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Electromotive force and large-scale magnetic dynamo in a turbulent flow with a mean shear
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An effect of sheared large-scale motions on a mean electromotive force in a nonrotating turbulent flow of a

conducting fluid is studied. It is demonstrated that

in a homogeneous divergence-free turbulent flow the

effect does not exist, however a mean magnetic field can be generated even in a nonrotating turbulence with an
imposed mean velocity shear due to a “shear-current” effect. A mean velocity shear results in an anisotropy of
turbulent magnetic diffusion. A contribution to the electromotive force related to the symmetric parts of the
gradient tensor of the mean magnetic fielde « effect is found in nonrotating turbulent flows with a mean

shear. Thec effect and turbulent magnetic diffusion reduce the growth rate of the mean magnetic field. It is
shown that a mean magnetic field can be generated when the exponent of the energy spectrum of the back-
ground turbulencéwithout the mean velocity sheais less than 2. The shear-current effect was studied using

two different methods: the- approximation(the Orszag third-order closure proceduend the stochastic
calculus(the path integral representation of the solution of the induction equation, Feynman-Kac formula, and
Cameron-Martin-Girsanov theorenAstrophysical applications of the obtained results are discussed.

DOI: 10.1103/PhysRevE.68.036301

I. INTRODUCTION

PACS nuntberd7.65+a, 47.27-i

where @E)ij=(Vi§j+Vj§i)/2, u andb are fluctuations of
the velocity and magnetic field, respectively, angular brack-

Generation of magnetic fields by a turbulent flow of agts denote averaging over an ensemble of turbulent fluctua-

conducting fluid is a fundamental problem which has a nUMijgns. the tensors

ber of applications in solar physics and astrophysics, ge
physics and planetary physi¢see, e.g., Refd1-5)). It is

known that small-scale magnetic fluctuations with a zero
mean magnetic field can be generated in a homogeneo

nonhelical and nonrotating turbulence by a stretch-twist-fol
mechanisni(see, e.g., Ref§6—11]). On the other hand, in a

homogeneous divergence-free turbulent flow the helicity and

the a effect vanish.

ij and B;; describe thex effect and tur-

%Bulent magnetic diffusion, respectively®™ is the effective

diamagnetiqor paramagnetjovelocity, «;;, and é describe a
nsontrivial behavior of the mean magnetic field in an aniso-
ropic turbulence. Th&) X J effect, e.g., is associated with
the é term in the mean electromotive force.

In the present paper, we suggested a mechanism of gen-

eration of a mean magnetic field byn@nrotating homoge-

However, the mean magnetic field can be generated in geousand nonhelical turbulence with an imposed mean ve-
rotating homogeneous turbulent flow due to the combinedoCity shear. This mechanism is associated with a “shear-

action of theQxJ effect and a nonunifornidifferential
rotation[12-16, whereQ is the angular velocity and is

current” effect determined by thed term in the mean
electromotive force. On the other hand, the turbulent mag-

the mean electric current. The evolution of the mean magnetic diffusion and thex effect can reduce the growth rate of

netic fieldB is determined by equation

B _ _
—- =VX(UXB+E-DVxB), (1)

whereU is the mean velocityD ,, is the magnetic diffusion
due to the electrical conductivity of flui€=(uxb) is the
mean electromotive force. The general form of the mea
electromotive force was suggested in REE7] using the
symmetry arguments:

&=a;;B;— Bij(VXB);+(VENXB);— [ 6X (VXB)];

the mean magnetic field. Theeffect arises in an anisotropic
turbulence caused by the mean velocity shear. Our analysis
of the mean-field magnetic dynamo showed that the genera-
tion of a mean magnetic field can occur whpaa 2, whereq

is the exponent of the energy spectrum of the background
turbulence(without a mean velocity shearin particular, in
Kolmogorov background turbulence witg=5/3 a mean
magnetic field can be generated. The shear-current effect was
studied using two different methods: theapproximation

che Orszag third-order closure proced{it&], see Sec. 1Y

and the stochastic calculgthe path integral representation

of the solution of the induction equation, Feynman-Kac for-
mula, and Cameron-Martin-Girsanov theorem, see Appen-
dixes A and B. We also calculated the mean electromotive
force for an arbitrary weakly inhomogeneous turbulence with

- Kijk(aé)jk, (2 an imposed mean velocity shear. The inhomogeneity of tur-
bulence and mean velocity shear causedheffect and the
effective drift velocity of the mean magnetic field.

*Electronic address: gary@menix.bgu.ac.il; URL: http://  The é term in the electromotive force which is respon-
www.bgu.ac.il/ gary sible for the shear-current effect was also independently
"Electronic address: nat@menix.bgu.ac.il found in Ref.[19] in a problem of a screw dynamo using the
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modified second-order correlation approximation. Note alsgjepends on the true tensﬁjlt_Ji_ Note that the tensijUi
that for homogeneous and nonhelical flows another mechasan be written as a sum of the symmetric and antisymmetric
nism for the magnetic dynamo associated with a negatlvepartS, ie. VjUi:(ﬁO)ij —(1/2)sijka,_Where_ (90)”-

turbulent magnetic diffusivity” was recently discussed in — —
Refs.[20—22.g Y y =(ViU;+V;U;)/2 is the true tensor an/=V XU is the

This paper is organized as follows. In Sec. I, the generamean vorticity (pseudovector Hereafter we take into ac-

form of the mean electromotive force which includes thecount the effect which is linear ifV;U;. Therefore, the
shear-current effect is obtained using simple symmetry reaPseudotensob;;, has the following general form:

soning, and the mechanism for the shear-current effect is also

discussed. In Sec. lll, the governing equations for turbulent bijkzﬂTgiijrIg[alsijm(aU)kar a28ikm(IU) mj
velocity and magnetic fields are formulated, which then are R o o

used for studying an effect of a mean velocity shear on a +a38jkm(IU) mit+ aa 6 Wi+ as 6i Wi 1, 9
turbulence(Sec. IV) and on a cross helicitySec. V). This

allows us to determine the mean electromotive force in avherea, are the unknown coefficientsy is the maximum
turbulent flow of a conducting fluid with an imposed meangcgle of turbulent motions, and the termy;, W, vanishes

velocity shear(Sec. V). The implications of the results for sinceV.-B=0 [see Eq.(3)]. Using Eqs.(4)—(9) we deter-
;h;mn;e;n Zlencérnorg]tg?if f(l?]t:ri(;oé?}io?ia{::lbesj?err?caegna?gc defpine the turbulent coefficients defining the mean electromo-

