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Generation of large-scale vorticity in a homogeneous turbulence with a mean velocity shear
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An effect of a mean velocity shear on a turbulence and on the effective force which is determined by the
gradient of the Reynolds stresses is studied. Generation of a mean vorticity in a homogeneous incompressible
nonhelical turbulent flow with an imposed mean velocity shear due to an excitation of a large-scale instability
is found. The instability is caused by a combined effect of the large-scale shear m@skes-induced”
deflection of equilibrium mean vorticiiyand “Reynolds stress-induced” generation of perturbations of mean
vorticity. Spatial characteristics of the instability, such as the minimum size of the growing perturbations and
the size of perturbations with the maximum growth rate, are determined. This instability and the dynamics of
the mean vorticity are associated with Prandtl’s turbulent secondary flows.
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I. INTRODUCTION a large-scale instability can be excited which results in a
mean-vorticity production. This instability is caused by a
Vorticity generation in turbulent and laminar flows was combinedeffect of the large-scale shear motio(iskew-
studied experimentally, theoretically, and numerically in ainduced” deflection of equilibrium mean vorticityand
number of publicationgsee, e.g., Refs[1-16]). For in- “Reynolds stress-induced” generation of perturbations of
stance, a mechanism of the vorticity production in laminarmean vorticity. The skew-induced deflection of the equilib-
compressible fluid flows consists in the misalignment ofrium mean vorticityW is determined byW(S)~V)U term
pressure and density gradiefit2,13. It was shown in Ref. i, the equation for the mean vorticity, wheteare perturba-
[13] that the vorticity generation represents a generic propgions of the mean velocitsee below. The Reynolds stress-
erty of any slow nonadiabatic laminar gas flow. In incom-inqyced generation of a mean vorticity is determined by
pressible nonhelical flows, this effect does not occur. TheVX}—, whereF is an effective force caused by a gradient of
role of small-scale vprticity pr.oduction in incompressible o Reynolds stresses.
turbulent flows was discussed in Rg20]. _ This paper is organized as follows. In Sec. Il, the govern-
On the other hand, generation and dynamics of the meapq equations are formulated. In Sec. Ill, the general form of
vorticity are associated with turbulent secondary flde®e,  {he Reynolds stresses in a homogeneous nonhelical turbu-
e.g., Refs[1,3—8). These flows, e.g., arise at the lateral jgnce with an imposed mean-velocity shear is found using
boundaries of three-dimensional thin shear layers Wherebé!imple symmetry reasoning, and the mechanism for the
longitudinal (streamwisg mean vorticity is generated by & |5rge-scale instability caused by a combined effect of the
lateral deflection or "skewing® of an existing shear lay&l.  |5rge-scale shear motions and Reynolds stress-induced gen-
The skew-induced streamwise mean vorticity generation Cofgration of perturbations of the mean vorticity is discussed. In
responds to Prandtl’s first kind of secondary flows. In turbu-gec. v, the equation for the second moment of velocity fluc-
lent flows, e.g., in straight noncircular ducts, streamwisgyations in a homogeneous turbulence with an imposed mean
mean vorticity can be generated by the Reynolds stressegg|qcity shear is derived. This allows us to study an effect of
The latter is Prandtl's second kind of turbulent secondary, mean velocity shear on a nonhelical turbulence and to cal-
flow, and it *has no counterpart in laminar flow and cannot o jate the effective force determined by the gradient of the

be described by any turbulence model with an isotropic eddyeynolds stresses. Using the derived mean-field equation for

viscocity” [3]. _ vorticity, in Sec. IV we studied the large-scale instability
Note that the effect of the generation of large-scale voryyhich causes the mean vorticity production.

ticity in the helical turbulence due to hydrodynamiecalef-
fect was considered in Refdl4-16, wherea is determined
by the hydrodynamical helicity of the turbulent flow.

