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Generation of large-scale vorticity in a homogeneous turbulence with a mean velocity shear
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An effect of a mean velocity shear on a turbulence and on the effective force which is determined by the
gradient of the Reynolds stresses is studied. Generation of a mean vorticity in a homogeneous incompressible
nonhelical turbulent flow with an imposed mean velocity shear due to an excitation of a large-scale instability
is found. The instability is caused by a combined effect of the large-scale shear motions~‘‘skew-induced’’
deflection of equilibrium mean vorticity! and ‘‘Reynolds stress-induced’’ generation of perturbations of mean
vorticity. Spatial characteristics of the instability, such as the minimum size of the growing perturbations and
the size of perturbations with the maximum growth rate, are determined. This instability and the dynamics of
the mean vorticity are associated with Prandtl’s turbulent secondary flows.
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I. INTRODUCTION

Vorticity generation in turbulent and laminar flows wa
studied experimentally, theoretically, and numerically in
number of publications~see, e.g., Refs.@1–16#!. For in-
stance, a mechanism of the vorticity production in lamin
compressible fluid flows consists in the misalignment
pressure and density gradients@12,13#. It was shown in Ref.
@13# that the vorticity generation represents a generic pr
erty of any slow nonadiabatic laminar gas flow. In incom
pressible nonhelical flows, this effect does not occur. T
role of small-scale vorticity production in incompressib
turbulent flows was discussed in Ref.@10#.

On the other hand, generation and dynamics of the m
vorticity are associated with turbulent secondary flows~see,
e.g., Refs.@1,3–8#!. These flows, e.g., arise at the later
boundaries of three-dimensional thin shear layers wher
longitudinal ~streamwise! mean vorticity is generated by
lateral deflection or ’’skewing‘‘ of an existing shear layer@3#.
The skew-induced streamwise mean vorticity generation
responds to Prandtl’s first kind of secondary flows. In turb
lent flows, e.g., in straight noncircular ducts, streamw
mean vorticity can be generated by the Reynolds stres
The latter is Prandtl’s second kind of turbulent second
flow, and it ‘‘has no counterpart in laminar flow and cann
be described by any turbulence model with an isotropic e
viscocity’’ @3#.

Note that the effect of the generation of large-scale v
ticity in the helical turbulence due to hydrodynamicala ef-
fect was considered in Refs.@14–16#, wherea is determined
by the hydrodynamical helicity of the turbulent flow.

In the present study, we demonstrated that in a homo
neous incompressible nonhelical turbulent flow with an i
posed mean velocity shear~when thea effect does not exist!,
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a large-scale instability can be excited which results in
mean-vorticity production. This instability is caused by
combinedeffect of the large-scale shear motions~‘‘skew-
induced’’ deflection of equilibrium mean vorticity! and
‘‘Reynolds stress-induced’’ generation of perturbations
mean vorticity. The skew-induced deflection of the equil
rium mean vorticityW̄(s) is determined by (W̄(s)

•“)Ũ term
in the equation for the mean vorticity, whereŨ are perturba-
tions of the mean velocity~see below!. The Reynolds stress
induced generation of a mean vorticity is determined
“3F, whereF is an effective force caused by a gradient
the Reynolds stresses.

This paper is organized as follows. In Sec. II, the gove
ing equations are formulated. In Sec. III, the general form
the Reynolds stresses in a homogeneous nonhelical tu
lence with an imposed mean-velocity shear is found us
simple symmetry reasoning, and the mechanism for
large-scale instability caused by a combined effect of
large-scale shear motions and Reynolds stress-induced
eration of perturbations of the mean vorticity is discussed
Sec. IV, the equation for the second moment of velocity flu
tuations in a homogeneous turbulence with an imposed m
velocity shear is derived. This allows us to study an effect
a mean velocity shear on a nonhelical turbulence and to
culate the effective force determined by the gradient of
Reynolds stresses. Using the derived mean-field equation
vorticity, in Sec. IV we studied the large-scale instabili
which causes the mean vorticity production.

II. THE GOVERNING EQUATIONS

Our goal is to study an effect of the mean velocity she
on a nonhelical turbulence and on the dynamics of a m
vorticity. The equation for the evolution of vorticityW
[“3v reads

]W

]t
5“3~v3W2n“3W!, ~1!

wherev is the fluid velocity with“•v50 andn is the kine-
matic viscosity. This equation follows from the Navie
©2003 The American Physical Society11-1
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Stokes equation. In this study, we use a mean-field appro
whereby the velocity and vorticity are separated into
mean and fluctuating parts:v5Ū1u and W5W̄1w, the
fluctuating parts have zero mean values, andŪ5^v&, W̄
5^W&. Averaging Eq.~1! over an ensemble of fluctuation
we obtain an equation for the mean vorticityW̄:

]W̄

]t
5“3~Ū3W̄1^u3w&2n“3W̄!. ~2!

