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Nonlinear theory of a “shear-current” effect and mean-field magnetic dynamos
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The nonlinear theory of a “shear-current” effect in a nonrotating and nonhelical homogeneous turbulence
with an imposed mean velocity shear is developed. The shear-current effect is associated Witk dhierm
in the mean electromotive force and causes the generation of the mean magnetic field even in a nonrotating and
nonhelical homogeneous turbulengehereW is the mean vorticity and is the mean electric currentlt is
found that there is no quenching of the nonlinear shear-current effect contrary to the quenching of the nonlinear
«a effect, the nonlinear turbulent magnetic diffusion, etc. During the nonlinear growth of the mean magnetic
field, the shear-current effect only changes its sign at some Baloéthe mean magnetic field. The magnitude
B. determines the level of the saturated mean magnetic field which is less than the equipartition field. It is
shown that the background magnetic fluctuations due to the small-scale dynamo enhance the shear-current
effect and reduce the magnituBe. When the level of the background magnetic fluctuations is larger than 1/3
of the kinetic energy of the turbulence, the mean magnetic field can be generated due to the shear-current effect
for an arbitrary exponent of the energy spectrum of the velocity fluctuations.
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I. INTRODUCTION term determines a nontrivial behavior of the mean magnetic

The magnetic fields of the Sun, solar-type stars alaxiesﬁe'd in an anisotropic turbulence.
9 ' yp ' 9 ’ The mean magnetic field can be generated in a helical

and planets are believed to be generated by a dynamo prPétating turbulence due to the effect described by the

cess(see, e.g9.[1-10). In the framework of the mean-fiel . .
a rf)ach, th?e [Iar e(:]-)scale rre1a net?c ;i)ﬁd: deti.rmined b d aij(B_)Bj _term in _the mean eIectro_motwe force. When the_
PP , 9 9 Y rotation is nonuniform, the generation of the mean magnetic

the induction equation field is caused by theQ) dynamo. For a rotating nonhelical
JB - - turbulence thed term in the mean electromotive force de-
—=V X[UXB+&®B)-yV X B], (1)  scribes the@2xXJ effect which causes a generation of the
at mean magnetic field if rotation is a nonuniforrfsee

— ) ) o [11-19), whereQ is the angular velocity and is the mean
whereU is the mean velocity ang is the magnetic diffusion  glectric current.

due to the electrical Conductivity of fluid. The mean electro- For a nonrotating and nonhelical turbulence theffect

motive forceg(E):(u X b) is given by and theQ X J effect vanish. However, a mean magnetic field
_ o _ _ - can be generated in a nonrotating and nonhelical turbulence
&(B) = &;(B)B; — 7;(B)(V X B); +[Vef(B) x BJ; with an imposed mean velocity shear due to the “shear-
o - L current” effect[16], described by thed term in the mean
- [a(B)(V X B)], — xijx(B)(d B)jx, (2) electromotive force. In order to elucidate the physics of the

) , . shear-current effect, we compare thesffect in theaQ dy-
whereu andb are fluctuations of the velocity and magnetic 54 with thes term caused by the shear-current effect. The
field, respectively, angular brackets denote ensemble averag-erm in the mean electromotive force, which is responsible
ing, (dB);;=(V;B;+V;B;)/2 is the symmetric part of the gra- for the generation of the mean magnetic field, reads
dient tensor of the mean magnetic fie¥jB,—i.e., ViB; =aB,x—(Q-A)B; (see, e.9.[3,15, where A=V (u?)/(u?
=((9I§)ij +&ijn(V X E)n/2—and gijx is the Levi-Civita tensor. determ@nes one of the in.homogeneities of the turbulence. The
Here ;;(B) and 7;(B) determine thev effect and turbulent o6'term in the electromotive force caused by the shear-current

— . . S _ - _ _. _
magnetic diffusion, respectively*"(B) is the effective drift effect is given byey=—[6x (V x B)]i“, (W V)E" [see Eq.
. L — . . (8) below and[16]], where theé term is proportional to the
velocity of the magnetic fieldy;;(B) describes a contribu- — — —

tion to the mean electromotive force related to the symmetri(Enean vorticity W=V XU. The mean vort|p|tyW n the .
parts of the gradient tensor of the mean magnetic ﬁeldshear-cu.rrent dynam_o plays the role ofadﬁf_ergnﬂal rotation
A ) ) ) , — and the inhomogeneity of the mean magnetic field plays the
(dB);j, and arises in an anisotropic turbulence, and&®)  (o|e of the inhomogeneity of turbulence. During the genera-
tion of the mean magnetic field in both cag@s the aQ}
dynamo and in the shear-current dyngntbe mean electric

*Electronic address: gary@menix.bgu.ac.il current along the original mean magnetic field arises. &he
URL: http://www.bgu.ac.illgary effect is related to the hydrodynamic helicigfQ-A) in an
"Electronic address: nat@menix.bgu.ac.il inhomogeneous turbulence. The deformations of the mag-
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netic field lines are caused by upward and downward rotating — 1 1

turbulent eddies in the2 dynamo. Since the turbulence is 7;(B) = Z(sikpbjkp+ EjkpDikp), & = Z(bjji -bjj), (5
inhomogeneougwhich breaks a symmetry between the up-

ward and downward eddigstheir total effect on the mean

magnetic field does not vanish and it creates the mean elec- K”k(g) - l(bijk +bug), (6)
tric current along the original mean magnetic field. 2

In a turbulent flow with an imposed mean velocity shear, ) — A —
the inhomogeneity of the original mean magnetic fieldWhere we used the identiy; ;= (dB);; + i;n(V X B),/2. Note
breaks a symmetry between the influence of upward anéhat the separation of terms in Eq®)~6) is not unique,
downward turbulent eddies on the mean magnetic field. ThEecause a gradient term can always be added to the electro-
deformations of the magnetic field lines in the shear-currenfnotive force. Let us consider a homogeneous, nonrotating,
dynamo are caused by upward and downward turbulent ed;nd nonhelical turbulerjce. Then.m _the I_<|nemat|c approxima-
dies which result in the mean electric current along the meafon the tensora; vanishes. This implies that; =0 and
magnetic field and produce the magnetic dynamo_ VE =0. The mean electromOtI\E forcg€ is a true vector,

The shear-current effect was studied16] in a kinematic ~ whereas the mean magnetic fid8dis a pseudovector. Thus,
approximation. Kinematic dynamo models predict a fieldthe tensory is a pseudotensdsee Eq.(3)]. For homoge-
that grows without limit, and they give no estimate of the neous, isotropic, and nonhelical turbulence the terggr
magnitude for the generated magnetic field. In order to find= 7rej, where nr=uoly/3 is the coefficient of isotropic tur-
the magnitude of the field, the nonlinear effects which limitbulent magnetic diffusion and, is the characteristic turbu-
the field growth must be taken into account. lent velocity in the maximum scale of turbulent motiok,