In the present study, we demonstrated that in a homoge- Our goal is to study an effect of the mean velocity shear
neous incompressible nonhelical turbulent flow with an im-on a nonhelical turbulence and on the dynamics of a mean
posed mean velocity she@vhen thea effect does not exist  vorticity. The equation for the evolution of vorticityV

Il. THE GOVERNING EQUATIONS

=V Xv reads
*Electronic address: elperin@menix.bgu.ac.il; IW B
URL:http://www.bgu.ac.ill elperin at = VX(VXW =2V XW), (1)
TElectronic address: nat@menix.bgu.ac.il
*Electronic address: gary@bgumail.bgu.ac.il; wherev is the fluid velocity withV -v=0 andwv is the kine-
URL:http://www.bgu.ac.ilf gary matic viscosity. This equation follows from the Navier-
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Stokes equation. In this study, we use a mean-field approacLINEAR SHEAR FLOW BACKGROUND TURBULENCE
whereby the velocity and vorﬂcity are sepa@ted into the N
1 — = ﬁfr
mean gnd fluctuating part'==U+u and W WHw, th_e P
fluctuating parts have zero mean values, and(v), W — \/
=(W). Averaging Eq.(1) over an ensemble of fluctuations, 7 /
we obtain an equation for the mean vorticity: — \
q wy = A
oW — —
= VX (UXWHuXW) = vV XW). 2 ANISOTROPIC “TANGLING” TURBULENCE
Note that the effect of turbulence on the mean vorticity is >
determined by the Reynolds stresgagl;), because D —
-
(uxw)= =V (uuj+3zV(u?), ©) —
. . e
and the curl of the last term in EQ3) vanishes. >
We consider a turbulent flow with an imposed mean ve- -—

locity shearV,U®®, whereU® is a steady-state solution of
the Navier-Stokes equation for the mean-velocity field. In
order to study a stability of this equilibrium, we consider

perturbationsU of the mean velocity, i.e., the total mean

velocity isU=U'+U. Similarly, the total mean vorticity is  of the mean magnetic field with the velocity fluctuations. The

W=W®O+W, whereW®=VxU® andW=VxU. Thus, Reynolds stresses in a turbulent flow with a weak mean ve-

the linearized equation for the small perturbations of thdocity shear form another example of a tangling turbulence.

mean vorticity,W=W— WO s given by Indeed, they are strongly anisotropic in the presence of shear
and have a steeper spectrumk("”®) than a Kolmogorov

IW L ~ background turbulencesee, e.g., Ref$17,22—29). The an-
W=V><(U(S)><W+ UxW®+F—pVXW), (4 isotropic velocity fluctuations of tangling turbulence were

studied first by Lumley22]. Different properties of aniso-

B — T : tropic turbulence, such as anisotropic scaling behavior and

where; == V;[f;; (U) —f;; (U™) ] is the effective force and  5nomalous scalings, were studied recentlj26—29.

fij=(uiuj). Equation(4) is derived by subtracting Eq2) We assumed that the generated tangling turbulence does

written for W from the corresponding equation for the not affect the background turbulence. This implies that we

mean vorticity W. In order to obtain a closed system of considered one-way coupling due to a weak large-scale ve-

equations, in Sec. IV we derived an equation for the effectivaocity shear.

force FF. Equation(4) determines the dynamics of perturba-  The general form of the Reynolds stresses in a turbulent

tions of the mean vorticity. In the following sections, we will flow with a mean-velocity shear can be obtained from simple

show that under certain conditions the large-scale instabilitpymmetry reasoning. Indeed, the Reynolds stre¢sgs)

can be excited which causes the mean vorticity productionform a symmetric true tensor. In a turbulent flow with an
imposed mean-velocity shear, the Reynolds stresses depend

lll. THE QUALITATIVE DESCRIPTION on the true tensoV;U;, which can be written as a sum of
the symmetric and antisymmetric parts, i.ﬁ.j,Ui=((9U)ij

In this section, we discuss the mechanism of the large- - _ i
scale instability. The mean velocity shear can affect a turbu= (1/2)eij Wi, where @U);;=(V;U;+V;U;)/2 is the true

lence. The reason is that additional strongly anisotropic vetensor andV =V xU is the mean vorticitypseudo-vector
locity fluctuations can be generated by tangling of the meaVe take into account the effect which is linear in perturba-
velocity gradients with the isotropic and homogeneous backtions (9U);; andW, where ¢U);;=(V;0;+V,U;)/2. Thus,
ground turbulencesee Fig. 1L The source of energy of the general form of the Reynolds stresses can be found using

FIG. 1. Mechanism for the tangling turbulence: generation of
anisotropic velocity fluctuations by tangling of the mean velocity
gradients with the background turbulence.