Note that the effect of turbulence on the mean vorticity
determined by the Reynolds stresses^uiuj&, because

^u3w& i52“ j^uiuj&1 1
2“ i^u

2&, ~3!

and the curl of the last term in Eq.~3! vanishes.
We consider a turbulent flow with an imposed mean

locity shear“ iŪ
(s), whereŪ(s) is a steady-state solution o

the Navier-Stokes equation for the mean-velocity field.
order to study a stability of this equilibrium, we consid
perturbationsŨ of the mean velocity, i.e., the total mea
velocity is Ū5Ū(s)1Ũ. Similarly, the total mean vorticity is
W̄5W̄(s)1W̃, whereW̄(s)5“3Ū(s) andW̃5“3Ũ. Thus,
the linearized equation for the small perturbations of
mean vorticity,W̃5W̄2W̄(s), is given by

]W̃

]t
5“3~Ū(s)3W̃1Ũ3W̄(s)1F2n“3W̃!, ~4!

whereFi52“ j@ f i j (Ū)2 f i j (Ū
(s))# is the effective force and

f i j 5^uiuj&. Equation~4! is derived by subtracting Eq.~2!

written for W̄(s) from the corresponding equation for th
mean vorticity W̄. In order to obtain a closed system
equations, in Sec. IV we derived an equation for the effec
forceF. Equation~4! determines the dynamics of perturb
tions of the mean vorticity. In the following sections, we w
show that under certain conditions the large-scale instab
can be excited which causes the mean vorticity producti

III. THE QUALITATIVE DESCRIPTION

In this section, we discuss the mechanism of the lar
scale instability. The mean velocity shear can affect a tur
lence. The reason is that additional strongly anisotropic
locity fluctuations can be generated by tangling of the m
velocity gradients with the isotropic and homogeneous ba
ground turbulence~see Fig. 1!. The source of energy o
this ‘‘tangling turbulence’’ is the energy of the backgroun
turbulence@17#.

The tangling turbulence is a universal phenomenon, e
it was introduced by Wheelon@18# and Batcheloret al. @19#
for a passive scalar and by Golitsyn@20# and Moffatt@21# for
a passive vector~magnetic field!. Anisotropic fluctuations of
a passive scalar~e.g., the number density of particles or tem
perature! are produced by tangling of gradients of the me
passive scalar field with a random velocity field. Similar
anisotropic magnetic fluctuations are generated by tang
01631
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of the mean magnetic field with the velocity fluctuations. T
Reynolds stresses in a turbulent flow with a weak mean
locity shear form another example of a tangling turbulen
Indeed, they are strongly anisotropic in the presence of sh
and have a steeper spectrum (}k27/3) than a Kolmogorov
background turbulence~see, e.g., Refs.@17,22–25#!. The an-
isotropic velocity fluctuations of tangling turbulence we
studied first by Lumley@22#. Different properties of aniso-
tropic turbulence, such as anisotropic scaling behavior
anomalous scalings, were studied recently in@26–28#.

We assumed that the generated tangling turbulence d
not affect the background turbulence. This implies that
considered one-way coupling due to a weak large-scale
locity shear.

The general form of the Reynolds stresses in a turbu
flow with a mean-velocity shear can be obtained from sim
symmetry reasoning. Indeed, the Reynolds stresses^uiuj&
form a symmetric true tensor. In a turbulent flow with a
imposed mean-velocity shear, the Reynolds stresses de
on the true tensor“ j Ū i , which can be written as a sum o
the symmetric and antisymmetric parts, i.e.,“ j Ū i5(]Û) i j

2(1/2)« i jkW̄k , where (]Û) i j 5(“ i Ū j1“ j Ū i)/2 is the true
tensor andW̄5“3Ū is the mean vorticity~pseudo-vector!.
We take into account the effect which is linear in perturb
tions (]Ũ) i j andW̃, where (]Ũ) i j 5(“ i Ũ j1“ j Ũ i)/2. Thus,
the general form of the Reynolds stresses can be found u
the following true tensors: (]Ũ) i j , Mi j , Ni j , Hi j , andGi j ,
where

Mi j 5~]Ū (s)! im~]Ũ !m j1~]Ū (s)! jm~]Ũ !mi , ~5!

Ni j 5W̃n@«nim~]Ū (s)!m j1«n jm~]Ū (s)!mi#, ~6!