The main goal of this study is to develop a nonlinearin a turbulent flow with an imposed mean velocity shear, the
theory of the shear-current effect. We demonstrated that thﬁénsorbijk depends on the true tensByU;. In this case tur-
F‘O'?"”eaf sheay—current effect IS & very Important nonllnear'bulence is anisotropic. The tensBfU; can be written as a
ity in a mean-field dynamo. During the nonlinear growth of . , ) =
the mean magnetic field, the shear-current effect changes &M of the symmetric and antisymmetric parts—i¥g\;
sign, but there is no quenching of this effect contrary to the=(dU);; —(1/2)&; W, where (dU);;=(VU;+V;U;)/2 is the
quenching of the nonlinear effect, the nonlinear turbulent trye tensor and the mean vorticky is a pseudovector. Now

magnetic diffusion, etc. The nonlinear shear-current effecc¥ve take into account the effect which is lineariyl;. Thus,

deFermlnes.the Ievgl of the saturate_d mean magnetic f'?l he pseudotensdy, in the kinematic approximation has the
This paper is organized as follows. First, we discuss qualltaf-

tively a mechanism for the shear-current effégec. I)). In orm
Sec. Il we formulate the governing equations, the assump-
tions, and the procedure of the derivation of the nonlinear
mean electromotive force in a turbulent flow with a mean + D3 jjm(d U)i + D45”~V_Vk+ D55|kV_Vj]. (7
velocity shear. In Sec. IV we analyze the coefficients defin-

ing the mean electromotive force for a shear-free turbulencwhereD, are the unknown coefficients; is the Kronecker
and for a sheared turbulence, and consider the implicationgnsor, and the term 5, W, vanishes sinc& -B=0 [see Eq.

of the obtained results of the mean-field magnetic dynamq(3)]. Using Egs.(4)«(6) we determine the turbulent coeffi-
The nonlinear saturation of the mean magnetic field and asients defining the mean electromotive force for a homoge-
trophysical applications of the obtained results are discussegeous and nonhelical turbulence with a mean velocity shear:
in Sec. V.

bijk = 7reijk + 15 D1€iim(@ U) i+ Dogitem(@ Ui

75 = 778 = 25700 O)ija 5=125W, (8)

Il. SHEAR-CURRENT EFFECT 2 — ~
. Kijk = 1oL k1.6 Wi + K28ijm(d U) mid » 9
In order to describe the shear-current effect we need to
determine the mean electromotive force. The general form ovhere  7=(D1~D,=2D3)/4,5,=(D4~Ds)/2,x1=—(D4
the mean electromotive force in a turbulent flow with a meant Ds), andx,=—(D;+D,). The second term in the tensgy;
velocity shear can be obtained even from simple symmetrglescribes an anisotropic part of turbulent magnetic diffusion
reasoning. Indeed, the mean electromotive force can be writaused by the mean velocity shear, while the first term in the
ten in the form tensor; is the isotropic contribution to turbulent magnetic
o o diffusion. The é term for the mean electromotive force de-

& =a;B; + byjyBj ks (3) scribes the shear-current effect which can cause the mean-

field magnetic dynamo. Indeed, consider a homogeneous

divergence-free turbulence with a mean velocity shéhr,
=(0,Sx,0) andW=(0,0,S). Let us study a simple case when

the mean magnetic field igz(gx(z),By(z),O). The mean

a;(B) = E(aij +ay), vEff( )= Egkjiaﬂ, (4) [)nyagnenc field in the kinematic approximation is determined

Wheregj,izvigj and we neglected termsO(VZEk). Follow-
ing [17] we rewrite Eq.(3) for the mean electromotive force
in the form of Eq.(2) with
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B _ _ cients defining the mean electromotive force in a homoge-
X= - S%UOB;+ 7By, (10 neous turbulence with a mean velocity shear, we will use a
t mean-field approach in which the magnetic and velocity
fields are divided into mean and fluctuating parts, where the

7B, — fluctuating parts have zero mean values. The procedure of
I SB+ 7By, (11)  the derivation of equation for the nonlinear mean electromo-
tive force is as follows(for details, see Appendix A We
whereB"= B/ 922 and consider the case of large hydrodynamic and magnetic Rey-
nolds numbers. The momentum equation and the induction
0= 89— 70~ KEl _ % _ %(D2+ D,+2D,). (12 equation for the turbulent fields are given by

aut,x) Vo
In Eq.(11) we took into account that the characteristic spatial 5t

1 — J— —
+—[(b-V)B+(B-V)b]-(U-V)u
o L : Mmp
scaleLg of the mean magnetic field variations is much larger

than the maximum scale of turbulent motiog, Equation -(u- V)U+uN+F, (14)
(12) was obtained in16] in the kinematic approximation.

We seek a solution of Eqe10) and (11) in the form abt,x) — - — —
o exp(yt+iK,z), where the growth ratey of the magnetic It =(B-V)u-(u-V)B-(U-V)b+(b-V)U

dynamo instability is given by o 9
+b", 15

whereu and b are fluctuations of velocity and magnetic

The first term(«<SB) on right-hand sid¢RHS) of Eq. (11) field, respectivelyB is the mean magnetic field) is the
describes the shear motions. This effect is similar to the difmean velocity fieldp is the fluid densityu is the magnetic
ferential rotation becaus® x (U x B)=SBg,. The magnetic permea’\tl)ility OfN the fluid,F is a random external stirring
dynamo instability is determined by a coupling between theforce, u™ andb™ are the nonlinear terms which include the
components of the mean magnetic field. In particular, thenolecular dissipative termg,=p+u X(B-b) are the fluc-
inhomogeneous magnetic f|eE!/ generates the f|e|§x due tuations of total pre_ssure,. aI][dare the flu(.:tuations of fluid
to the shear-current effepiescribed by the first term on the Pressure. The velocity satisfies the equatioW-u=0. Here-
RHS of Eq.(10)]. This is similar to thex effect. On the other after we omitu in the equations; i.e., we incluge "/ in the

hand, the field, generates the fielgy due to the pure shear definition of the magnetic field. We study the effect of a

: : locity shear on the mean electromotive force.
effect [described by the first term on the RHS of Efl)], mean ve ) - .
; : . P Using Egs.(14) and (15) written in a Fourier space we
like the differential rotation in{} dynamo. It follows from derive equations for the correlation functions of the velocity
Egs.(10) and(11) that for the shear-current dynam®,/B,  fq|g f;; =(uu;), the magnetic fieldy; =(bjb), and the cross-

~lo/Lg<1. Note that in thm_ﬂ (_jyna_mo, the poloidal com- helicity g;; =(bjuj). The equations for these correlation func-
ponent of the mean magnetic field is much smaller than th(ta

toroidal field ions are given by EqgA1)—«(A3) in Appendix A. We split
_r . . he tensorsf;;,h;;, and g; into nonhelical,f;;, and helical,

The magnetic dynamo instability due to the shear—curreni(H) . TJh ]h lical J ¢ of the t b?“)lf i
effect is different from that for the) dynamo. Indeed, the i ’ parts. The nelical part of the tensby - Tor magnetic

dynamo mechanism due to the shear-current effect acts eVéIH_ctuations depends_ on the _magnetic helicity, and it is deter-
in homogeneous nonhelical turbulence, while teeffect mined by the dynamic equation which follows from the mag-

vanishes for homogeneous turbulence. netic_helicity .co.nS(_arvation argu_men(see, e.g.,[lQ—Zé]).
The shear-current effect was studied[ir§] in the kine- The characteristic time of evolution of the nonhelical part of

matic approximation using two different methods: thap- the magnetic tensds; is of the order of the turbulent corre-
proximation (the Orszag third-order closure proceduaad lation tlmerozloluq, while tk'ls 'relaxatlon time of the helical
the stochastic calculughe path integral representation of the Part of the magnetic tensof” is of the order ofr,Rm (see,
solution of the induction equation, Feynman-Kac formula,€-9-[22]), where Rmz=uy/ 7> 1 is the magnetic Reynolds
and Cameron-Martin-Girsanov theorgriThe & term in the number andy, is the characteristic turbulent velocity in the
electromotive force which is responsible for the shearMaximum scalg, of turbulent motions.