this “tangling turbulence” is the energy of the background {he following true tensors:&@)i- .M, Nii, H;, andG;; ,
turbulence[17]. where A !
The tangling turbulence is a universal phenomenon, e.g.,
it was introduced by Wheelofi8] and Batcheloet al.[19] — ~ — ~
Mij = (AU);(90) i+ (AUD) (90 i, )

for a passive scalar and by Golits}20] and Moffatt[21] for
a passive vectofmagnetic fielgl. Anisotropic fluctuations of
a passive scalde.g., the number density of particles or tem- N;; :Wn[snim(gﬁ(s))mj+ €njm( AU 1, (6)
perature are produced by tangling of gradients of the mean

passive scalar field with a random velocity field. Similarly, —9) - -

anisotropic magnetic fluctuations are generated by tangling Hij =Wy [ nim(dU)mj+ enjm(IU) mil, ()
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Gy =WOW, + WOW,, ® w®

(9U);;=(V;Ul¥+V,;U?)/2 ande;jy is the fully antisym-
metric Levi-Civita tensor (pseudotensor Therefore, the
Reynolds stresses have the following general form:

f”(U): _ZVT(aU)ij _I(%(BIM” +BZNij +BBHij +B4Gij),
C)

whereB, are the unknown coefficientty is the maximum
scale of turbulent motionSz,Tz loug/a, is the turbulent vis-

cosity with the factora, ~3—-6, andug is the characteristic
turbulent velocity in the maximum scale of turbulent motions
lo. The parameteid in Eq. (9) was introduced using dimen- _ . _ . _
sional arguments. The first term on the right hand side of Eq. FIG. 2. Mechanism _fqrfkew"nd“?e_‘d _ge_nerat'on ‘_)f perturba-
(9) describes the standard isotropic turbulent ViSCOSity,tlonS of the mean vorumt&NX by quasi-inviscid deflection of the
whereas the other terms are determined by ﬂuctuaﬂongquilibrium mean vorticitpWJe, . In particular, the mean vorticity

caused by the imposed velocity sh&aUJ(S). er_x _is g~enerated by an i_qteraction of pertL_Jr_bgi(S)ns of the mean
Let us study the evolution of the mean vorticity using \iOI’tICIty7V\(/y)ey and thefqu'“bﬂljr;‘ mean vorticit/¥ = Se; , i.e.,

~ S, )
Egs. (4) and (9), where ;=—V;f;(U) is the effective Wi (W V) U8, Wygy X W
force. We consider a homogeneous divergence-free turbu- . e _ ~
lence with a mean-velocity shear, 9713):(0 Sx0) and particular, the mean vorticityVye, is generated fronW,e,
WO=(0.0S). For simplcity, we L,Jse. p:erturbéltions of the by equilibrium shear motions with the mean vorticity®

—Ee fondlidd ~ =Se,, i.e., W,e,c(W®.V)U,e,xW,e,x WO (see Fig.

mean vorticity in the formV = (W,(z),W,(2),0). Then Eq. Hesr‘zzex, g, axneéez(are the)uni(te)\(/ectgg alongy(, andz gxiz-,
(4) can be written as respectively. On the other hand, the first term3SI2W, in