Hi j 5W̄n
(s)@«nim~]Ũ !m j1«n jm~]Ũ !mi#, ~7!

FIG. 1. Mechanism for the tangling turbulence: generation
anisotropic velocity fluctuations by tangling of the mean veloc
gradients with the background turbulence.
1-2
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Gi j 5W̄i
(s)W̃j1W̄j

(s)W̃i , ~8!

(]Ū (s)) i j 5(“ i Ū j
(s)1“ j Ū i

(s))/2 and« i jk is the fully antisym-
metric Levi-Cività tensor ~pseudotensor!. Therefore, the
Reynolds stresses have the following general form:

f i j ~Ũ!522n
T
~]Ũ ! i j 2 l 0

2~B1Mi j 1B2Ni j 1B3Hi j 1B4Gi j !,

~9!

whereBk are the unknown coefficients,l 0 is the maximum
scale of turbulent motions,n

T
5 l 0u0 /a* is the turbulent vis-

cosity with the factora* '3 –6, andu0 is the characteristic
turbulent velocity in the maximum scale of turbulent motio
l 0. The parameterl 0

2 in Eq. ~9! was introduced using dimen
sional arguments. The first term on the right hand side of
~9! describes the standard isotropic turbulent viscos
whereas the other terms are determined by fluctuat
caused by the imposed velocity shear“ i Ū j

(s) .
Let us study the evolution of the mean vorticity usin

Eqs. ~4! and ~9!, where Fi52“ j f i j (Ũ) is the effective
force. We consider a homogeneous divergence-free tu
lence with a mean-velocity shear, e.g.,Ū(s)5(0,Sx,0) and
W̄(s)5(0,0,S). For simplicity, we use perturbations of th
mean vorticity in the formW̃5„W̃x(z),W̃y(z),0…. Then Eq.
~4! can be written as

]W̃x

]t
5SW̃y1n

T
W̃x9 , ~10!

]W̃y

]t
52bSl0

2W̃x91n
T
W̃y9 , ~11!

where W̃x95]2W̃x /]z2, b5@B112(B21B3)24B4#/4. In

Eq. ~10!, we took into account thatl 0
2W̃y9!W̃y , i.e., the char-

acteristic scaleLW of the mean vorticity variations is muc
larger than the maximum scale of turbulent motionsl 0. This
assumption corresponds to the mean-field approach.
derivation of Eqs.~10! and ~11!, we used the identities pre
sented in Appendix A.

We seek for a solution of Eqs.~10! and ~11! in the form
}exp(gt1iKz). Thus whenb.0, perturbations of the mea
vorticity can grow in time and the growth rate of the inst
bility is given by

g5AbSl0K2n
T
K2. ~12!

The maximum growth rate of perturbations of the me
vorticity, gmax5b(Sl0)

2/4nT , is attained at K5Km

5AbSl0/2nT . The sufficient conditiong.0 for the excita-
tion of the instability readsLW / l 0.2p/(a*

Abt0S), where
LW[2p/K and we consider a weak velocity sheart0S!1.

Now let us discuss the mechanism of this instability us
a terminology from Ref. @3#. The first term SW̃y

5(W̄(s)
•“)Ũx in Eq. ~10! describes a skew-induced gener

tion of perturbations of the mean vorticityW̃x by quasi-
inviscid deflection of the equilibrium mean vorticityW̄(s). In
01631
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particular, the mean vorticityW̃xex is generated fromW̃yey

by equilibrium shear motions with the mean vorticityW̄(s)

5Sez , i.e., W̃xex}(W̄(s)
•“)Ũxex}W̃yey3W̄(s) ~see Fig. 2!.

Hereex , ey , andez are the unit vectors alongx, y, andz axis,
respectively. On the other hand, the first term,2bSl0

2W̃x9 in
Eq. ~11! determines a Reynolds stress-induced generatio
perturbations of the mean vorticityW̃y by turbulent Reynolds
stresses~see Fig. 3!. In particular, this term is determine
by (“3F)y , where F is a gradient of the Reynold
stresses. This implies that the mean vorticityW̃yey is
gener-ated by an effective anisotropic viscous te
}2 l 0

2D(W̃xex•“)Ū (s)(x)ey}2 l 0
2SW̃x9ey . This mechanism

of the generation of perturbations of the mean vorticityW̃yey
can be interpreted as a stretching of the perturbations of
mean vorticityW̃xex by the equilibrium shear motionsŪ(s)

5Sxey during the turnover time of turbulent eddies~see Fig.
3!. The growth rate of this instability is caused by a com
bined effect of the sheared motions~skew-induced genera
tion! and the Reynolds stress-induced generation of per
bations of the mean vorticity.