: 9 nog . PCfive force for a homogeneous and nonhelical turbulence:
formed in Sec. VII. Conclusions and astrophysical applica-

tions of the obtained results are discussed in Sec. VIII. In

- 2 o
Appendixes A and B the shear-current effect is studied using Bij= B16ij— 2 Bolg(dV);j (10
another approach, i.e., stochastic calculus. In Appendix C,
we derived identities used for the derivation of equations for 5=128,W, (11)

the second moment of the velocity field and the cross-
helicity tensor. — .
Kijk = oL k1.8 Wi+ k281jm(90) i, (12
Il. THE QUALITATIVE DESCRIPTION
where

The mean electromotive force can be written in the form

_ _ o= ,80=(a1—a2—2a3)/4, 50:(a.4_a.5)/2, (13)

5|:a|]B]+b|JkBJ’k+O(V B,) (3)

. ) o — A ki=—(agt+ag), k,=—(a;+a,), (14
Following Ref.[17] we use an identity; ,=VB;= (JB)x 1=~ (2t 3 2=~ (aata,
—€j(VXB),/2 which allows us to rewrite Eq3) for the  and gr=ul,/3 is the coefficient of isotropic part of turbu-
mean electromotive force in the form of E@), wheresijx  |ent magnetic diffusion, while the second term in E0)
is the fully antisymmetric Levi-Civitdensor, and determines anisotropic part of turbulent magnetic diffusion
caused by the mean velocity shear. Hegds the character-
istic turbulent velocity in the maximum scale of turbulent
B b b )/ motions. Thex effect (determined by the tenso;;) de-
Bij = (eikpbjkpt €jkpbikp)/ 4 (5 scribes a contribution to the electromotive force related to
the symmetric parts of the gradient tensor of the mean mag-

@i = (aj;+a;)/2, (4)

(eff) _ o . . . .
Vi =exjidij /2, (6) netic field and arises in an anisotropic turbulence caused by
5=(b b 1/4 ; the mean velocity shear. Since the tenggg is multiplied
= (byji —yij)/4, ™ by the symmetric tensordB); in the mean electromotive
ige=— (b + by )/2. ®) force, this allows us to rewrite the tensey,, determined by

Eqg. (12) in a more simple but not in a symmetric form. We

will show in this paper that thé term in Egs.(2) and(11)

vanishes, which implies that;; =0 andV{¢"=0. Below we for the mean electromotive force describes the shear-current
J effect which can cause the mean-field magnetic dynamo in a

consider this case. : . .
. . _homogeneous nonrotating turbulence with an imposed mean
The general form of the mean electromotive force in a

. . . elocity shear.
turbulent flow with a mean velocity shear can be obtaine . . .
X . Consider a homogeneous divergence-free turbulence with
even from simple symmetry reasoning. Indeed, the electro- =

motive force€ is a true vector, whereas the mean magnetic Mmean velocity shear, e.dJ=(0,Sx0) andw=(0,05).

field B is a pseudovector. Therefore, the tensgy is a The mean magnetic field is determined by equation
pseudotensdrsee Eq(3)]. For homogeneous, isotropic, and _

In a homogeneous and nonhelical turbulence the teagor

nonhelical turbulence the tensbr; = Brejj, where By is E: Uo7 = oS o5
the turbulent magnetic diffusion coefficient. In a turbulent ot VX[UXB=B(VXB) =X (VXB)~(7B)],
flow with an imposed mean velocity shear, the tensgy (15
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WhereBE,Bij and k= xijk - Now for simplicity we use the and downward rotating turbulent eddies. Since the turbu-

mean magnetic field in the fori= (gx(z),gy(z),O). Then lence is inhomogeneougvhich breaks a symmetry between

Eq. (15) reads the upward and downward eddjesheir total effect on the
mean magnetic field does not vanish and it creates the mean
(7§x . o electric current along the original mean magnetic field.
e S%UOB;—I—ﬁTB; , (16) In a turbulent flow with an imposed mean velocity shear,

the inhomogeneity of the original mean magnetic field
— breaks a symmetry between the influence of upward and
5_By:S§x+ﬁ B’ (17) downward turbulent eddies on the mean magnetic field. The
at ™y deformation of the magnetic field lines is caused by upward
and downward turbulent eddies which causes the mean elec-
where tric current along the mean magnetic field and produces the
_ magnetic dynamo. The magnetic dynamo instability due to
T0= 00~ Bo~ K127 214, 18 the shear-current effect is determined by a system of Egs.
(16) and (17), and there is a coupling between the compo-

nents of the mean magnetic field. In particular, the f§§p

rgenerates the fielgX due to the shear-current effdsee Eq.
(16)]. This is similar to thex effect. On the other hand, the

field B, generates the fiel§y due to the pure shear effect
[see Eq.(17)], such as the differential rotation i)

and B"=¢?B/dz%. In Eq. (17) we took into account that
ISBQ< B,, i.e., the characteristic spatial scélg of the mean

magnetic field variations is much larger than the maximu
scale of turbulent motionk,. This assumption corresponds

to the mean-field approach. The first termSB,) on the
right hand side of Eq.17) plays a role of the differ-
dynamo.

ential rotation. Indeed,V X (UxB)=(B-V)U=(U-V)B In the following sections, we will describe the above mag-
=SB.gy, and for the chosen configuration of the mean magnetic dynamo effect quantitatively using two different meth-

netic field, U-V)B=0. ods: ther approximationthe Orszag third-order closure pro-
We seek for a solution of Eq$16) and(17) in the form  cedure[18]) and the stochastic calculuthe path integral
xcexp(t+iKz), wherey is given by representation of the solution of the induction equation,
Feynman-Kac formula, and Cameron-Martin-Girsanov
y=SlK oo~ BrK?, (19 theorem.