oW Eqg. (11) determines a Reynolds stress-induced generation of

2 =SW,+ v W, (10)  perturbations of the mean vortici, by turbulent Reynolds
stresseqsee Fig. 3. In particular, this term is determined
- by (VXZF),, where F is a gradient of the Reynolds
‘9_Wy: —BSI(2,\7V§2+ A (11) stresses. This implies tha_t the mean yortic_ﬁyyey is
at L gener-ated by an effective anisotropic viscous term
O x—15A(Wye,- VI)UO(x)g,= —15SWe,. This mechanism
where W= "W, /9%, B=[B1+2(Bo+B3)=4B4l/4. I ¢4pe generation of perturbations of the mean vortifh
Eq. (10), we took into account thdgWy<W, , i.e., the char-  can be interpreted as a stretching of the perturbations of the
acteristic scald.,y of the mean vorticity variations is much mean vorticityW,e, by the equilibrium shear motions(®
larger than the maximum scale of turbulent motibfsThis =Sxg, during the turnover time of turbulent eddiesee Fig.
assumption corresponds to the mean-field approach. F@). The growth rate of this instability is caused by a com-
derivation of Egs(10) and(11), we used the identities pre- bined effect of the sheared motiofskew-induced genera-
sented in Appendix A. tion) and the Reynolds stress-induced generation of pertur-
We seek for a solution of Eq$10) and(11) in the form  bations of the mean vorticity.
cexp(t+iKz). Thus whenB>0, perturbations of the mean This large-scale instability is similar to a mean-field mag-
vorticity can grow in time and the growth rate of the insta- netic dynamo instability caused by tbkex J effect(see, e.g.,
bility is given by Refs.[29,30) or the shear-current effef31], whereld is the
electric current and) is the angular velocity. Indeed, the
y=BSIK— VTKZ. (12)  first term in Eq.(10) is similar to the differential rotatiokor
large-scale shear motionsvhich causes a generation of a
The maximum growth rate of perturbations of the meantoroidal mean magnetic field by a stretching of the poloidal
vorticity,  ymax=B(Sk)¥4vy, is attained at K=K, mean magnetic field with the differential rotatiqor by
= \BSly/2v. The sufficient conditiony>0 for the excita- large-scale shear motion€n the other hand, the first term
tion of the instability reads ,/1,>27/(a, VB7,S), where in Eq. (11) is similar to theQ2xJ effect (see, e.g., Refs.
Lw=27/K and we consider a weak velocity shegs<1.  [29,30), or to the shear-current effe¢81]. These effects
Now let us discuss the mechanism of this instability usingresult in the generation of a poloidal mean magnetic field
a terminology from Ref.[3]. The first term SW/ from the tormdal mean magnetic field. Tﬁéx\] effect is _
related to an interaction of the mean rotation and electric

y>

— (WO . VUi i i - : .
] (WH-V)Uyin Eq.(lO) describes a Sk?V\_/ |~nduced gen_era current in a homogeneous turbulent flow, while the shear-
tion of perturbations of the mean vorticitW, by quasi-  cyrrent effect occurs due to an interaction of the mean vor-

inviscid deflection of the equilibrium mean vorticity®. In ticity and electric current in a homogeneous aniso-
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X iy wherep are the pressure fluctuations,is the fluid density,
Wy . F(*Y s an external stirring force with a zero-mean value, and
i Un={((u-V)u)—(u-V)u+vAu. We consider a turbulent
- flow with large Reynolds numbers (Réyugr>1). We as-
= sumed that there is a separation of scales, i.e., the maximum
e scale of turbulent motionk, is much smaller than the char-
- UY=8x acteristic scale of the inhomogeneities of the mean fields.

Using Eq.(13), we derived an equation for the second mo-
ment of the turbulent velocity fieldf;(k,R)=J(u;(k

> +K/2)uj(—k+K/2))exp(K-R)dK:
y ot (K,R) _
”T=Iijmn(U)fmn+ R+ (14)

(see Appendix B where

7z v Iijmn(U): 2kiq5mp5jn+2qu5im5pn_ 5im5jq5np
FIG. 3. Mechanism for a “Reynolds stress-induced” generation ~ 8iq O Omp ™ 5im5].nkqi VpUq , (15)
of perturbations of the mean vortici@r/yey by turbulent Reynolds &kp

stresses. In particular, the mean vorticye, is generated by an  andR andK correspond to the large scales, andndk to
effective anisotropic viscous term< —I15A(We- V)U®(x)e,  the small scale¢see Appendix B ki =kik; /12, TV (k,R)
ocfléswiey. This mechanism of the generation of perturbations ofis the third moment appearing due to the non-
the mean vorticityW,e, can be interpreted as a stretching of the linear term,V =d/dR,

perturbations of the mean vorticitit,e, by the equilibrium shear - ~
motionsU® = Sxe, during the turnover time of turbulent eddies. Fij(k,R)=(Fi(k,R)u;(—k,R)) +(ui(k,R)F;(—k,R))

and
tropic turbulent flow of a conducting fluid. The magnetic

dynamo instability is a combined effect of the nonuniform F(k,R,t)= —kXx[kx F&(k,R)]/K2.

mean flow(differential rotation or large-scale shear motipns

and turbulence effect@nisotropic turbulent motions which Equation(14) is written in a frame moving with a local ve-

cause the2xJ effect and the shear-current effect ~locity U of the mean flow. In Egs(14) and (15), we ne-
On the other hand, the kinematic magnetic dynamo 'nStaglected small terms which are of the order @(ngl)_

bility is different from the instability of the mean vorticity ote that Eas(14) and (15) do not contain terms pronor-
although t_hey are governed by similar equations. The mea as(14) (19 prop

n N
- tional to O(|V2U)).
vorticity W=V XU is directly determined by the velocity I ( )

field U. while th ic field d q he veloci The total mean-velocity isl=U® + U, where we consid-
leld U, while the magnetic field depends on the velocity greq 4 tyrbulent flow with an imposed mean-velocity shear
field through the induction equation.