This large-scale instability is similar to a mean-field ma
netic dynamo instability caused by theV3J effect~see, e.g.,
Refs.@29,30#! or the shear-current effect@31#, whereJ is the
electric current andV is the angular velocity. Indeed, th
first term in Eq.~10! is similar to the differential rotation~or
large-scale shear motions! which causes a generation of
toroidal mean magnetic field by a stretching of the poloid
mean magnetic field with the differential rotation~or by
large-scale shear motions!. On the other hand, the first term
in Eq. ~11! is similar to theV3J effect ~see, e.g., Refs
@29,30#!, or to the shear-current effect@31#. These effects
result in the generation of a poloidal mean magnetic fi
from the toroidal mean magnetic field. TheV3J effect is
related to an interaction of the mean rotation and elec
current in a homogeneous turbulent flow, while the she
current effect occurs due to an interaction of the mean v
ticity and electric current in a homogeneous anis

FIG. 2. Mechanism for ‘‘skew-induced’’ generation of perturb

tions of the mean vorticityW̃x by quasi-inviscid deflection of the

equilibrium mean vorticityW̄(s)ez . In particular, the mean vorticity

W̃xex is generated by an interaction of perturbations of the m

vorticity W̃yey and the equilibrium mean vorticityW̄(s)5Sez , i.e.,

W̃xex}(W̄(s)
•“)Ũxex}W̃yey3W̄(s).
1-3
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ELPERIN, KLEEORIN, AND ROGACHEVSKII PHYSICAL REVIEW E68, 016311 ~2003!
tropic turbulent flow of a conducting fluid. The magnet
dynamo instability is a combined effect of the nonunifor
mean flow~differential rotation or large-scale shear motion!
and turbulence effects~anisotropic turbulent motions whic
cause theV3J effect and the shear-current effect!.

On the other hand, the kinematic magnetic dynamo in
bility is different from the instability of the mean vorticity
although they are governed by similar equations. The m
vorticity W̄5“3Ū is directly determined by the velocit
field Ū, while the magnetic field depends on the veloc
field through the induction equation.

IV. EFFECT OF A MEAN-VELOCITY SHEAR ON A
TURBULENCE AND LARGE-SCALE INSTABILITY

In this section, we study quantitatively an effect of
mean-velocity shear on a nonhelical turbulence. This allo
us to derive an equation for the effective forceF and to
study the dynamics of the mean vorticity.

A. Method of derivations

To study an effect of a mean-velocity shear on a tur
lence, we used an equation for fluctuationsu(t,r ) that is
obtained by subtracting equation for the mean field from
corresponding equation for the total field:

]u

]t
52~Ū•“ !u2~u•“ !Ū2

“p

r
1F(st)1UN , ~13!

FIG. 3. Mechanism for a ‘‘Reynolds stress-induced’’ generat

of perturbations of the mean vorticityW̃yey by turbulent Reynolds

stresses. In particular, the mean vorticityW̃yey is generated by an

effective anisotropic viscous term}2 l 0
2D(W̃xex•“)Ū (s)(x)ey

}2 l 0
2SW̃x9ey . This mechanism of the generation of perturbations

the mean vorticityW̃yey can be interpreted as a stretching of t

perturbations of the mean vorticityW̃xex by the equilibrium shear

motionsŪ(s)5Sxey during the turnover time of turbulent eddies.
01631
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wherep are the pressure fluctuations,r is the fluid density,
F(st) is an external stirring force with a zero-mean value, a
UN5^(u•“)u&2(u•“)u1nDu. We consider a turbulen
flow with large Reynolds numbers (Re5 l 0u0n@1). We as-
sumed that there is a separation of scales, i.e., the maxim
scale of turbulent motionsl 0 is much smaller than the char
acteristic scale of the inhomogeneities of the mean fie
Using Eq.~13!, we derived an equation for the second m
ment of the turbulent velocity fieldf i j (k,R)[*^ui(k
1K /2)uj (2k1K /2)&exp(iK•R)dK :

] f i j ~k,R!

]t
5I i jmn~Ū! f mn1Fi j 1 f i j

(N) ~14!

~see Appendix B!, where

I i jmn~Ū!5S 2kiqdmpd jn12kjqd imdpn2d imd jqdnp

2d iqd jndmp1d imd jnkq

]

]kp
D“pŪq , ~15!

andR andK correspond to the large scales, andr andk to
the small scales~see Appendix B!, ki j 5kikj /k2, f i j

(N)(k,R)
is the third moment appearing due to the no
linear term,“5]/]R,

Fi j ~k,R!5^F̃ i~k,R!uj~2k,R!&1^ui~k,R!F̃ j~2k,R!&

and

F̃~k,R,t !52k3@k3F(st)~k,R!#/k2.