y= Sk o — 77K2. (13)

current effect was also independently foundi8] in a prob- . Then we split theT nonhelical p'arts of the'correlatiqn func-
lem of a screw dynamo using the modified second-order coiions fij, hij, andg; into symmetric and antlsymnzgtrlcia;[en-
relation approximation. sors with respec'fs)to the wave vecthkr e.g.,fij:fij +fij .
where the tensof;;” =[f;;(k) +f;;(-k)]/2 describes the sym-
IIl. GOVERNING EQUATIONS AND THE PROCEDURE metric part of the tensor a”tfja):[fii(k)‘fij(‘k)]/z deter-
OF THE DERIVATION OF THE NONLINEAR mines the antisymmetric part of the tensor.
EFFECTS Equations for the second moments contain higher mo-

ments, and a problem of closing the equations for the higher
Now let us develop a nonlinear theory of the shear-curreninoments arises. Various approximate methods have been
effect. In order to derive equations for the nonlinear coeffi-proposed for the solution of problems of this tyjsee, e.g.,
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[25-27). The simplest procedure is the approximation, _ _(g_ V)E

which is widely used in the theory of kinetic equations and in Ve =V,(B) + 7(B)———, (18
passive scalar turbulence and magnetohydrodynamic turbu- B2

lence (see, e.g.[27-33). This procedure allows us to ex-

press the deviations of the third moments from the back- 7= 1By, (19)

ground turbulence in terms of the corresponding deviations
of the second moments, e.g., Where'i;(g)=—(1/2)(1+e)A(21)(4§), the functionsy(B) and
VA(E) are determined by Eqg22) and(24) respectively, the
functionsAf})(y) are determined by EqéC1) in Appendix C,

and the parameter=(b?@/(u?© is the ratio of the mag-
netic and kinetic energies in the background turbulence. The
function &™(B)=y©(B)¢»™(\8B) is the magnetic part of

iy = £ = = (f; = i) 700, (16)

where the ternf!) is related with the third momerisee Ap-
pendix A). The superscript0) corresponds to the back-

ground turbulencéwith B=0), and 7(k) is the characteristic

o o . the « effect, where ¢™(y)=(3/y?)(1-arctary/y) is the
relaxatl_on time of the statistical moments. We applied the quenching function of the magnetic part of thesffect (see
approximation only for the nonhelical pdrf of the tensor of

magnetic [31,34), and the dimensionless functiony©(B)

fluctuations. =(7/3upup){b-(V X b)). The functiony®(B) is determined

In this study we consider an intermediate nonlinearityby the dynamic equation which follows from the magnetic
which implies that the mean magnetic field is not stronghelicity conservation argumenisee, e.g.[19-24). Note
enough in order to affect the correlation time of the turbulentthat in a homogeneous and nonhelical background turbulence
velocity field. The theory for a very strong mean magneticthe hydrodynamic part”’ of the a effect vanishes. In a
field can be corrected after taking into account a dependena@rbulence without a uniform rotation or a mean velocity
of the correlat_lon. time of the turbulent velocity field on thg shear, thes(B) term and thex,,(B) term in the mean elec-
mean magnetic field. We assume that the characteristic t'mt?omotive force vanish. J
of variation of the mean magnetic fied is SUbStantia”y We adopt here the dimensionless form of the mean dy_
|arger than the correlation tlmﬂk) for all turbulence scales namo equations; in particu'ar, |ength is measured in units of
(which corresponds to the mean-field approadhis allows | i js measured in units &#/ 7r, B is measured in units
us to get a stationary solution for the equations for the sec-’ — '

ond moments;;,hy;, andg;. For the integration ifk space of of the equipartition energﬁeqz\;ﬁpuo, and the nonlinear

these secondjr’ncl)Jr’nents we have to specify a model for thiéjrbulent magnetic diffusion coefficients are measured in
— units of the characteristic value of the turbulent magnetic

background turbulencéwith B=0). We use the foIIo_wing diffusivity 7r=lou,/3. Note thatL~Lg, whereLg is the
model for Ege bacl;g((r)?und homoge?o?ous azn?o) ISOUOPIGharacteristic scale of the mean magnetic field variations.
turbulence: f;;"(k) =(u9)™PWIK) (8 —k;j) , by (k) =(b5) > W(k) Now we consider a small-scale homogeneous turbulence
x(8;-kp, and g (k)=0, where k;=kkj/k?W(K) o i
=—[dFk)/dk]/87rk2,r(k)zzrﬁk) ,7(K)=(k/ko)1™9,1<q<3
is the exponent of the kinetic energy spectr(erg.,q=5/3
for the Kolmogorov spectrum ky=1/l,, and m=Iy/ug,
TP (k)dk=((uA©/3);, and [h{? (k)dk =((b2)©/3) ;.
Using the derived equations for the second momentsgA [, 2 — . e —

fij,hj, andg; we calculate the mean electromotive foge = || S.oo(B)(W - V)B+a™(B)B - (Va(B) - V)A

=J&(k)dk, where?i(k):simngﬁ](k). For a turbulence with a

with @ mean velocity sheat)=S»x, andW=Se,. In Carte-
sian coordinates the mean magnetic fi@leB(x,2)e,+V
X[A(x,2)e,] is determined by the dimensionless dynamo
equations

mean velocity shear the coefficients defining the mean elec- + 7a(B)AA, (20
tromotive force are the sum of contributions arising from a
shear-free turbulence and sheared turbulésee Sec. V. JB

;:—s«v“v .V)A+V -[7(B)VB], (21
IV. NONLINEAR MEAN-FIELD DYNAMO

_al2 IYERYYIIYY] ; R i
IN A TURBULENCE WITH A MEAN VELOCITY SHEAR whereS.=SL%/ 7y andW=W/W, and the functiorw(B) is

determined below. The nonlinear turbulent magnetic diffu-
First, let us consider a shear-free nonrotating homogesion coefficients and the nonlinear drift velocities of the
neous and nonhelical turbulence. Using E@-(6), (A35),  mean magnetic field are given by
and (A36) we derive equations for the mean electromotive — _ _
force. The coefficients defining the mean electromotive force 7a(B) = AP(4B) + AP (4B), (22)
for a shear-free turbulence in a dimensionless form are given

b _ _ - 1= —
Y 75(B) = AY(4B) + 3(1 - €)| AY(4B) - _—Ay(1687) |,

o
af” = a™(B)3;, (17) (23)
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FIG. 2. The nonlinear effective drift velocity, of the mean
magnetic field fore=0 (solid line), e=0.3 (dash-dotted ling and
e=1 (dashed ling The velocityV, is measured in units ofy;/L.

magnetic for an arbitrary level of background magnetic fluc-
tuations.

The asymptotic formulas for the magnetic part of the
effect, the nonlinear turbulent magnetic diffusion coeffi-
cients, and the nonlinear drift velocity of the mean magnetic
field for B<Bg,/4 are given by

0 1 2 3 B/B
eq

_ _ 3,32
(m) () I s,
FIG. 1. The nonlinear turbulent magnetic diffusion coefficients i (B)=x (B)<1 5 )5”'

77a (@) and 75 (b) for e=0 (solid lineg ande=1 (dashed lines The
function 7, is independent of the parameterThe nonlinear turbu-
lent magnetic diffusion coefficients are measured in units of the

characteristic value of the turbulent magnetic diffusivity;
=lgup/ 3.