ViU(S). Now let us introduce a background turbulence with

zero gradients of the mean fluid veIocilViUJ:O. The
IV. EFFECT OF A MEAN-VELOCITY SHEAR ON A background turbulence is determined by the equation
TURBULENCE AND LARGE-SCALE INSTABILITY gt Qat=F;+ 1N, where the superscript (0) corresponds

hi . itativel - ¢ to the background turbulence, and we assumed that the ten-
In this section, we study quantitatively an effect of a g, Fij(k,R), which is determined by a stirring force, is

mean-velocity shear on a nonhelical turbulence. This allow?ndependent of the mean-velocity. Equation for the devia-
us to derive an equation for the effective for#e and 10 yi,qt (0 from the background turbulence is given by
study the dynamics of the mean vorticity. v

a(f_f(O))_'l\U(S) T(OF+FN_FNO) 16
A. Method of derivations at =HUB)+IU)] 1= (18

To study an effect of a mean-velocity shear on a turbu- . Coa N
lence, we used an equation for fluctuationg,r) that is Wh?{j? we usefj(NtOh)e f(()’LI(%mng nOI"i‘E'OC)’nETOf)ii(kvR)' (A
obtained by subtracting equation for the mean field from the= fij’(k,R), f"0=f72(k,R), =f"(k,R), and

corresponding equation for the total field: T(UYT=1}jmn(U) f (K, R).
5 v Equation(16) for the deviations of the second moments in
u Y — vp k space contains the deviations of the third moments and a
(U V)u—(u-V)U— — +F04 p ; . .
at (U-V)u=(u-v)u F Uv, (13 problem of closing the equations for the higher moments

016311-4



GENERATION OF LARGE-SCALE VORTICITY INA ... PHYSICAL REVIEW BE58, 016311 (2003

arises. V:_;lrious approximate mgthods have been proposed for L(F—10)= T(k)[T(U(s))+'|‘(U)]'f(O), (19)
the solution of problems of this typesee, e.g., Refd.32—
34]). The simplest procedure is theapproximation which heref =L =68 — (K1 (UN+1.. (U d
was widely used for the study of different problems of tur- xeeurged Edj("f}) The anquTti(or)1[olflrInElzq((19))yieI|chgnt(he)g’x§rrtlas—
bulent transpor{see, e.g., Ref$32,35-37). It allows us to sion for the second momeht=f, (k. R):
express the deviations of the third momefitd — (N in k AT
space in terms of those for the second moménts(® by 2 ze N T .~
assuming that f~F(U™) + (k) [1(U) +1(U*) (k)1 (V)

(0 T(uH 1§00
¢ 20) +1(U) (k)T (US) )] (20

F(N) _ F(NO)—
FO—FNO= (k) 17 where

where 7(k) is the correlation time of the turbulent velocity — F(U®))=F© + 7(k)[T(U®)+T(U®) (k)T (U®)]F©.
field. Here we assumed that the timgk) is independent of
the gradients of the mean fluid velocity because in the frameln Eq. (20), we neglected terms which are of the order of

work of the mean-field approach we may only consider ag(|vU|?) @dO(|VU(S)|2|VL~J|). The first term in the equa-