Equation~14! is written in a frame moving with a local ve
locity Ū of the mean flow. In Eqs.~14! and ~15!, we ne-
glected small terms which are of the order ofO(u¹3Ūu).
Note that Eqs.~14! and ~15! do not contain terms propor
tional to O(u¹2Ūu).

The total mean-velocity isŪ5Ū(s)1Ũ, where we consid-
ered a turbulent flow with an imposed mean-velocity sh
“ iŪ

(s). Now let us introduce a background turbulence w
zero gradients of the mean fluid velocity“ i Ū j50. The
background turbulence is determined by the equat
] f i j

(0)/]t5Fi j 1 f i j
(N0) , where the superscript (0) correspon

to the background turbulence, and we assumed that the
sor Fi j (k,R), which is determined by a stirring force, i
independent of the mean-velocity. Equation for the dev
tions f i j 2 f i j

(0) from the background turbulence is given by

]~ f̂ 2 f̂ (0)!

]t
5@ Î ~Ū(s)!1 Î ~Ũ!# f̂ 1 f̂ (N)2 f̂ (N0), ~16!

where we used the following notations:f̂ [ f i j (k,R), f̂ (N)

[ f i j
(N)(k,R), f̂ (N0)[ f i j

(N0)(k,R), f̂ (0)[ f i j
(0)(k,R), and

Î (Ū) f̂ [I i jmn(Ū) f mn(k,R).
Equation~16! for the deviations of the second moments

k space contains the deviations of the third moments an
problem of closing the equations for the higher mome

f
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GENERATION OF LARGE-SCALE VORTICITY IN A . . . PHYSICAL REVIEW E68, 016311 ~2003!
arises. Various approximate methods have been propose
the solution of problems of this type~see, e.g., Refs.@32–
34#!. The simplest procedure is thet approximation which
was widely used for the study of different problems of tu
bulent transport~see, e.g., Refs.@32,35–37#!. It allows us to
express the deviations of the third momentsf̂ (N)2 f̂ (N0) in k
space in terms of those for the second momentsf̂ 2 f̂ (0) by
assuming that

f̂ (N)2 f̂ (N0)52
f̂ 2 f̂ (0)

t~k!
, ~17!

wheret(k) is the correlation time of the turbulent velocit
field. Here we assumed that the timet(k) is independent of
the gradients of the mean fluid velocity because in the fra
work of the mean-field approach we may only conside
weak shear:t0u“Ūu!1, wheret05 l 0 /u0.

The t approximation is, in general, similar to the edd
damped Quasinormal Markowian~EDQNM! approximation.
However, there is a principlal difference between these
approaches~see Refs.@32,34#!. The EDQNM closures do no
relax to the equilibrium, and do not describe properly t
motions in the equilibrium state. In the EDQNM theor
there is no dynamically determined relaxation time, and
slightly perturbed steady state can be approached@32#. In the
t approximation, the relaxation time for small departur
from the equilibrium is determined by the random motions
the equilibrium state, but not by the departure from the eq
librium @32#. Analysis performed in Ref.@32# showed that
the t approximation describes the relaxation to the equi
rium state~the background turbulence! more accurately than
the EDQNM approach.

Note that we applied thet approximation~17! only to
study the deviations from the background turbulence wh
are caused by the spatial derivatives of the mean-velo
The background turbulence is assumed to be known. In
study, we used the model of an isotropic, homogeneous,
nonhelical background turbulence:

f i j
(0)~k,R!5

u0
2

8pk2
Pi j ~k!E~k!, ~18!

where Pi j (k)5d i j 2ki j , d i j is the Kronecker tensor,t(k)
52t0t̄(k), E(k)52dt̄(k)/dk, t̄(k)5(k/k0)12q, 1,q,3
is the exponent of the kinetic energy spectrum~e.g.,q55/3
for Kolmogorov spectrum!, andk051/l 0. We assumed tha
the generated tangling turbulence does not affect the b
ground turbulence. This implies that we considered a o
way coupling due to a weak large-scale velocity shear.

B. Equation for the second moment of velocity fluctuations

We assume that the characteristic time of variation of
second momentf i j (k,R) is substantially larger than the co
relation timet(k) for all turbulence scales. Thus in a stea
state, Eq.~16! reads
01631
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L̂~ f̂ 2 f̂ (0)!5t~k!@ Î ~Ū(s)!1 Î ~Ũ!# f̂ (0), ~19!

whereL̂[Li jmn5d imd jn2t(k)@ I i jmn(Ū(s))1I i jmn(Ũ)#, and
we used Eq.~17!. The solution of Eq.~19! yields the expres-
sion for the second momentf̂ [ f i j (k,R):

f̂ ' f̂ ~Ū(s)!1t~k!@ Î ~Ũ!1 Î ~Ū(s)!t~k! Î ~Ũ!