where oy=(a,+az+2a,)/2. The magnetic dynamo insta-
bility can be excited wheirg>0. In this paper we will find
unknown coefficients,, which will allow us to determine Our goal is to study an effect of sheared large-scale mo-
the conditions for the generation of the mean magnetic fieldions on a mean electromotive force in nonrotating turbulent
due to the magnetic dynamo instability caused by the sheaftows of a conducting fluid. The momentum equation for the

current effect. fluid velocity v and the induction equation for the magnetic
In order to elucidate the physics of the shear-current effield h read

fect, let us compare the term in the electromotive force
which is responsible for the generation of the mean magnetic

Ill. THE GOVERNING EQUATIONS

a \4
—+Vv.V|v=— -+ Fi(h)+ vAV+FSY, (22

field, i.e., ot
£f=aBi=—(Q-A)B, (20 J
V-V |h=(h-V)v+Dph, (23
(see, e.g., Ref$3,16]), with the é term in the electromotive
force caused by the shear-current effect, i.e., whereV.-v=0 andV-h=0, v is the kinematic viscosity,
— — _ — Fn(h)=—(1/up)[hX(VXh)] is the magnetic forceyu is
o__ m
Ef=— (X (VXB))=—(W-V)B;, (2D the magnetic permeability of the fluidE® is the random

external stirring forceP andp are the pressure and density
of fluid, respectively.

We will use a mean-field approach whereby the velocity,
pressure, and magnetic field are separated into the mean and

whereA =V (u?)/(u?) determines the inhomogeneity of tur-
bulence. Here for simplicity we considered an isotropic
tensor, i.e.,ajj=adj;. There is an analogy between the
term and thed term in the electromotive force. In particular,

the mean vorticityW plays a role of rotatiorf2 and an in- fluctuat!ng partsiv=Utu, P=P+p, and h=B+D, the
homogeneity of the mean magnetic field plays a role of thdlUctuating parts have zero mean values, ahe(v), P
inhomogeneity of turbulence in theQ dynamo(see beloy. ~ =(P), B=(h). Averaging Eqs.(22) and (23) over an en-
During the generation of the mean magnetic field in bothsemble of fluctuations we obtain the mean-field equations. In
cases, the mean electric current along the original mean magarticular, the evolution of the mean magnetic figlds de-
netic field arises. The effect is related to the hydrodynamic termined by Eq.1), where E=(uXxb) is the mean electro-
helicity «<(£- A) in an inhomogeneous turbulence. The de-motive force. To determine the mean electromotive force we
formation of the magnetic field lines is caused by upwarduse equations for fluctuationgt,r) and b(t,r) which are
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obtained by subtracting equations for the mean fields from

the corresponding equatiof2) and(23) for the total fields:

u - — — Vp = (s

—r =~ (U-V)u=(u-V)U= —=+F(b,B)+ F&+ Uy,
(24)

E=—(U-V)b+(b-V)U—(u-V)§+(§-V)u+BN,
(25

where

Fm(b,B)

1 -
——[bX(V V XDb)],
MP[ X(VXB)+BX(VXbh)]

Un=((u-V)u)—(u-V)u+[(bx(Vxb))
—b(Vxb)]/(up)+ vAu,

Bny=V X (uxXb—(uxb))+Dy,Ab.

We consider a turbulent flow with large hydrodynamic (Re

=lgug/v>1) and magnetic (Rmlyuy/D,>1) Reynolds

numbers, wherel is the characteristic velocity in the maxi-
mum scald , of turbulent motions. In the following sections,
we will use Egs.(24) and(25) to study an effect of a mean
velocity shear on a turbulend&ec. IV) and on a cross he-

licity (Sec. V) in order to determine the mean electromotive

force.

IV. EFFECT OF A MEAN VELOCITY SHEAR
ON A TURBULENCE

PHYSICAL REVIEW E68, 036301 (2003

afij(ky,ka) _<

dup(kyq)
at

Pin(kl)Tuj(kz)

“

where we multiplied equation of motiof24) rewritten ink
space byPj; (k)= 6;;—kj; in order to exclude the pressure
term from the equation of motionj;; is the Kronecker ten-
sor, andki;=kik;/k?. Thus, the equation fof;;(k,R) is
given by

aug(k
ui<kl>Pjn(kz>¥>, (26

of. . _
— =Tijmn(U) F g+ Fij £ 27)

ot

where
’l\ijmn(U) = 2kiq 5mp5jn+ 2|(]'qfsim‘spn_ 5im5jq5np

Oink

- 5iq5jn5mp+ 5im in qm
p

VU, (29

andf{(k,R) is the third moment appearing due to the non-
linear term,V =4/JR,

Fij(k,R) =(Fi(k,R)uj(—k,R))+(u;(k,R)F;(—k,R)),
and
F(k,R,t)= —kx[kx F)(k,R)]/K?.

Equation(27) is written in a frame moving with a local ve-

In this section, we study an effect of a mean velocitylocity U of the mean flows. In Eq927) and (28) we ne-

shear on a turbulence using E84). We neglect an effect of

glected small terms which are of the order @f|V3UJ).

the mean magnetic field on the turbulence, i.e., we negledtiote that Eqs(27) and (28) do not contain terms propor-

the magnetic forceFm(bE) in Eq. (24). This is valid when

tional to O(|VZU|). To get Eqgs.(27) and (28) we used an

B2/ u<p(u?)/2, i.e., we do not consider the quenching ef-identity derived in Appendix C.

fects(see, e.g., Ref23-28). We use a two-scale approach,
i.e., a correlation function is written as follows:

(i) = | (ko)
xXexdi(ky-x+ksy-y)]dk,dk,

=f fi;(k,R)exp(ik-r)dk,

fij(k,R)=J (Ui(k+K/2)uj(—k+K/2))expiK - R)dK

(see, e.g., Ref§29,30), whereR andK correspond to the
large scales, and and k to the small scales, i.eR=(x
+y)/2, r=x—y, K=k;+ky, k=(k;—Kk,)/2. We assume

Equation(27) for the second momertft;(k,R) contains
the third momentf{’(k,R) and a problem of closing the
equations for the higher moments arises. Various approxi-
mate methods have been proposed for the solution of prob-
lems of this type(see, e.g., Refd.18,31,33). The simplest
procedure is the approximation(the Orszag third-order clo-
sure procedur@l8]). For magnetohydrodynamic turbulence
this approximation was used in Rdf33] (see also Refs.
[26,34-38). In the simplest variant, it allows us to express
the deviations of the third momef§")(k,R) — " (k,R) in
terms of that for the second momefi(k,R) — P (k,R):

0
fi; = 29

N NO) _

where the superscript (0) corresponds to the background tur-

that there exists a separation of scales, i.e., the maximufulence(it is a turbulence with zero gradients of the mean

scale of turbulent motionk, is much smaller than the char-
acteristic scales of inhomogeneities of the mean fields.
Now we calculate

fluid velocity, Vin =0), andr(k) is the correlation time of
the turbulent velocity field. Here we assumed that the time
7(k) is independent of gradients of the mean fluid velocity
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because in the framework of the mean-field approach V. EFFECT OF A MEAN VELOCITY SHEAR
we may only consider a weak shear|VU|<1, where ON THE CROSS HELICITY
7ol o/Uo. In order to determine the mean electromotive fofifg

The 7 approximation is in general similar to eddy damped=0’ R)=s,./gm(k,R)dk, we derive equation for the
quasinormal markoviatEDQNM) approximation. However cross-helicity tensor:

some principlal difference exists between these two ap-

proachegsee Refs[18,32). The EDQNM closures do not )

relax to equilibrium, and this procedure does not describe gii(k'R):j (bi(k+K/2)uj(—k+K/2))exp(iK-R)dK,
properly the motions in the equilibrium state in contrast to

the 7 approximation. Within the EDQNM theory, there is no using Eqgs.(24) and(25), i.e., we calculate
dynamically determined relaxation time, and no slightly per-

turbed steady state can be approadid]. In the = approxi- 99ij (K1, k2) —( bi(k) P (K )5Un(k2)

mation, the relaxation time for small departures from equi- ot I R LR,

librium is determined by the random motions in the

equilibrium state, but not by the departure from equilibrium n < dbi(ky) ui(k )> (33
[18]. As follows from the analysis in Ref18] the 7 approxi- ot h2 [

mation describes the relaxation to equilibrium stétiee
background turbulengemuch more accurately than the
EDQNM approach. s, - -

Note that we applied the approximation(29) only to _Ilzjijmn(u)gmn+ Mijmn(B)fmn+ gi(jN), (34)
study the deviations from the background turbulence which ot
are caused by the spatial dgrivatives of the mean VeIOCitXNhich describes an effect of a mean velocity shear on the
The background turbulence is assumed to be known. Her@ross helicity, where
we use the following model of the background nonhelical, '

This yields an equation fag;; (k,R),

isotropic, and weakly inhomogeneous turbulence: jijmn(_)=2qu5imVan— 5imVnt+5janUi

1 i + 8imin(VqUp)Kp =1~ (35)
fi(jo)(k,R)ZW Py (k)+~ 5 (k% = k%) u2E(k,R), JKq

(30) ~ = — . 1 —
Mijmn(B):giméjan |kp+ EVp _5jnBi,m

where  7(k)=27yr(k), E(K)=—dr(k)/dk, (k) _15 A 36
=(k/ko)1 ™9, 1<q<3 is the exponent of the kinetic energy 2 “man=pate i
spectrum (e.g., q=5/3 for the Kolmogorov spectrum \ . . _
ko=1/1. and gi(j )(k,R) |s_the third moment appearing due to the

We assume that the characteristic time of variation of theyonlinear termsB; j=(;§i /4R, . Equation (34) is written
second moment;; (k,R) is substantially larger than the cor- :
relation timer(k) for all turbulence scales. Thus in a steady
state, Eq(27) reads

in a frame moving with a local velocity of the mean
flows. To get Egs(34)—(36) we used an identity derived in
Appendix C.

Now we use ther approximation which allows us to ex-

L = N & e press the third momentg{(k,R) in terms of the second
[Oimin = e DI ok, R) = Fie) = 7l (W0, 1o nieg (k,R): !

(31
) ) g =— i (37)
where we used Ed29). The termF;; in Eq. (27) determines 1 k)
the background turbulence. The solution of E81) yields
the second momerft; (k,R): where(k) is the characteristic relaxation time, and we took
into account_that the cross-helicity tensg for B=0 is
fij(k,R)“fi(jo)ﬂL Tiijmn(U)ffT?%(k,R), (32) zero, i.e. g;j(B=0)=0. Note that we applied the approxi-

mation (37) only to study the deviations from the original
turbulence(i.e., the turbulence witB=0). These deviations
where we neglected terms which are of the order ofare caused by a weak mean magnetic field. We considered
O(|7VU|?) <1. The first term in Eq(32) is independent of the case when the original turbulence does not ha_tvg mggnetic
the mean velocity shear and it describes the background tuflictuations. Now we assume that the characteristic time of
bulence. The second term in E§2) determines an effect of Vvariation of the second momermy; (k,R) is substantially
the mean velocity shear on turbulence. larger than the correlation time k) ~7(k) for all turbulence
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scales. This allows us to get an equation for the cross-helicitand the tensor of turbulent magnetic diffusigly , the 6

tensorg;; (k,R) in a steady state: effect, and the tensox;; are determined by Eq$10)—(12)
with

gmn(kaR)[ﬁimgjn_ 7"’jijmn( )= 7'|\7|ijmn(B)fmn- (39
Bo=2(5—2q)/45, 6&,=1/9, (45

wheref,,(k,R) in Eq. (38) is determined by Eq32). The
solution of Eq.(38) yields k1=—8(3—0q)/45, «k,=4(4q—1)/45, (46)
9ij (K,R) =M jimn(B) f O+ 2 Mijimn(B) mnid U) where we used Eq$4)—(8). It is seen from Eqs(43) and
R . . (44) that the o effect described by the tensaer; and the