weak shearro|VU|<1, wherery=1,/Up. tion for f(U'¥) is independent of the mean-velocity shear
The 7 approximation is, in general, similar to the eddy and it describes the background turbulence, while the second
damped Quasinormal Markowid&BDQNM) approximation.  and the third terms in this equation determine an effect of the
However, there is a principlal difference between these twgnean-velocity shear on turbulence.
approachesgsee Refs[32,34]). The EDQNM closures do not
relax to the equilibrium, and do not describe properly the
motions in the equilibrium state. In the EDQNM theory, _ ) _
there is no dynamically determined relaxation time, and no Equation(20) allows us to determine the effective force:
slightly perturbed steady state can be approa¢Bgf Inthe  F=—V,[f;;(k,R)dk, wheref=f— f(U®), and we used
fT apprr]oximfi_tli_gn, the gelaxati_ondtiéne hfor srgall departuresthe notationf=t;;(k,R). The integration irk space yields
rom the equilibrium is determined by the random motions in ooy (T )
the equilibrium state, but not by the departure from the equi:[he second momert; (R) =/1;; (k,R)dk:
librium [32]. Analysis performed in Ref.32] showed that - -
the 7 approximation describes the relaxation to the equilib- fij(R)=—2v7(d0);;—15
rium state(the background turbulengenore accurately than
the EDQN(M approagch. ’ g X[4CaMij+ Co(Nij+Hij) + C3Gijl. (21
Note that we applied the approximation(17) only to where C,=8(q%— 13q+40)/315, C,=2(6—7q)/45, C
study the deviations from the background turbulence which_ ! 2 ©8
are caused by the spatial derivatives of the mean—veIocit)a_e,[efr(nqir:r e%l)/kf; ’Ezg(ds;i%ge?ﬁog”(’ZT)" ;/vgljdrriﬂigljte?:ﬁs

The background turbulence is assumed to be known. In this 5;; because they do not contribute¥ox F [see Eq(4) for

study, we used the model of an isotropic, homogeneous, and i T~ i
nonhelical background turbulence: perturbations of the mean vortici/]. To derive Eq.(21),
we used the identities presented in Appendix A. Equations

(9) and (21) y|e|d 81:4C1, BZZ BgZCZ, and B4:C3.
uS Note that the mean velocity gradieﬁnms) causes gen-
- Pij(k)&k), (18)  eration of anisotropic velocity fluctuatioréangling turbu-
lence. Inhomogeneities of perturbations of the mean veloc-
ity U produce additional velocity fluctuations, so that the

Reynolds stresséfsj(R) are the result of a combined effect
of two types of velocity fluctuations produced by the tan-

for Kolmogorov spectrumy andko,=1/,. We assumed that 9ing of mean gradient¥;U' and V;U by a small-scale
the generated tangling turbulence does not affect the bacioimegorov turbulence. Equatio®1) allows us to deter-
ground turbulence. This implies that we considered a onemine the effective forcer; = —V;f;;(R).

way coupling due to a weak large-scale velocity shear.

C. Effective force

fO(k,R)=

where_PiJ-(k)=5ij—kij_, Sij Is me Kronecker tensorr(k)
=277(K), E&K)=—d7(k)/dk, 7(k)=(k/kg)1 9, 1<q<3
is the exponent of the kinetic energy spectr(gry.,q=5/3

D. The large-scale instability in a homogeneous turbulence

B. Equation for the second moment of velocity fluctuations with a mean-velocity shear

We assume that the characteristic time of variation of the L€t US study the evolution of the mean vorticity using Eq.
second momentt; (k,R) is substantially larger than the cor- (21) for the Reynolds stresses. Consider a homogeneous non-

relation time(k) for all turbulence scales. Thus in a steady helical turbulence with a mean-velocity shear, e|g'?
state, Eq(16) reads =(0,Sx0) andW®=(0,08). For simplicity, we consider
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perturbations of the mean vorticity in the formiv stability, such as the minimum size of the growing pertur-

=(\7vx(z),\7vy(z),0). Then Eq.(4) reduces to Eqs10) and bations and the size of perturbations with the maximum

growth rate.
(1), where 8= C;+C,—Cg=4(29°— 479+ 108)/315. We The results obtained in this study are different from those

seek for a solution of Eqs(10) and (11) in the form  giscyssed in Ref§14—16, whereby the generation of large-
xexp(t+iKz). Thus, the growth rate of perturbations of the scale vorticity in the helical turbulence occurs due to hydro-
mean vorticity is given byy=8SIl)K—rK2. The maxi- dynamica effect. The latter effect is associated with the term
mum growth rate of perturbations of the mean vorticity, ,\% in the equation for the mean vorticity, wheseis deter-
Ymax=B(Sk)?/4v1~0.12, S7, is attained at K=K,  mined by the hydrodynamic helicity of the turbulent flow.
= BSly/2v7. Here we used that for a Kolmogorov spectrum We considered a nonhelical background homogeneous turbu-
(q=5/3) of the background turbulence, the facf®r0.45.  |ence which implies that Eq4) for the mean vorticityW
Th_e sufficient conditiony>0 for the gxcnatmn of the insta- does not have the teraV. We studied a linear stage of the
bility readsL /I o>27/(a, VB™oS). Sincer,S<1 (we con- large-scale instability which is saturated by nonlinear effects,
sidered a weak velocity sheathe scalely>1o and, there- byt not a finite time growth of large-scale vorticity as de-
fore, there is a separation of scales as required in our modeicribed in Ref[16].