— 12 — 4
7a(B)=1- E,BZ, ng(B)=1- g(5 - 4¢) 32,
AB

VuB) = - *-| (2-30A0(4B) - (1- 9

Ax(16B?) |,
e

VA(B) = g(l - 2¢)32A®),
2m

and forB> B, /4 they are given b
(24) eq y g y

— — (M(B) = ©(B)
whereA®=VB?/B?, the parameter € e<1, and the func- o (B) =x"(B)

tions A (y) andAf(l)(y) are determined by Eq&B6) and(C1)
in Appendixes B and C. For derivations E¢22)—(24) we — 1 — 2(1+e¢
used Egs(18) and(19). Note that in Eqs(22)—(24) we ne- 7A(B) = k2 78(B) = 3B
glected small contributions-O[(l,/L)?] caused by the mean

velocity shear. The nonlinear turbulent magnetic diffusion o 1+
coefficientsz, and 7g and the nonlinear effective drift ve- VA(B) = -
locity V5 of mean magnetic field for different value of the 3B
parametere are shown in Figs. 1 and 2. The background —

magnetic fluctuations caused by the small-scale dynamo révhere3=8B. _
sult in an increase of the nonlinear turbulent magnetic diffu- The nonlinear coefficient(B) defining the shear-current
sion coefficientyg, and they do not affect the nonlinear tur- effect is determined by EqgA51) in Appendix A. The non-
bulent magnetic diffusion coefficienj, (see Fig. 1. Onthe  |inear dependence of the parametg(B) is shown in Fig. 3

other hand, the background magnetic fluctuations stronglyy gifferent values of the parameterThe background mag-
affect the nonlinear effective drift velocity, of the mean

el g - ¢ netic fluctuations caused by the small-scale dynamo and de-
magnetic field. In particular, whesa>1/2, the velocity, is ived by th tar i th ¢ (E)
negative(i.e., it is diamagnetic velocijywhich causes a drift scribed by the parame ailr_mrease _ € parameter o

of the magnetic field componers andB, from the regions  NOt€ that the parameter,(B) is determined by the contribu-
with a high intensity of the mean magnetic figkl When  {ions from thed(B) term, the 7;(B) term, and thexiy(B)
0<e<1/2, the effective drift velocityV/, is paramagnetic term in the mean electromotive force. The asymptotic for-
velocity for a weak mean magnetic fie[dee Fig. 2 For ~ mula for the parametery(B) for a weak mean magnetic field
strong fieldsB> B,/ 2, the effective drift velocity, is dia-  B<Bey/4 is given by

o
2_,82‘21"
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% X Let us determine the threshold for the generation of the
\ mean magnetic field due to the shear-current effect. To this
o2l end we introduce the dynamo number in the kinematic
o approximation:
ey bLS\2 —
0 e D= (0—) oo(B=0). (29)
‘\\ ................. 77T
=01 e Consider the simple boundary conditions for a layer of thick-
B ness 2 in the x direction: B(|x|=1,2)=0 and A(jx|=1,2)

0 02 04 06 08 B/Beq =0, wherex is measured in units. Then Egqs(20) and(21)
yield
FIG. 3. The dimensionless nonlinear coefficientB) defining -
the shear-current effect for different values of the parameter B(t.x,2) = Boexp( yt)cosK,x)cosK2),
=0 (solid line), €e=0.2 (dash-dotted ling ande=1 (dashed ling I —
\Oo .
A(t,x,2) = - By 0 0exp(yt)cos(KXx)sm(Kzz),

— 4
0o(B)=——(2-q+3e), (25) —
45 with the critical dynamo numbeD.=72 where oy(B

) =0)>0, the growth rate of the mean magnetic fieldyis
whereq is the exponent of the energy spectrum of the back—:\‘;DKZ_ Ki—Kf, the wave vectoK is measured in units of

ground turbulence. In Eq25) we neglected the small con- L1, and the growth rate is measured inj;/L2. The mean
tribution ~O[(4B/B,y)?]. Equation(25) is in agreement with  magnetic field is generated whdd>D,,. The maximum
that obtained if16] where the case of a weak mean mag-growth rate of the mean magnetic fielgh,,,=D?/4-Kz, is
netic field ande=0 was considered. Thus, the mean magnetiattained at,=K,,=VD/2. The critical dynamo number de-
field is generated due to the shear-current effect, when th@rmines_the critical shear of the mean velocity fi€d
exponent of the energy spectrum of the velocity fluctuations= (/3 o)(uy/L). The scenario of a nonlinear evolution of
IS the mean magnetic field is discussed in Sec. V.

q<2+3e.
V. DISCUSSION

Note that the parametey varies in the range €£q<3.
Therefore, when the level of the background magnetic fluc-t

. 4 by th I e d i< | han 1/ e shear-current effect in a turbulence with an imposed
tuations caused by the small-scale dynamo Is larger than ean velocity shear. The shear-current effect is associated
of the kinetic energy of the velocity fluctuations, the mean — =

magnetic field can be generated due to the shear-current efith the W J term in the mean electromotive force and

fect for an arbitrary exponeutof the energy spectrum of the causes Fhe generation (.)f a mean magnetic field even in a
velocity fluctuations. For the Kolmogorov turbulence—i.e.,rlonrOtatIng and nonhelical homogeneous turbulence. The

when the exponent of the energy spectrum of the backgroun%cena”(.) of th? mean magnetic field evo!utlpn is as follows.
— - — In the kinematic stage, the mean magnetic field grows due to

tqrbulenceq:5/3—the parameterog(B) for B<Beg/4 is the shear-current effect from a very small seeding magnetic
given by field. During the nonlinear growth of the mean magnetic
field, the shear-current effect only changes its sign at some

value B. of the mean magnetic field. However, there is no
quenching of the nonlinear shear-current effect contrary to
the quenching of the nonlinear effect, the nonlinear turbu-

lent magnetic diffusion, etc. The magnitu@e is less than
the equipartition fieldsee below. The background magnetic

— 11 fluctuations enhance the shear-current effect and result in a
oo(B)=-——-(1+e). (27)

135 decrease of the m_agnitucﬁ.

L The magnitudeB. determines the level of the saturated
In Eq. (27) we neglected small contributiorO(B,,/4B). It ~ mean magnetic field. Let us plot the normalized nonlinear

is seen from Eqs(25—27) that the nonlinear coefficient dynamo numbebg(B)=D(B)/D?(B=0) which determines
oo(B) defining the shear-current effect changes its sign athe role of the shear-current effect in the mean magnetic
some value of the mean magnetic fi@¢B.. For instance, dynamo(see Fig. 4 Here D?(B)=0o(B)/[7a(B) 7s(B)] is
Ezo.ﬁgeq for €=0, andg*:O.ageq for e=1. The magnitude the nonlinear dynamo number. At the poB$B. the non-

B. determines the level of the saturated mean magnetic fieltinear effective dynamo numb@ﬁ(g)zo. Depending on the
during its nonlinear evolutiosee Sec. V. level of the background magnetic fluctuations described by

In the present paper we developed the nonlinear theory of

4
oo(B) = 55(1 +9¢), (26)

and for§>§eq/ 4 the parametevo(g) is
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where hereafter we omitted argumenin the correlation
functions, fj; (k,R)=L(u;; uj),

L(a;c) = f (a(k +K/2)c(- k +K/2))expiK -R)dK

andR=(x+y)/2,r=x-y, K=k;+ky,k=(k;—-k5)/2, andR

andK correspond to the large scales anandk to the small

ones(see, e.9.[35,36). This implies that we assumed that

y there exists a separation of scales; i.e., the maximum scale of

0.2 0.4 0.6 B/Be‘_‘I turbulent motiond, is much smaller than the characteristic

scaleL of inhomogeneities of the mean fields. In particular,

FIG. 4. The normalized nonlinear dynamo nummﬁ(g) for  this impli_es t.ha.trslo< R. Our final rgsults shqwed that this

different values of the parametere=0 (solid ling), e=0.2 (dash- assumption is indeed valid. We derive equations for the fol-

dotted ling, ande=1 (dashed ling lowing correlation functions:

fi;(k,R)=L(u;u), hy(k,R)=L(b;b),

-2

the parameter, the saturated mean magnetic field varies
from 0.3B¢4to 0.8, (see Fig. 4 o
Note that the magnetic part of theeffect caused by the 9ij(k.R) = L by uy).