+Jijmn(U)an|k(B)]f|(l?), (39 effective drift velocity V(€™ of the mean magnetic field re-

quire an inhomogeneity of turbulendee., A#0). The «
where we neglected terms which are of the order ofeffect determined by the tensat;, arises in an anisotropic
O(|7VU[?) <1. The first term in Eq(39) is independent of turbulence caused by the mean velocity shear. We will show
the mean velocity shear and it describes the isotropic turbun the following section that thé term in the equation for
lent magnetic diffusion. The second term in Eg9) deter- the mean electromotive force can cause the mean-field mag-
mines an effect of the mean velocity shear on turbulenc#etic dynamo in a homogeneous nonrotating turbulence with
which causes a modification of the mean electromotive forcean imposed mean velocity shear.
i.e., this term describes an indirect modification of the mean
electromotive force. The last term in E(B9) determines a VII. THE MEAN-FIELD MAGNETIC DYNAMO IN A

direct modification of the mean electromotive force by the HoMOGENEOUS TURBULENCE WITH A MEAN SHEAR
mean velocity shear.

Consider a homogeneous divergence-free turbulence with

VI. THE MEAN ELECTROMOTIVE FORCE a mean velocity shear, e.dJ=(0,Sx0). In this C&SE‘VV
_ _ =(0,05), A=0, the « effect and the effective drift velocity
Using Egs.(32) and(39) we determine the mean electro- v(¢f) of the mean magnetic field vanish. The mean magnetic
motive force for an inhomogeneous turbulence with a mean. is determined by Eq(15), where 6= 8,

‘ I2W describes
velocity shear:

the shear-current effect ands;; =,8T6ij—2ﬁolé(&0)ij
o o corresponds to the turbulent magnetic diffusion with an
gi(rZO’R)Esinmf Imn(k,R)dk=a;;B; +bjji By i, anisotropic  part «f,. The tensor Kijk =5 k18 W
(40 + K2€ijm(dU) mi] describes a contribution to the electromo-
tive force related to the symmetric parts of the gradient ten-
sor of the mean magnetic field and arises in an anisotropic
2 turbulence caused by the mean velocity shear. Since the ten-
4q_9 . " . .. . ~ .
0 _ . Sor ki is multiplied by the symmetric tensopB);, in the
6A dU) i+ 2]V ijk jk
{ m[ 5 Simnl Ini F ijn )m"} mean electromotive force, this allows us to rewrite the tensor
Kijk In @ more simple but not in a symmetric form. For sim-
+3e(jm(WXA) p+ 5ij(VV-A)—V_ViAJ-], (41)  plicity we use the mean magnetic field in the forB
=(Bx(2),By(2),0). Then Eq.(15) reduces to Eqs16) and
2 (17), where the parameter&,, By, 1, and x, are deter-
5 R R :
bi=Bre i — —2(80—1De&: (U)o + 18 (9U) .. mined by Eqs(45) and (46).
k= Brei 251289~ 1Deyn(9U)mi kan 9 )img We seek for a solution of Eq$16) and (17) in the form
xexp(t+iKz). Thus the growth rate of the mean magnetic
field is given by

where

+(49—17)8;W,+ (49— 7) 8, W,]. (42)

Here A=V (u?)/(u?) andl,= quy. Equationg41) and(42) S KS B r— K2 4
allow us to obtain the turbulent coefficients defining the 7=ShK V9o~ Bo~ ro= B, 47

mean electromotive force: whereko= (21, + K,)/4=(8q— 13)/45. It follows from Eq.

1 3 (47) that the shear-current effect ¢,) causes the generation
((VV-A) 8ij— —(V_ViA,-+V_VJ-Ai)+ —(49—9) of the mean magnetic field, whereas the anisotropig()
2 5 and isotropic ¢ 87) turbulent magnetic diffusions and the

2
0
aij = - 1_8
effect («x«y) reduce the growth rate of the mean magnetic
XAm[simn(ao)jn_l—Sjmn(ao)in]), (43)  field. Note that the maximum growth rate of the mean mag-
netic field, ymax= S15(80— Bo— ko)/4B7, is attained ak
=Kn=Slpvég— Bo— ko/2B7. Using expressions fow,
(44) Bo, andxy we rewrite the growth rate of the mean magnetic
’ field in the form

15
(eff) — 10
VT30

. 25 _
(4a+1)(90) A j+ (WX A)
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2(2—q\"? 5 generated due to th@X J effect for an arbitrary exponeiat
Y3175 SloK—B7K*. (48 of the energy spectrum of the background homogeneous tur-
bulence(see Eef.[lG]). The Q% J effect is caused by the

Therefore, the generation of the mean magnetic field is pos;t-erm 06X (VxB) in the mean electromotive force. In a slow

. tating (79<1l) and homogeneous turbulencé=
sible when the exponerg of the energy spectrum of the ro :
background homogeneous turbulen€without imposed —(2/9)l 3‘0 (for details, see Refl16]). Note also that the

mean velocity sheais less than 2. Thus, in the Kolmogorov 2 J effect cannot generate the mean magnetic field without
background turbulence with=5/3 the mean magnetic field 2 differential rotation.
can be generated due to the shear-current effect. The suffi-
cient condition y>0 for the dynamo instability reads VIIl. CONCLUSIONS
Lg/lg>m5/(70SV2—q), whereLg=27/K.