1 Î ~Ũ!t~k! Î ~Ū(s)!# f̂ (0), ~20!

where

f̂ ~Ū(s)!5 f̂ (0)1t~k!@ Î ~Ū(s)!1 Î ~Ū(s)!t~k! Î ~Ū(s)!# f̂ (0).

In Eq. ~20!, we neglected terms which are of the order
O(u“Ũu2) andO(u“Ū(s)u2u“Ũu). The first term in the equa
tion for f̂ (Ū(s)) is independent of the mean-velocity she
and it describes the background turbulence, while the sec
and the third terms in this equation determine an effect of
mean-velocity shear on turbulence.

C. Effective force

Equation~20! allows us to determine the effective forc
Fi52“ j* f̃ i j (k,R)dk, where f̃ 5 f̂ 2 f̂ (Ū(s)), and we used
the notationf̃ [ f̃ i j (k,R). The integration ink space yields
the second momentf̃ i j (R)5* f̃ i j (k,R)dk:

f̃ i j ~R!522nT~]Ũ ! i j 2 l 0
2

3@4C1Mi j 1C2~Ni j 1Hi j !1C3Gi j #, ~21!

where C158(q2213q140)/315, C252(627q)/45, C3
522(q12)/45, and the tensorsMi j , Ni j , Hi j , andGi j are
determined by Eqs.~5!–~8!. In Eq. ~21!, we omitted terms
}d i j because they do not contribute to“3F @see Eq.~4! for
perturbations of the mean vorticityW̃]. To derive Eq.~21!,
we used the identities presented in Appendix A. Equatio
~9! and ~21! yield B154C1 , B25B35C2 , andB45C3.

Note that the mean velocity gradient“ iŪ
(s) causes gen-

eration of anisotropic velocity fluctuations~tangling turbu-
lence!. Inhomogeneities of perturbations of the mean velo
ity Ũ produce additional velocity fluctuations, so that t
Reynolds stressesf̃ i j (R) are the result of a combined effec
of two types of velocity fluctuations produced by the ta
gling of mean gradients“ iŪ

(s) and “ iŨ by a small-scale
Kolmogorov turbulence. Equation~21! allows us to deter-
mine the effective forceFi52“ j f̃ i j (R).

D. The large-scale instability in a homogeneous turbulence
with a mean-velocity shear

Let us study the evolution of the mean vorticity using E
~21! for the Reynolds stresses. Consider a homogeneous
helical turbulence with a mean-velocity shear, e.g.,Ū(s)

5(0,Sx,0) andW̄(s)5(0,0,S). For simplicity, we consider
1-5
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perturbations of the mean vorticity in the formW̃
5„W̃x(z),W̃y(z),0…. Then Eq.~4! reduces to Eqs.~10! and
~11!, whereb5C11C22C354(2q2247q1108)/315. We
seek for a solution of Eqs.~10! and ~11! in the form
}exp(gt1iKz). Thus, the growth rate of perturbations of th
mean vorticity is given byg5AbSl0K2nTK2. The maxi-
mum growth rate of perturbations of the mean vortici
gmax5b(Sl0)

2/4nT'0.1a* S2t0, is attained at K5Km

5AbSl0/2nT. Here we used that for a Kolmogorov spectru
(q55/3) of the background turbulence, the factorb'0.45.
The sufficient conditiong.0 for the excitation of the insta
bility readsLW / l 0.2p/(a*

Abt0S). Sincet0S!1 ~we con-
sidered a weak velocity shear!, the scaleLW@ l 0 and, there-
fore, there is a separation of scales as required in our mo

Now we consider perturbations of the mean vortic
which depend onx and z, i.e., W̃5„W̃x(x,z),W̃y(x,z),0….
Then Eq.~4! reduces to

D
]W̃x

]t
5S

]2W̃y

]z2
1n

T
D2W̃x , ~22!

]2

]z2

]W̃y

]t
5DFbSl0

2S b*
]2

]x2 2
]2

]z2D W̃x1n
T

]2

]z2W̃yG ,
~23!

where b* 52(C12C2)/b. For 955/3, the paramete
b* '3.5. Therefore, the growth rate of perturbations of t
mean vorticity is given by

g5Sl0KAb@12~11b* !sin2u#2n
T
K2. ~24!