magnetic helicity is a purely nonlinear effect. In this study The equations for these correlation functions are given by
we concentrated on the algebraic nonlinearitige nonlin-

ear shear-current effect, the nonlinear turbulent magnetic dif- 9 1ij(k) =ik _E)(I)i(jM) ¥ |ifj ¥ Ii(ijn(U)fmn+ Fy+ fh‘
fusion, the nonlinear effective drift velocity of mean mag- at
netic field and do not discuss the effect of magnetic helicity (A1)

(the dynamic nonlinearity, see, e.§19-24) on the nonlin-

ear saturation of the mean magnetic field. This is a subject of ahii(K) _

an ongoing separate study. Note that the nonlinear shear-  —1==—i(k -B)d{™ + 1]l + E (U)hy,+ hl),

current effect can affect the flux of magnetic helicity. How- at

ever, this remains an open issue. (A2)
The shear-current effect may be important in astrophysi-

cal objects like accretion disks where mean velocity shear 5¢. (k) =~ — ) —

comes together with rotation, so that both the shear-current—J—&t =i(k - B)[fjj(k) = hyj(k) = hi T+ 18 + I (U) Grmn

effect and thex effect might operate. Since the shear-current

effect is not quenched contrary to the quenching of the non- + g,’}‘ (A3)

linear « effect, the shear-current effect might be the only . .

surviving effect, and it can explain the dynamics of large-VNere hereafter we omitted the argumentand R n

scale magnetic fields in astrophysical bodies with large-scal'é correlation functions and neglected the termS(V<).

shearing motions. Here @M (k) =g (k) = g (k) , Fij (k) = (Fi (k) uj(=k))

+(ui(k)F;(=k)), and F(k)=k X (k X F(k))/k?p. The tensors

APPENDIX A: THE NONLINEAR MEAN ” ” . )
ELECTROMOTIVE FORCE IN A TURBULENCE lijmn(U), Efjmn(U), andJj,(U) are given by
WITH A MEAN VELOCITY SHEAR _ [
177(U) = | 2KigSmpOin + 2KiqGmn = SmSiaOno = GiqOind;

We use a mean-field approach whereby the velocity, pres- (V) aTmpTIn ERaEmTbn - AmTa e HAamnTme
sure, and magnetic field are separated into mean and fluctu- P .
ating parts, where the fluctuating parts have zero mean val- + @mgjnkq—]vpuq,
ues. Let us derive the equations for the second moments. In akp
order to exclude the pressure term from the equation of mo- o o
thn (14) we galculateV X (V >< u). Then'we rewrite the ob- Ei(jrmn(U) = (8m8iq + Simbiq) Vnlq,
tained equation and Eq15) in a Fourier space. We also
apply the two-scale approach, e.g., a correlation function _
‘Ji(ijn(U) = | 2Kig%im%n~ SimSpnSjq + SjnSpmdiq
Uix)u;(y)) = f (Ui(kuj(ka)yexpli(ky - x + Ky - y)tdkdks

(9 J—
+ dméjnkqﬁ} Velg,
p

=ffi,-(k,K)exp(ik-r+iK-R)dk dK, i )
where g; is the Kronecker tensor adq:kikj/kz. Equations

(AL)~(A3) are written in a frame moving with a local veloc-
:J fij (k,R)explik -r)dk, ity U of the mean flows. In Eq$Al) and(A3) we neglected
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small terms which are of the order 6)‘(|VZU|). The source

termslifj If} andl?j which contain the large-scale spatial de-
rivatives of the mean magnetic field are given by

1 —
1= 5B V)OI +[gq(k)(2Py(K) - 6y)
+ 9gi(= K)(2Pja(K) = 5,) 1B g — Bugka®l),  (A4)
h_olx ®) =
Iij - E(B Y% )q)ij - [giq(k)‘sjn + gjq(_ k)gm]Bn,q
~ By gke®{f, (A5)
19= 2@ W)(F: +ho) + hy(2P(K) = 8.)Bo o~ B,
[} 2 ij ij iq jn in/Pn,q nj=i,n
~ Brgka(fijq *+ hija). (A6)

whereV=d/dR,®” (k) =g; (k) +g; (-k), andB, ;=V,B;, the
terms fj; hl'f and g;; are determined by the third moments
appearing due to the nonlinear ternfgy=(1/2)df;;/ ik,

and similarly forhyj, and(Di(jZ). A stirring force in the Navier-

Stokes turbulence is an external parameter that determines

the background turbulence.

For the derivation of Eq9A1)«{A3) we performed sev-
eral calculations that are similar to the following, which
arose, e.g., in computingg;;/st. The other calculations fol-

PHYSICAL REVIEW E70, 046310(2004)

V,[f;(k,R)By(R)]= f iK [f(k,R)By(R) I«

X expiK -R)dK . (A11)
Therefore, Eqs(A9)—(A1l) yield
Y,i(k,R) =[i(k -B) + (1/2)(B - V)]If;;(k,R)
1 afyk)—
ka Ik, Do (A12)

We took into account that in EqA3) the terms with sym-
metric tensors with respect to the indexeand j do not
contribute to the mean electromotive force becadse
=em;idj- In Egs. (A9)—«(A1l) we neglected the second and
higher derivatives overR. For the derivation of Egs.
(A1){A3) we also used the identity

ikiffiJ-(k—%Q,K —Q)Up(Q)exp(iK *R)dK dQ

1— 1, _— i _— (_af;
= - EUpVIf” + EfijViUp— Z(Vsup)<vl(?_klsl>
. i_(_w? fy )(v VU (A13)
a\gks) 5P

To derive Eq(A13) we multiply the equatiorV-u=0 [writ-
ten ink space forj(k;—Q)] by uj(kp)Up(Q)expliK -R), in-

low similar lines and are not given here. Let us definetegrate oveK andQ, and average over ensemble of velocity

Yij(k,R) by

Yij(k!R):iJ(kp"_ Kp/Z)Ep(Q)exr(iK ‘R)

X(ui(k + K/2 -Q)u(— k +K/2))dK dQ.

(A7)
Next, we introduce the new variables
ki=k+K/2-0Q, kp,=-k+K/2,
k=(k;-k)/2=k-Q/2, K=Kk;+k,=K-Q.
(A8)

Therefore,

Y;i(k,R) =i f fij(k = Q/2,K = Q)(ky + Ky/2)By(Q)

X expliK -R)dK dQ. (A9)
Since|Q| < k|, we use the Taylor expansion
1af; (kK -
fik- Q2K ~Q) = ik K -Q) - ;A=
+0(Q?), (A10)

and the identities

[f;(k,R)By(R) I« = j f;;(k,K - Q)B,(Q)dQ,

fluctuations. Herd; =k +K /2 andk,=-k +K /2. This yields

[ 31-0) o2l 3

X Up(QexpliK -R)dK dQ =0, (A14)

Now we introduce the new variabld?q andEz determined
by Eg.(A8). This allows us to rewrite EqA14) in the form

. 1 1 —
J |<ki + EKi - Qi)fij<k - EQyK - Q)Up(Q)
X exp(iK -R)dK dQ =0. (A15)

Since|Q| < k|, we use the Taylor expansigA10), and we
also use the following identities, which are similar to Eg.
(A11):

[£;(k,R)U,R) ]k = f f,i(k,K - Q)U,(Q)dQ,

V[fi(k, R)ULR)]= j iK [f(k, R)Uy(R) I

X expliK - R)dK .