The magnetic dynamo instability due to the shear—curren(t._}r
effect is different from the magnetic instability suggested in

In the present paper, we discussed a mechanism of a gen-
ation of a mean magnetic field by a nonrotationg and non-

. o2 . helical homogeneous turbulence with an imposed mean ve-
Ref. [22]. The latter instability is caused by the negative locity shear. This mechanism is associated with a shear-

turbulent magnetic diffusivity and is determined by E42) current effect. We showed that when the exponent of the

for By in Ref.[22]. This equation is decoupled from that for energy spectrum of the background turbulefiséthout the

the fieldBy, i.e., there is no real coupling between the com-mean velocity shearis less than 2, a mean magnetic field
ponents of the mean magnetic ﬁgq andgy. In contrastto  can be generated. We calculated the mean electromotive
this, the magnetic dynamo instability due to the shear-curredforce for an arbitrary weakly inhomogeneous turbulence
effect is determined by a system of equati¢h6) and(17)  (Alg<<1) with an imposed mean velocity shear. Inhomoge-
for the component8, andB, . This implies that there is a N of turbulence and mean velocity shear cause dhe
coupling between these components of the mean magnetﬁffe‘:t and the effective drift velocity of Fhe mean magnetic
field. In particular, the fiel®. generates the fielB. due to field. The shear-current effect was studied using two differ-
the 5 term (shear,-current e¥fe):t see the first terxm in Eq. ent methods: ther approximation(the Orszag third-order

T closure procedupeand the stochastic calcul@he path inte-
(16). This is similar to thex effect. On the other hand, the gral representation of the solution of the induction equation,

field B, generates the fiel@, due to the pure shear effect Feynman-Kac formula, and Cameron-Martin-Girsanov theo-
[see the first term in E17)], such as the differential rota- rem see Appendixes A and) B
tion in a) dynamo. In this sense the |nstab|l|ty due to the The obtained results may be important in astrophysics7
shear-current effect is a pure magnetic dynamo instability. e g., in extragalactic clusters and in interstellar clouds. The
However, the above mechanism is different from that forextragalactic clusters are nonrotating objects which have a
af) dynamo. Indeed, the dynamo mechanism due to th@omogeneous turbulence in the center of a extragalactic clus-
shear-current effect acts even in homogeneous small-scajgr, Sheared motions are created between interacting clusters.
turbulence, while thex effect vanishes for homogeneous tur- The observed magnetic fields cannot be explained by a
bulence. The difference between these magnetic dynamgmall-scale turbulent magnetic dynar(see, e.g., Ref5]).
mechanisms can be seen in the form of the growth rate of thg is plausible to suggest that the shear-current effect can
mean magnetic field. Indeed, the generation of the meagroduce a mean magnetic field in the extragalactic clusters.
magnetic field is caused by a coupling between the shearrhe sheared motions can be also formed between interacting

current effec{described by the first term in E¢16), which interstellar clouds. The latter can result in a generation of a
is proportional to the second-order spatial derivative of thamean magnetic field.

mean magnetic fieldand the pure shear effelatescribed by
the first term in Eq(17) which is proportional to the mean
magnetic field. Then the first term in the expression for
growth rate in Eq(47) (which is responsible for the genera-  We have benefited from useful discussions with A. Bran-
tion of the mean magnetic field due to the shear-current efdenburg and K.-H. Riler. This work was partially supported

fect) is proportional to the wave numbét. by the INTAS Program Foundatioi@rant No. 99-348
On the other hand, the{) dynamo is caused by a cou-
pling of the a effect (the corresponding term in the mean-
field equation is proportional to the first-order spatial deriva-
tive of the mean magnetic fieléand the differential rotation
(the corresponding term is proportional to the mean magnetic
field). Then the term in the expression for growth rate of the In this appendix, we study the shear-current effect using
instability (which is responsible for the generation of the stochastic calculus for a random velocity field with a finite
mean magnetic field in thex) dynamo is proportional correlation time. In order to derive an equation for the mean
to K2, magnetic field we use an exact solution of the induction
Note that the properties of the magnetic dynamo causedquation(23) in the form of a functional integral for an ar-
by the shear-current effect are also different from that for thebitrary velocity field taking into account a small yet finite
QxJ effect. In particular, the mean magnetic field can bemagnetic diffusion caused by the electrical conductivity of
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CURRENT EFFECT USING
STOCHASTIC CALCULUS

036301-7



|I. ROGACHEVSKII AND N. KLEEORIN PHYSICAL REVIEW E68, 036301 (2003

fluid. This magnetic diffusio ,, can be described by a ran- * g\m a\ f(t)
( T—> f(t)=exp< TE) —

dom Brownian motion of a particle. The functional integral f(t+7)= E p

m=1 m! -’

implies an averaging over a random Brownian motion of a

particle. The form of the exact solution used in the present ,

paper allows us to separate the averaging over both, a rafinerefore, Eqs(A2)—(A4) yield

dom Brownian motion of a particle and a random velocity 5

field. This method yields the solution of the induction equa- \5 Py B

tion (23) with an initial conditionh(t=s,x)=h(s,x) in the exy{ T&t) Bi(tX)=(Gij + GijémVm + Aijm Vim

form — .
+CijmanVn)BjEqu7'L)B,

hi(t.)=M Gy (t,5,Hexp £ - V)h(sX)} (A1) (A5)

(see Appe.ndlx B and Relf;l]), where&* =§_—x, Gjj(t,s,9) where Gy =Md(Gy)}=8; +U; 7+ o[(VU)?], é
is determined by equationlG;ji(t,s,£)/ds=N;Gyj(t,s, &) —M (£ ) = U +O[ vU 2] U =0 lox . A
with the initial condition Gjj(t=s)=4;;. Here N; B (g o i - (VU) A IR m
=gv;/9x;, Mg-} denotes the mathematical expectation~ M&(Gijém), Ci_Jmn_M§{<Gii§m§n>}' and we introduced
over the Wiener paths &é=x—[} Sv(t—o,§do  the operatot, which allows us to reduce the integral equa-

+(2D,)Yaw(t—s), and the magnetic diffusiod®,, is de-  tion (A2) to a partial differential equation. Indeed, E&5),

Consider a random velocity field with a finite
constant renewal time. Assume that in the intervals A~ O | =
... (=7,0];(0,7];(7,27]; . .. the velocity fields are statis- ex;{ T( L at”B_ B, (A6)

tically independent and have the same statistics. This implies

that the velocity field loses memory at the prescribed instantgeduces to

t=kr, wherek=0,+1,=2,... . This velocity field cannot

be considered as a stationary velocity field for small times JB .