Now we consider perturbations of the mean vorticity —The analyzed effect of the mean vorticity production may
which depend orx and z, i.e., \7V=(\7vx(x,z),\7vy(x,z),0). be of relevance in different turbulent industrial, environmen-
Then Eq.(4) reduces to tal, and astrophysical flow&see, e.g., Refd.3—-8,38—41).

Thus, e.g., the suggested mechanism can be used in the
analysis of the flows associated with Prandtl’s turbulent sec-
+ v A2W, | (22) _ondary_ flows(see_, e.g., Ref$3-8]). These flows, e.g., a_rise
T in straight noncircular ducts, at the lateral boundaries of
three-dimensional thin shear layers, etc.
by ) ) , However, the results obtained in this study cannot be valid
‘9_‘7_Wy_A SIZ( g .+ ‘7_\7\/ in the most general cases. We made the following assump-
02 gt B PO P gz T g Wt v 2 Wy tions about the turbulence. We considered a homogeneous,
(23 isotropic, incompressible, and nonhelical background turbu-
lence(i.e., the turbulence without the large-scale sheline
where B, =2(C,;—Cy)/B. For 9=5/3, the parameter \yeak mean velocity shear affects the background turbulence,
B ~3.5. Therefore, the growth rate of perturbations of thej e it causes generation of the additional strongly aniso-

Wy W,
oat ('}22

mean vorticity is given by tropic velocity fluctuationgtangling turbulenceby tangling
of the mean-velocity gradients with the background turbu-
yzSIOK\/,B[l—(l+,[5’*)sin20]—VTKZ. (24) lence. We assumed that the generated tangling turbulence

does not affect the background turbulence. This implies that

The maximum growth rate of perturbations of the mean vor\Ve considered a one-way coupling due to a weak large-scale
ticity — B(Sk)Z1—(1+ B, )sir? 6)/4vy, is attained ai velocity shear. In Secs. Il and 1V D, we considered a linear
_K ’_ygfx\/ﬂ[l i+ p )Si:12 a2 'IT',he large-scale in velocity shear to derive the specific results for the large-scale
=Kn=Sl - x T - -

stability may occur whehd|<28°. In the case 0b=0, the instability. Thus, we studied simple physical mechanisms to

large-scale instability is more effective, i.e., the mean vortic-descr'be an initial stage of the mean vorticity generation. The

ity grows with a maximum possible rate. The mechanism msumple model considered in our paper can only mimic the

this instability is discussed in Sec. Illl and it is associatedﬂoWS associated with the turbulent secondary flows. Clearly,

with a combined effect of the skew-induced deflection Ofthe comprehensive theoretical and numerical studies are re-

equilibrium mean vorticity due to the sheared motions anunwed for a quantitative description of the secondary flows.

. . . The obtained results may be also important in astrophys-
tmhgaﬁ?/)gnrglcditsy stress-induced generation of perturbations %s, e.g., in extragalactic clusters and in interstellar clouds.

The extragalactic clusters are nonrotating objects with a ho-
mogeneous turbulence in the center of an extragalactic clus-
V. CONCLUSIONS AND APPLICATIONS ter. Sheared motions between interacting clusters can cause

We discussed an effect of a mean-velocity shear on a hdn excitatipr) of the Iarge—scale instabillity which results in the
mogeneous nonhelical turbulence and on the effective forcB'€anN vorticity productlon and formation of Iarge—spale vor-
which is determined by the gradient of the Reynolds stresse&ces' Dust partlclgs can be trapped by thesel vortices “? en-
We demonstrated that in a homogeneous incompressib ance agglo_meratlon of material and for_matlon of particle
nonhelical turbulent flow with an imposed mean Velocity|nhomogene|t_|e$39—4]]. The sheared motions can also oc-
shear, a large-scale instability can be excited which results ifi!" *?et"vee” Interacting !n_ter:_ste_llar clouds, whereby the dy-
a mean vorticity production. This instability is caused by a"@mics of the mean vorticity is important.
combinedeffect of the large-scale shear motiofskew-
induced deflection of equilibrium mean vorticitgand Rey-
nolds stress-induced generation of perturbations of mean We are indebted to A. Tsinober for illuminating discus-
vorticity. We determined the spatial characteristics of the insions. This work was partially supported by The German-
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APPENDIX A: IDENTITIES USED FOR DERIVATION =f fij(k,R)quik'r)dk,
OF EQS. (10), (11), AND (21)
To derive Egs(10) and(11), we used the following iden-
tities: fij(k,R)=J(ui(k+K/2)uj(—k+K/2)>
VXM= (SK/4)(\W,,W,,0), X exp(iK - R)dK
VX(DXW(S))=S(\7V ~W,,0) (see, e.g., Ref§42,43), whereR andK correspond to the
VAl X1 3