Therefore, Eq(A15) yields Eq.(A13).

Now we split all tensors into nonhelicall;, and helical,
fi(jH), parts. Note that the helical part of the tensor of magnetic
fluctuationshi(H), depends on the magnetic helicity and is not
determined by Eq(A2). The equation for the helical part of

(A16)
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the tensor of magnetic fluctuationlsfjH), follows from the

( ~ (0)
magnetic helicity conservation argumentésee, e.g., hs(k 1+ 21/,[‘“ +(1+y)hy k)], (A21)
[19-24).
In this study we use the approximation[see Eq.(16)].
The 7 approximation is in general similar to eddy-damped §@ (k) =~ ik - B)[f (k) = hOKk)] (A22)
quasinormal Markovian(EDQNM) approximation. How- . 1+2¢ I '

ever, some principal difference exists between these two ap- 5 ‘@
proachegsee[26,27). The EDQNM closures do not relax to Where (k) Z(Tk B)2. The correlation functionsf;;”(k),
equilibrium, and this procedure does not describe properlyl (k) andg (k) vanish if we neglect the large- scale spa-
the motions in the equilibrium state in contrast to thap- t|a| der|vat|ves i.e., they are proportional to the first-order
proximation. Within the EDQNM theory, there is no dynami- spatial derivatives. Equatiori#20) and(A21) yield

cally determined relaxation time and no slightly perturbed

steady state can be approacli2d. In the = approximation, (k) +h B(k) = P (k) +hiP(k), (A23)

the relaxation time for small departures from equilibrium is
determined by the random motions in the equilibrium state
but not by the departure from equilibriuf27]. As follows
from the analysis by27] the = approximation describes the
relaxation to the equilibrium statéhe background turbu-
lence much more accurately than the EDQNM approach.

which is in agreement with the fact that a uniform mean
magnetic field performs no work on the turbulence. A uni-
form mean magnetic field can only redistribute the energy
between hydrodynamic fluctuations and magnetic fluctua-
tion. A change of the total energy of fluctuations is caused by
a nonuniform mean magnetic field.

Next, we take into account the large-scale spatial deriva-
1. Shear-free homogeneous turbulence tives in Eqs.(A1)«A3) by perturbations. Their effect deter-
mines the followmg steady-state equations for the second

Consider a turbulence without a mean velocity shear; i.e.,
momentsfIJ ,h”, andg;:

we omit the tensors?  (U), ijmn(U) andJi,n(U) in Egs.

jmn

(A1)~(A3). Flrst we solve Eqs(A1)~A3) neglectlng the fi(ja)(k):ia-(k .E)Ef)i(j'\" S)(|<)+T|”, (A24)

sourceslf andlﬁ' with the large-scale spatial derivatives.

Then we W|If take into account the terms with the large-scale ~(a) . oF (M) h
hi’(k) = —ir(k - B)®;"¥(k) + l; (A25)

spatial derivatives by perturbations. We start with Egs. i

(A1)—(A3) written for nonhelical parts of the tensors and ~

then consider EqgA1)—(A3) for helical parts of the tensors. GO(k) =ik - B)(f (k) - hiP(k)) +Ad,  (A26)
Thus, we subtract EqsA1)—(A3) written for background hereCD(M 9_ [<I>(M)(k)+<1>(M)( ~K)]/2. The solution of Eqs.

turbulencefor B=0) from those forB # 0. Then we use the A24)—(A126) ylelds

T approximation and neglect the terms with the Iarge-scale

spatial derivatives. Next, we assume thaf <71 and vk? (M 9 k) =

<71 for the inertial range of turbulent flow, and we also (k)= 1 +2¢

assume that the characteristic time of variation of the mean

magnetic fieldB is substantially larger than the correlation

time (k) for all turbulence scales. Thus, we arrive to the Substituting Eq(A27) into Eqgs.(A24)«A26) we obtain the

following steady-state solution of the obtained equations: final expressions ik space for the nonhelical parts of the

tensorsti(ja)(k),hff‘)(k) 'QIS)(k) andCD(M S(k). In particular,

09 -18+ink -B)A - 15 +10 - 1M}

(A27)

fy0) = i) +irk -BYDMK),  (ALD) WKL O)

| B0 = " T+ L 200 B
hyj (k) = hi<j0>(k) —ir(k - B)q>i<jM>(k), (A18) + Ky = Kkng) — 20+ 200) (e S

(00 ~ ik B[k -], (A19) Ko B (A28)

The correlation functlon(g(S k), h(.s)(k), and’gi(f)(k) are of
where fij, h i and §; are solutions without the SOUICES the order of ~O(V?); i.e., they are proportional to the

f
lj. 1j, andly. second-order spatial derivatives. THld&fIJ is the nonheli-

Now we spI|t all correlation functions into symmetric and __, )
part of the correlation functions for a shear-free turbu
antisymmetric parts with respect to the wave nunibee.g., lence and similarly for other second moments.

—£(8 4 ¢@ (s)—
fij =i +fJ(a wherefJ =[fij(k)+fj(-k)]/2 is the symmetric Now we solve Eqs(A1)—(A3) for the helical parts of the
part andf =[fij(k)=fjj(=k)]/2 is the antisymmetric part, (ensors for a shear-free turbulence using the same approach
and similarly for other tensors. Thus, Ea17)~(A19) yield which we used in this section. The steady-state solution of
Egs.(Al) and(A3) for the helical parts of the tensors reads
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o) =irk Bk -], (A30) bij = 71l basije + DosijnBok* baginiBn],  (A36)

whereCD M) = g.(H)(k (H)( k). The tensoh(J )is deter-  wherea™(B)=x9(B)¢™(B) and

mined by the dynamlc equauqsee e.g.[19-24). The so- NN YA

lution of Egs.(A29) and (A30) yields by = AT (N2B) + A3 (N2),

2ir(k -B)
1+¢

Since hi(jH) is of the order ofO(V), we do not need to take
into account the source terms with the large-scale spatial

1 .
MM (k) = - hi. (A31) b= =5 (1+ AT (12p),

bs= (1 - W,{A)} - AY(\2),

derivatives[22]. _ the functionsAy) and AM(y) being determined by Egs.
Now we calculate thg mean electromotive fo&& =0) (B6) and(C1) in Appendixes B and C. Equatiois35) and
=(1/2)ginm [PM (k) + DM (k)]dk. Thus, (A36) yield Egs.(17)~(19).
] — h 2. Turbulence with a mean velocity shear
&= ginm [I +ir(k - B)(Imn_ Imn)] .
1+ 2l/f Now we study the effect of a mean velocity shear on the
| Ak - B) mean electromotive force. We take into account the tensors
17y ———h{t | dk (A32)  19(U),Efna(U) and 35,,(U) in Egs. (A1){A3), and we

neglect terms~O(V?). The steady-state solution of Egs.