The maximum growth rate of perturbations of the mean v
ticity, gmax5b(Sl0)

2@12(11b* )sin2 u#/4nT, is attained atK
5Km5Sl0Ab@12(11b* )sin2 u#/2nT . The large-scale in-
stability may occur whenuuu,28°. In the case ofu50, the
large-scale instability is more effective, i.e., the mean vor
ity grows with a maximum possible rate. The mechanism
this instability is discussed in Sec. III and it is associa
with a combined effect of the skew-induced deflection
equilibrium mean vorticity due to the sheared motions a
the Reynolds stress-induced generation of perturbation
mean vorticity.

V. CONCLUSIONS AND APPLICATIONS

We discussed an effect of a mean-velocity shear on a
mogeneous nonhelical turbulence and on the effective fo
which is determined by the gradient of the Reynolds stres
We demonstrated that in a homogeneous incompress
nonhelical turbulent flow with an imposed mean veloc
shear, a large-scale instability can be excited which result
a mean vorticity production. This instability is caused by
combinedeffect of the large-scale shear motions~skew-
induced deflection of equilibrium mean vorticity! and Rey-
nolds stress-induced generation of perturbations of m
vorticity. We determined the spatial characteristics of the
01631
,

el.

r-

-
f
d
f
d
of

o-
ce
s.
le

in

n
-

stability, such as the minimum size of the growing pert
bations and the size of perturbations with the maxim
growth rate.

The results obtained in this study are different from tho
discussed in Refs.@14–16#, whereby the generation of large
scale vorticity in the helical turbulence occurs due to hyd
dynamica effect. The latter effect is associated with the te
aW̃ in the equation for the mean vorticity, wherea is deter-
mined by the hydrodynamic helicity of the turbulent flow
We considered a nonhelical background homogeneous tu
lence which implies that Eq.~4! for the mean vorticityW̃
does not have the termaW̃. We studied a linear stage of th
large-scale instability which is saturated by nonlinear effec
but not a finite time growth of large-scale vorticity as d
scribed in Ref.@16#.

The analyzed effect of the mean vorticity production m
be of relevance in different turbulent industrial, environme
tal, and astrophysical flows~see, e.g., Refs.@3–8,38–41#!.
Thus, e.g., the suggested mechanism can be used in
analysis of the flows associated with Prandtl’s turbulent s
ondary flows~see, e.g., Refs.@3–8#!. These flows, e.g., arise
in straight noncircular ducts, at the lateral boundaries
three-dimensional thin shear layers, etc.

However, the results obtained in this study cannot be va
in the most general cases. We made the following assu
tions about the turbulence. We considered a homogene
isotropic, incompressible, and nonhelical background tur
lence~i.e., the turbulence without the large-scale shear!. The
weak mean velocity shear affects the background turbule
i.e., it causes generation of the additional strongly ani
tropic velocity fluctuations~tangling turbulence! by tangling
of the mean-velocity gradients with the background turb
lence. We assumed that the generated tangling turbule
does not affect the background turbulence. This implies t
we considered a one-way coupling due to a weak large-s
velocity shear. In Secs. III and IV D, we considered a line
velocity shear to derive the specific results for the large-sc
instability. Thus, we studied simple physical mechanisms
describe an initial stage of the mean vorticity generation. T
simple model considered in our paper can only mimic
flows associated with the turbulent secondary flows. Clea
the comprehensive theoretical and numerical studies are
quired for a quantitative description of the secondary flow

The obtained results may be also important in astroph
ics, e.g., in extragalactic clusters and in interstellar clou
The extragalactic clusters are nonrotating objects with a
mogeneous turbulence in the center of an extragalactic c
ter. Sheared motions between interacting clusters can c
an excitation of the large-scale instability which results in t
mean vorticity production and formation of large-scale vo
tices. Dust particles can be trapped by these vortices to
hance agglomeration of material and formation of parti
inhomogeneities@39–41#. The sheared motions can also o
cur between interacting interstellar clouds, whereby the
namics of the mean vorticity is important.
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APPENDIX A: IDENTITIES USED FOR DERIVATION
OF EQS. „10…, „11…, AND „21…

To derive Eqs.~10! and~11!, we used the following iden-
tities:

“3M5~SK2/4!~W̃y ,W̃x ,0!,

“3~Ũ3W̄(s)!5S~W̃y ,2W̃x ,0!,

“3~Ū(s)3W̃!5S~0,W̃x ,0!,

“3J5~SK2/2!~W̃y ,W̃x ,0!,

“3@~W̄(s)
•“ !W̃#5SK2~W̃y ,2W̃x ,0!,

where

Mi5“ jM i j ,

Ji5“ j„W̃n@«nim~]Ū (s)!m j1«n jm~]Ū (s)!mi#…,

and we also took into account that

“ jGi j 5~W̄(s)
•“ !W̃i ,

“ j$W̄n
(s)@«nim~]Ũ !m j1«n jm~]Ũ !mi#%

5@“ i~W̄(s)
•W̃!2~W̄(s)

•“ !W̃i #/2.