~ 7, however, it behaves like a stationary field fer . —=LB. (A7)
In Eq. (Al) we specify instant$=(m+1)7 ands=mr.

Note that the field;(m7,x) and G;;((m+1)7,m7,§) are

statistically independent because the fig@in7,x) is deter-

mined in the time interval { «o,mr], whereas the function L .

Gi(m+1)7,mr,# is defined on the intervakmr,(m exp(rL)=E+ L+ (sD)%2+--, (A8)

+1)7]. Due to a renewal, the velocity field as well as its

functionalsh;(mr,x) and G;;((m+1)7,mr,£) in these two  whereE is the unit operator. Thus, Eq&A5) and(A8) yield

time intervals are statistically independent. Averaging Eq.

The Taylor expansion of the function exzﬁq reads

(Al) over the random velocity field yields the equation for 1 N
the mean magnetic field, L=Lij=—(Gij— J; +GijEmVimT Aijm Vi) T Dijmn Vi Vh
Bi(M+1)7,)=M4(Gy;(t,5, HHexp(&" - V))} B;(mr,x), +O(V?), (A9)
(A2)
whereDjjmn= (Cijmn— AikmAkjn)/27. Now we consider ho-
where the operator ex§{(- V) is determined by mogeneous and nonhelical background turbulence, then
Ajjx =0 and the equation for the mean magnetic field is given
1 1 by
ex;:(f* V):1+§k -V+ E(é‘kV)z-ﬁ- B +H(§kV)m
B, _ _
+.--, (A3) W:[VX(UXB)]i_FDijmanVnBjv (A10)

and the angular brackets) denote the ensemble average

over the random velocity field. Note tha¢£* - V)B|/|B|

~lg/Lg<<1. Thus in the framework of the mean-field ap- 1

proach we can neglect in Eq$A2) and (A3) the terms Dijmn=2—TM§{(Gij§fn§;§>}. (A11)
~O[ (& -V)3B]. Now we use the identity

where

For a turbulent flow with an imposed mean velocity gra-

-y 9= dient, the turbulence is anisotropic. Let us determine the ten-
B;(t+ 7,x)=exp 7—|B;(t,X), A4 ! . . ropic. .
(T 7X) p(T&t () (A4) sor Djjmn in this case. Solution of the equatiaG;; /ds
=N;Gy; with the initial conditionG;;(t=s)=g;; is given
which follows from the Taylor expansion by
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Gjj(t+r,t)=6;+ JOTNij (ty, &do (93 Emén) = = 27Breimkekni=27B1(3ij Smn— 5in5m(i')6121)
b [ Nutte pas [ Nty o,
0 0 1 (e
(A12) ﬁT:§fO (up(0,8uy(0,£))da, (A22)

which was solved by iterations, whetg=t+ r—o. Since . :
the velocity field is separated into the mean and fluctuatingamd we used an identity

parts:v=U+u, the tensoiG;; can be presented in the form r T
fouiw,g)dufo uj(o,§>do>
Gij:gij+Gi(jL)v (A].S)
T(Qui('[o,,f) :ZTJ <Ui(0,§)Uj(0',§)>d0'. (A23)
ij:foa—xkgkj(tmf)d(f, (A14) 0

The integration of Eq(A21) over 7 yields the tensoKjm,:
7—(9ui(t0' 1§)
ﬂXk

GiP(U)=U; fogk1<to,§)do+ fo G (U)do. Kijmn=72B7(8; Smn— SinOmy)- (A24)

(A15) Now we construct the tenséf;,,. The general form of this

Using Egs.(A12)—(A15) we obtain tensor reads

_ T —, I:ijmn:2'7'2ﬂT(ClUm,j5in‘|'CZUj,méin'{'C3Ui,j5mn
Gij=0ij + gikUx,p ngj(ta,§)d0+o((VU) )-

(A16) +C4Uj,i5mn): (A25)
where we took into account that the tender,, in Eq.
(A10) is multiplied by a tensoF¥,,V;,B; which is symmetric
(E—X) 1=E+X+XX+XXX+---+, (Al7)  With respect to indicesnf,n). SinceV-B=0, the tensor

Fijmn does not contain the terms with the tenseéyg and

whereX is an arbitrary operator. Similarly, the trajectafy o, and Fyjy,, satisfies the conditiorFjn,,Vi Vi V,Bj=0.

can be written in the form The latter equation yield€,=—C3 and C,= —C,. Equa-

tion (A25) do not have the termceinksjpm(aﬂ)pk because

we considered a nonhelical turbulence. This is the reason that

Egs.(42) and(A27) does not contain the termsjkm(ao)mi

[cf. with the general form of the tensdx;, determined by

where Z=—[jui(t, & do+ (2D ) YAW(7). Using Egs. Eg. (9)]. Therefore, Eqs(A19), (A21), (A24), and (A25)

(A16) and (A18) we determine the tens@;jy,, yield the tensoDjjy,:

For the derivation of Eq(A16) we used the identity

E=E-U;, f072k<to,§>do+0[(vi>2], (A18)

Dijmn:[<gijzmgn>_(Um,pank+Un,p5mk)Kijkp+Fijmn]/ZTr Dijmn:ﬁT{éijémn_l—T[Cl(Um,jéin_Ui,jﬁmn)
(A19) _ — N
. +C2(Uj,m5in_Uj,i‘smn)_(au)mnfsij]}- (A26)
Wherg Eijmn:Uk,p<gik§m§nf69pjd0'> and Kijmn
=(0ij&émf0énda). In this section hereafter the angular

brackets denote both averagings: the averaging over a ran-
dom velocity field and the averaging over the Wiener trajec-

tories. Now we determine the tensqw;;€,&,), which de-
scribes turbulent magnetic diffusion. We take into account
that in a homogeneous and nonhelical turbulence without

mean shearE,fO), the mean-field equation reads

Now we use the identities
(Unm;jin— Ui 8mn) ViVaB; = [V X (VX (B- V)U)];,
(U} m8in—Uj i mn) ViaVaB; =[ VX (V X (B;VU)))]; ,

