbd ,

3p

28b
−

1

2b2, C2
s2dsbd ,

9p

28b
−

4

b2 ,

C3
s2dsbd ,

3p

28b
+

1

b2 .

We also used the following identities:

C1hKijmnj = Kijmn
s2d sÎ2bd − Hijmn

s2d sÎ2bd,

C2hKijmnj = Kijmn
s2d sÎ2bd − 2Hijmn

s2d sÎ2bd + Gijmn
s2d sÎ2bd,

C3hKijmnj = Hijmn
s2d sÎ2bd − Gijmn

s2d sÎ2bd,

C4hKijmnj = Hijmn
s2d sÎ2bd − 2Gijmn

s2d sÎ2bd + Qijmn
s2d sÎ2bd,

C5hKijmnj =
1

2
fKijmn

s2d sÎ2bd − 3Hijmn
s2d sÎ2bd + 3Gijmn

s2d sÎ2bd

− Qijmn
s2d sÎ2bdg , sD2d

where

Hijmn
s2d sÎ2bd = 4Kijmn

s2d sÎ2bd −
3

2p
K̄ijmns2b2d,

Gijmn
s2d sÎ2bd =

5

2
Hijmn

s2d sÎ2bd −
3

4p
H̄ijmns2b2d,

Qijmn
s2d sÎ2bd = 2Gijmn

s2d sÎ2bd −
1

2p
Ḡijmns2b2d.
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