To derive Eq.~21!, we used the following identities fo
the integration over the angles ink space:

E ki jmn dV̂5
4p

15
D i jmn ,

Ti jmnpq[E ki jmnpqdV̂

5
4p

105
~Dmnpqd i j 1D jmnqd ip1D imnqd jp1D jmnpd iq

1D imnpd jq1D i jmndpq2D i jpqdmn!,

Ti jmnpq~¹mŪn
(s)!~¹pŨq!5

4p

105
~4Mi j 1d i j M pp!,

ki jmn5kikjkmkn /k4, dV̂5sinu du dw, ki jmnpq5ki jmnkpq ,
andD i jmn5d i j dmn1d imdn j1d indm j .

APPENDIX B: DERIVATION OF EQ. „14…

In order to derive Eq.~14!, we use a two-scale approac
i.e., a correlation function is written as follows:
01631
^ui~x!uj~y!&

5E ^ui~k1!uj~k2!&exp@ i ~k1•x1k2•y!#dk1 dk2

5E f i j ~k,R!exp~ ik•r !dk,

f i j ~k,R!5E ^ui~k1K /2!uj~2k1K /2!&

3exp~ iK•R!dK

~see, e.g., Refs.@42,43#!, whereR andK correspond to the
large scales, andr and k to the small scales, i.e.,R5(x
1y)/2, r5x2y, K5k11k2 , k5(k12k2)/2. This implies
that we assumed that there exists a separation of scales
the maximum scale of turbulent motionsl 0 is much smaller
than the characteristic scale of the inhomogeneities of
mean fields.

Now we calculate

] f i j ~k1 ,k2!

]t
[ K Pin~k1!

]un~k1!

]t
uj~k2!L

1 K ui~k1!Pjn~k2!
]un~k2!

]t L , ~B1!

where we multiplied equation of motion~13! rewritten ink
space byPi j (k)5d i j 2ki j in order to eliminate the pressur
term from the equation of motion,d i j is the Kronecker ten-
sor, andki j 5kikj /k2. Thus, the equation forf i j (k,R) is
given by Eq.~14!.

For the derivation of Eq.~14!, we used the following
identity:

ik iE f i j ~k2 1
2 Q,K2Q!Ūp~Q!exp~ iK•R!dK dQ

52
1

2
Ūp“ i f i j 1

1

2
f i j“ i Ūp2

i

4
~“sŪp!S“ i

] f i j

]ks
D

1
i

4 S ] f i j

]ks
D ~“s“ i Ūp!. ~B2!

To derive Eq.~B2!, we multiply the equation“•u50, writ-
ten in k space forui(k12Q), by uj (k2)Ūp(Q)exp(iK•R),
and integrate overK andQ, and average over the ensemb
of velocity fluctuations. Herek15k1K /2 and k252k
1K /2. This yields

E i S ki1
1

2
Ki2Qi D K ui S k1

1

2
K2QDuj~2k1 1

2 K !L
3Ūp~Q!exp~ iK•R!dK dQ50. ~B3!

Then we introduce new variables:k̃15k1K /22Q, k̃2

52k1K /2, and k̃5( k̃12 k̃2)/25k2Q/2, K̃5 k̃11 k̃2
5K2Q. This allows us to rewrite Eq.~B3! in the form
1-7
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E i S ki1
1

2
Ki2Qi D f i j S k2

1

2
Q,K2QD

3Ūp~Q!exp~ iK•R!dK dQ50. ~B4!

SinceuQu!uku, we can use the Taylor expansion

f i j ~k2Q/2,K2Q!

. f i j ~k,K2Q!2
1

2

] f i j ~k,K2Q!

]ks
Qs1O~Q2!.

~B5!
m

nd

h.

.Z

il-

id

01631
We also use the following identities:

@ f i j ~k,R!Ūp~R!#K5E f i j ~k,K2Q!Ūp~Q!dQ,

“p@ f i j ~k,R!Ūp~R!#

5E iK p@ f i j ~k,R!Ūp~R!#K exp~ iK•R!dK .

~B6!

Therefore, Eqs.~B4!–~B6! yield Eq. ~B2!.
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