For the integration ink space of the mean electromotive (A1)«(A3) for the nonhelical parts of the tensors for a
force we have to specify a model for the background turbusheared turbulence reads

Ience(w!th B=0); see Sec. lll. After integration ik space .,mn(U)fmn Hi(k - B) cI>(M)+ Iifj}’ (A37)
we obtain&;=a;B;j+bB; «, where
" f Tkh“*)dk ”mn(U)hmn— =ik - B)(I)i(j’v') + 15}, (A38)
inm 1+¢/
(C)(E) (m)( ) 1[3 1 2) (m)( 1P (8) |Jmn(U)gmn_T{|(k B)[fu(k) hlj(k)]+| '}, (A39)
X ¢ IBIBU 2 B (B ij B[, where
A33
( ) |Jmn(U) = é‘|m51n Il]mn’
1
bij = 2 77r((1 + €)ijml Ak (V 2B) - KH(\2p)] N2 a(U) = GimBin = TE s
+ 20l (L - OV4{Kp} - KD(28)]),  (A34) N i(U) = S = 70mn
B 3 _ and we use the following notation: the total correlation func-
W,{X} = 3XV(y2p) - 2—X(2/32), tion is f;; =f; +f7. Here f;=f;+f; is the correlation func-
& tions for a shear-free turbulence, and the correlation func-
tions i determines the effect of a mean velocity shear. The
_ 3p X2) similar notations are for other correlation functions. Now we
(:8) - _f Kij(a(7)) 7 dr= J dX, solve Eqs(A37)—(A39) by iterations. This yields
and all calculations are made fqr=5/3 X?=8%(k/ky)?*=a f7(K) = 1 fmn ik -B)RM7 + 107}, (A40)
=[Bugkr(k)/2]?, the functionkK;; is deteEnined by EqB1) Mo) o
in Appendix B, e=(b%©/(u2©,B=4B/(up\2up),P;(B) hij(k) = T{Eljmn —ik- B)‘D +IMY, (A41)
8- Bij. Bij=BiB;/B?, ™ (B)=(3/pA)[1~arctanip)/ ], _ —
— (k. o _ (9,0)
and y©(B) = (7/3up)(b-(V X b)) is related with current he- 9 (K) = H{ImnGmn+ 1(K - B)[f] =]+ 77}, (A42)

licity. Since a part of the mean electromotive force is deterwhere <I><JM ")(k) g”’(k) gi(-k)) and the source terms

mined by the functlom,(B)B andP”(,B)B =0, we can drop (f" = (g ),If]h @ =|h i(97) and I<9" =I{(fi,h7) are deter-

the term=P;;(B) in Eq. (A33). Thus, the equations fou; m|ned by Eqs(A4)—(A6) where#Il .hij, andg;; are replaced

and by, are given by by fi,hi, and gj, respectively. The solution of Egs.
(A40)—(A42) yield equation for the symmetric paﬂt(M S

a; = a™(B)s;, (A35)  of the tensor:
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I 70) = 175 = B+ 17 =157 €= bi\By (A6)
+ir(k -B)[(Ii‘j’rnn Jlmn)fmn + 17 =1 where the tensobf, is given by
+ 1§ — 1Moy, (A43)
where we took into account thag, is a symmetric tensor o =12 2 D q (A47)
in indexesi andj. Thus, the effect of a mean velocity shear .

on the mean electromotive  force, &£7(r=0)

_ (M,a,9) . .
(1/2)8'”qu) dk, is determined by the coefficientD;=0, and the other coefficients calculated

r B _ _ for q=5/3 aregiven by
&= sinmJ M{J%nptgpq*- ik -B)
1 2
X[ npdoat 167 = 1007 +197) k. (A44) Dy = §[A§2> - 3A% - 18CP + E<A<12> +AP + §c<12>>
Now we use the following identities:

22
o B . +\If1{Al+ 2A2+§C1—e(2A1+A2+6C1)}
eimpKikgmV pUq = 5[01(25‘11& +25% + S + S + C(2SR

+P A +1C + (A 11C> (1-eWV3{Cy}
- - € - - — €
+S0)], 2) ~At 3G 1734 21Cy
8|]kamqu U = 2C1 Jk ) - Wo{2A, - 3C1}] )
eikpKijqVpUq = E[Al(ZS 3( )+ Az(zé 1 -
D, = _|:_ (A(Z) + A(Z) + 4(:(2)) + 6(- A(2) + A(Z) + _C(Z))
2 3 1 2 1 1 2 3 1

8|kaJmpq Z(Cﬁ( + C3 70
+ \Pl - Al + A2 + EC]_ - 2€(A2 + 1%1)

8iqumijUq = 8ijmeqVkUq Al(z 3 71 79
+\I,2 Al—gcl— € Al—gcl

ek U = 5 (38 + A)2S7 - S, +<1—e>(qf3{ oA, +7C,) - w4{cl}+8w5{c1})

11
PR AT] P AT +Wg) 28 - —C }
sikamquUq:_SiqumijUq:_§A1(2 ]4k)) O{ 1 3 .

T e 1) 5)
&ijpKigVpUq = EAl(quk + S(jk) D, = }{3A(12) +AD - E’C(f) + €<3A(12) ~AD - @C(lz))
6 3 3

4 2
8qumkaU = (3A1+A2)(2 '-SR). “I'l{Al*‘Az‘ gcl‘ 2€(A1+A2+ gcl)} +(1-¢)
(&ijqSkp+ s,Jp5kq)KmmV U =2(3A, + AySE Jk . (A45) X (WA + Ci} = W5{Cy}) + ‘I’o{cl}] ,
where
k - Sljp(a U)pk- Szk) = sikp(a U)pjy 1 2 2 14 2 2 2 26 2
) : Ds=¢ A(1)+A(2)—€C(1)+EA(1)—A(2) 3C<>
Sﬁ(j:gl():‘gjkp((?u)piv S(j“k):Wk(sijv S(Ji):Wjﬁk, 4 2
_\I,]_ Al_A2_§C1_26 Al_A2+§C1 +(1_€)
Sj?() = &ikpBig(d U)pg, j7k) =WB;.
After the integration in Eq(A44), we obtain X (WA +Ci} - W5{C}) + ‘Po{cl}] :
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1 32 70
Dg==| AP - 4C? - e<A<22> - —c<32>> + W - 3A+ —C;
3 3 3
1
+ 26(A2 - 1%3)} - 5(71 - 795)\112{C3} - (1 - 6)

X (q’s{Az 7Cs} + 16\1,4{(:3} 8\1’5{C3}>

11
+ \PO A2 - ?C?: '

1 14 26 4
D, = E{A@ - Ecg” + 6(3A(22) - 3(:52)) + \Ifl{Az t3

X(1+ 6)03} + (1= &) (Wo{2A, + Cg} = W5{A, + C3})
+Wo{A, + Cg}] . (A48)

The functionsA,(y) and C,(y) are determined by Eq$B6)
in Appendix B, and the functionA,(f)(y) and C(kz)(y) are de-
termined by Eqs(D1) in Appendix D. The functional {X}
are given by

V{X}=- %(1 +eX@(0) + (2 - G)X(z)(\rE,B)

- (- 9X(28),
W40X) =~ 3X2(28) + - X(29),
WolX) = 3X(28) - 2-[2X(9) + YK ]y
W3iX) == 6XP(20) + 2 [4X) +yX W]y
V40X) = 4XP(28) - S {8X(y) + 4yX () + YK )]y

1 1 — —
We(X} = - 5x<2><\~5ﬂ> + 52X +yX(y)

+ 2y°X"(y) =02 (A49)

In Egs.(A45)—(A49) we took into account that for the shear-

o/Lg<<1, whereLy is the charac-
teristic scale of the mean magnetic field variations. The non-

current dynamoB, /By~ |

linear coefficient defining the shear-current effect
determined by

— 1
(To(B) = E(Dz + 2D4 + D6 + 2D7) . (ASO)

Equation(A50) yields
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0o(B) = dyfAs + Agt + ¢,{Cy + Cyl, (A51)

where

$100 = (1 + OXD28) + [Wo- (1 (3=, + W)

X{X}), (A52)

do{X} = é((Se ~ 13X (\2p) +[4V, - 4T, - 18V,

+ (1 - E)(55\I’1 - 38\1,2 + 9\II3 - 8q,4 + 12\1,5)]{)(}) .