large scales, and and k to the small scales, i.eR=(x
+yY)/2, r=x—y, K=k;+ky, k=(k;—k5)/2. This implies

that we assumed that there exists a separation of scales, i.e.,
the maximum scale of turbulent motiohgis much smaller

V X (U X W) =S(0,W,,0),

V X J=(SK?/2)(W,,W,,0), than the characteristic scale of the inhomogeneities of the
o 5 _ _ mean fields.
VX[(WE. V)W]=SK(W,,—W,,0), Now we calculate
where afij(ky, k) dun(ky)
”TE< Pin(kl);—tuj(k2)>
Mi:VjMi

j
+< dun(kz)

3=V, (Wl £im( AU )+ &0y 3U ) i), Ui(ke)Pjnka) =5 > BD

and we also took into account that where we multiplied equation of motiofl3) rewritten ink
space byP;;(k) = d;; —k;; in order to eliminate the pressure
term from the equation of motion; is the Kronecker ten-
sor, andkij=kikj/k2. Thus, the equation foff;;(k,R) is

ViGij=(WE. V)W,

VJ{MS)[gnim(aO)mj'l'gnjm(ao)mi]} given by Eq.(14).
VER () ~ For the derivation of Eq(14), we used the following
To derive EQ.(21), we used the following identities for o
the integration over the angles knspace: ikif fij(k—%Q,K—Q)Up(Q)exr(iK-R)dK dQ
41 ;

A_ T 1 1 — = afii

f kijmn dQ— 15 AIJmn ! = - EUpVi f” + zfijViUp_ Z(VSUP)( V,a_kli>
N i [afj; —

Tijmnpqu I(ijmnpqu +Z W (stiup)- (BZ)
S

:%S(Amnpq(sij +AjmngSip T Aimnadip+ A jmnpdiq To derive Eq.(B2), we multiply the equatioV-u=0, writ-

ten ink space foru;(k;—Q), by uj(kz)Up(Q)eprK-R),
FA S A S — A S ), and integrate oveK andQ, and average over the ensemble
imnpia * ijmndpg ™ Aijpg Omn) of velocity fluctuations. Herek;=k+K/2 and k,=—k
+K/2. This yields

|

4

Tiimnpd YU ) (%0a) =102

(4Mj+ 8;Mp),

1 1
R ) ki+§Ki_Qi)<ui k+§K_Q)UJ(_k+%K)>
kijmn:kikjkmkn/k41 dQ)=sin 6d9d(p, kijmnpq: kijmnk

andAijng 5” 5mn+ 5im5nj+ 5in5mj .

pa
X U,(Q)expliK -R)dK dQ=0. (B3)
APPENDIX B: DERIVATION OF EQ. (14) Then we introduce new variablek;=k+K/2—Q, k,
In order to derive Eq(14), we use a two-scale approach, =—k+K/2, and k=(k,—k,)2=k—-Q/2, K=k;+k,
i.e., a correlation function is written as follows: =K ~—Q. This allows us to rewrite EqB3) in the form

016311-7
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We also use the following identities:

J i(ki+ %Ki—Qi>f”(k— %Q,K—Q)
[fi,-<k,R>Up<R>]K=j fi;(k,K—Q)Up(Q)dQ,

X Up(Q)expiK -R)dK dQ=0. (B4)
Since|Q|<|k|, we can use the Taylor expansion V. [fij(k,R)U,(R)]
fi(k=Q/2K=Q) =f iK o[ fij(k,R)U(R) I« expliK - R)dK.
1 9f;(k,K-Q) )
=fij(k,K—Q)—§a—sts+O(Q ). (B6)

(B5)  Therefore, Eqs(B4)—(B6) yield Eq. (B2).
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