(A53)

The nonlinear dependence of the parameigiB) deter-
mined by Eq(A51) is shown in Fig. 3 for different values of
the parametee. The asymptotic formulas for the parameter
op(B) for B< Beq/4 and B>B,/4 are given by Egs.
(25—27). For the derivation of EqtA51) we used the iden-
tities (D2) in Appendix D.

APPENDIX B: THE IDENTITIES USED
FOR THE INTEGRATION IN k SPACE

To integrate over the angles knspace we used the fol-
lowing identities:

+A2:3I]1 (Bl)

ksma
dod A8
f1+ac0520 =M

sin @
1jmn -
|Jmn fl_l_acoszadad(p C1(55 + Oim 5 + 4 5m)

+ CZBijmn + C3(5ij,8mn+ ‘slmﬂjn + 5|n,8jm +
+ 5jn,3im + 5mnﬁij)r

5jm,8in
(B2)

_ KijmnSin@
|Jmn(a) f (1+aco§0)2 0d<p

( J ,mnsme
~ \ob b+acos’-0

(p)
b=1

N (7 N
= Kjjmn(@) + aaKijmn(a)v (B3)

Imnsme
”m”(a) f (1 +acog6)® dé de

:__< KiimnSiN 6
(b +acog)?

do d(p)
b=1

= Himo(@) + 5= Hinr(@), (84)
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KiimnSin 6 of the turbulencd,<Lg, andly=I,Re¥* is the viscous scale
Ql]mn(a) f —J—(l +acoLo) de of turbulence, and.g is the characteristic scale of variations
of the nonuniform mean magnetic field. For very large Rey-
_ }(i Kiimnsin 0 q ) nolds numbers,=13" is very large and the turbulent hydro-
" 3\9b ) (b+acogs)? ¢ bt dynamic and magnetic energies are very small in the viscous
dissipative range of the turbulence=0 <I4. Thus we inte-
:aijmn(a)+§;—a€”mn(a), (B5)  grated inA, over k from ko=I5! to . We also used the

identity
wherea=[Suckr(K)/22, 5=l B, 6; =B, and

l JE—
! f A@(TTdr= 2 AL (),
— 27 arctarf\a) 0 3
A= ;[(a+ 1) - 1} ,

/

va and similarly forcgl)(,[s’). The functionsAS)(,B) and ij)(ﬂ)
_ are given by
— 27 arctarfva)
Az:—? (@+3)—F=—-3/, AD () = §{arctan,8(l+i> +iL(B) _i}
va LR 782) " 14 78|’
— targy 5
Cl:%{( 1)2W 33_1], AV = - [arctanﬂ(lJrE)__ (B)—E]
. i g\ |
Co=Ap=TA1+ 350, e arctang( 10 2 235
G0l \M7p T op) Ted P 189
Cs=A,-5C;. (B6)
In the case oh<1 these functions are given by - %}
K(a) 477(1 1a> A (a) 8m a,
1 ~ 5 - ’ 2 I
V% 15 Cc(B)= AP (B) ~ TAY(B) +35C{(8),
I PE 32m e cP(B) =AY(p) - 5P c1
Cl(a) ~ 15 1 7 ; Cz(a)~ 315a 5 (B =A7(B) 1 (B), (Cy
where L(B)=1-28%+28%n(1+37?). For B<1 these func-
87 tions are given by
Cs(a) ~—-—a.

105 2 4
AV(B) ~1-CB, AR ~ - B,

In the case oh>1 these functions are given by

@~ =0T - T2 T
e YT TR a cr(p) ~ g<1 - ;ﬁz), ci(p) ~ - Eﬁ“ln B,
712 dr  — 37 32w
Cla~—=-—, Clay~—+=-—r, 4
3a 4Ja 3a C(31)(,3) o _5le
Cya) ~ - ir i 8_77_ and for 3>1 they are given by
4\a 3a
2 4
AVB) ~ o= (B)~-— —
APPENDIX C: THE FUNCTIONS A%(B) AND cP(p) /3 B 56 B
The functionsA(l)(,B) are defined as ( : > " 9
1 1
Ci(p) ~ ———2, 2 (B)~ - —,
3 X2 208 3 20,
A(l (B)— BAJ n( ) , B ﬂ B
cw 3m 4
and similarly forC£1 (B), where 3 (B)~ - 208" 38
2 2 23— 4 — 2
X" = pkiko)™ = a=[ Buck(k)/2]", Here we used that fog<1 the functionL(B)~1-232

and we took into account that the inertial range of the turbu=48%n B, and for 3> 1 the functionL(B) ~2/33% We also
lence exists in the scaldg<r <I,. Here the maximum scale use the identity
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1
- — 3
fo Hijmn(a(?))?<ko) dr= 27TK.(Jlmn(,3) = Kijmn(B8?). IP(B) ~ ﬁB "2 B
2 2 J(z)(ﬁ) -~
APPENDIX D: THE FUNCTIONS A?(B) AND c?(p) 2 4mp?
The functionsA'(B) are defined as
I ~
38° X2
AZ(B) = Bf “(7 )dX, B
g X For B<1 the functionsA(z)(,B) and Cf)(,B) are given by

_— (2) . .
and similarly forC (). We used the identity

1 T
J A(@a(n)7dr= %A@(ﬂ).
0

and similarly forC”(B). The functionsA'®(8) and C'?()

are given by
A?(B)=F(1;-1;0,
AP(B) =F(- 1;3;0,
C?(B) = (UAF(1;-2;1),
CP(B) = (1/4)F(3;- 30;35,
CP(B) = (L4F(-1:6;-5,
where

Fla;0;9) = 7ladP(B) + 032 (B) + ¥dP(B)],

arctang  3f3

3 L(B))

J<2>(,3)——<1 +6———
@(m = 1@ 2T
B(B= 3B+,

4
JPB) = (J‘2 (B) - BZL(B) o )

2 ( arctang
2\ 1-

3B B
For 8<1 the functions](z)(ﬁ) are given by

3B ~ —(1 )

L(B) = (1 +32>) :

and for 8> 1 they are given by

AZ(B) ~ (1 - —/32> AZ(B) ~ - Eﬁz,
@ 2 3 2 @
Cy (,3)~1—5(1‘ﬂﬂ): CY(B) ~0(B%),

2
cP(B) ~ - =

and for 3> 1 they are given by

3 3
2B ~ 78" 25 AP (B) ~ 7_,6’ 2
cop -~ L o T4
@g . 37 1
C3(B) 288t @

We also used the following identities:

\Ifl{Kijmn} = K|(12rr)1n(\'2B) H|]mn 2:8)1
Z{Kljmn} K|Jmn(\/2B) 2H|Jmn(\2:8) + Gljmn(\’zﬁ)
\1,3{Kijmn} = H|(]2r2m( v 2:8) G|(12n>'1n(\ 2p),

W Kimnt = H2,1(128) - 262, (V28) + QZ(V28),

\PS{Kljmn} [Kl(JZn)m(\' 2pB) - 3Hi<j2n)1n(\ 2p) + 3G|<12n)wn(\ 2p)
- Qin(V28)],
where
|(12n)1n(\2:8) 4K|Jmn(V23) T |]mn(2,8 )
Gl(Jzn)m( 2:8) |]mn( 2:3) |]mn(2,82)
Qljmn( Zﬁ) ZG:JZmn(\'ZB) |Jmn(2,82)
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