(ﬁo)mnvmvngi:(VXQ)i )

9B: . o where Qi:sijp(aﬂ)annBj. The latter identity is derived
i = LVX(BrVXB)Ji=— Breimkekn VimVnB; - using the following identity: &imsesjp(90) pn=(90) mndi;
(A20) —(aO)mamj. Note that we neglect the second- and higher-
order spatial derivatives of the mean velocity. We also ne-
In this caseb;j, = Breijk - Therefore, glected the cross-effect terms which describe an interaction
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between molecular and turbulent effects. Thus, ER6) In Eq. (B3) we expand the function ekig* -q] in Taylor
and the above identities allow us to determine the tensoseries atq=0, i.e., expi&* - q]==j_(1Kk!)(i & - g)*. Us-
bij : ing the identity {q)*exdix-q]=V¥exdix-q] and Eq.(B3)
R we get
Bijk = Breijk T BT (C1+ Co)eikm(IU) mj

+3(C—Cp) W= eijm(d0) mid.  (A27) hi(t,x) = Mg[ Gij(t,s,8)

> <1/k!><§*-V>k}
k=0

Using Egs.(4)—(8) and (A27) we determine the turbulent
coefficients defining the mean electromotive force. They are xf hj(s,q)exp(iq-x)dq . (B4)
given by Eqs(10)—(12) with

After the inverse Fourier transformation in E@®4) we ob-
tain Eq.(Al). Equation(B2) can be formally considered as
an inverse Fourier transformation of the functig(t,§).
However, £ is the Wiener path which is not a usual spatial
o . variable. Therefore, it is desirable to derive E41) by a
wherel o= y3B+7. For simplicity we use the mean magnetic e rigorous method as it is done below.

field in the formB= (B,(z),B,(2),0). Then Eq/(15) reduces To this end we use an exact solution of the Cauchy prob-
to Egs.(16) and(17), where the parametesy, By, x1, and  lem for Eq. (23) with an initial condition h(t=s,x)

Kk, are determined by Eq$A28) and (A29). We seek for  =h(s,x) in the form

solution of Egs.(16) and (17) in the form «exp(t+iKz).

Thus the growth rate of the mean magnetic field due to the hi(t,x)=M;{J(t,s,g’)éij(t,s,g’)hj(s,g(t,s))}, (B5)
shear-current effect is given by

Bo=—1:(C1+Cp+1), 8r=1(C,—Cy), (A28

k1= =4ComCy),  rp=—4(Ca+Com1), (A29)

) where the matrixéij is determined by the equation
7=ShKVC3/3= K%, (A30)  4G;i(t,5,0/ds=NyBy(t,5,9 with the initial condition

where we used that,=C,/3. Therefore, the magnetic dy- Cii(t=5)=4dij, and the functiord(t,s,Z) is given by

namo instability can be excited whel,>0. F( 1

t—s
\/ffo vi(t—n,4(t,n))dwi(7)

This approach does not allow us to take into account the J(t,8,0) = ex
effect of mean velocity shear on turbulence. The method
used in this appendix only describes the effect of shear on
the cross-helicity tensor. This is one of the reasons that the 1 [t=s,
results obtained by this method are quantitatively different a0, ), Y (t=mn,4t,m)dn|, (B6)
from that obtained by the- approximation. However, the

form of the electromotive force and a possibility for the (t) is a Wiener process, ard -} denotes the mathemati-
large-scale magnetic dynamo in a homogeneous turbulencgy expectation over the pathqt,s)=x+(2D,,)" 3 w(t)
due to the shear-current effect are clearly demonstrated byw(s)]. Solution(B5) was first found in Ref[37]. The first

two different approaches. integral [ Sv(t— 5,4(t,7))-dw(7) in Eq. (B6) is the Ito
stochastic integralsee, e.g., Ref[38]). As follows from
APPENDIX B: DERIVATION OF EQ. (Al) Cameron-Martin-Girsanov theorem the transformation from

Eqg. (B1) to Eqg.(B5) can be considered as a change of vari-
ablesé— ¢ in the path integra(B1) (see, e.g., Ref.39)).

The difference between the solutio(®1) and (B5) is as
follows. The functionh;(s,&(t,s)) in Eq. (B1) explicitly de-
B pends on the random velocity fieldvia the Wiener patlg,

hi(t.) =MG;; (.5, &(1.5)h;(s. &(t.9)}, (BD) while the functionh;(s,{(t,s)) in Eq. (B5) is independent of
, o ftesory the velocity v. Trajectories in the Feynman-Kac formula
where tq/eZWW|ener pathg(t,s) =x—Jo *V[t=0.£t.0)]do (1) are determined by both, a random velocity field and
+(2Dm) " w(t—s). Now we assume that magnetic diffusion. On the other hand, trajectories in Eq.
(B5) are determined only by magnetic diffusion. Due to the
hi(t,&) = f exp(i & q)hi(s,q)dq. (82)  Markovian property of the Wiener process, soluti&b) can
be rewritten in the form

In order to derive Eq(Al) we use an exact solution of
Eqg. (23) with an initial conditionh(t=s,x)=h(s,x) in the
form of the Feynman-Kac formula:

Substituting Eq(B2) into Eq. (B1) we obtain hi(t,x)=E{S;(t,s,x,X")h;(s,X")}
hi(s,%)= f MG (t,s,&(t,9)exili £ - qlhj(s,a)} = J Qij(t.sxxDhi(sx)ax’, — (B7)
Xexp(ig-x)dg. (B3)  where
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(X' =x)?
4D, (t—s)

Qij(t,s,x,x") =[477Dm(t—s)]3’2ex;{ -

X §j(t,s,x,X"), (B8)
S (t,5,%,x")=M {J(t,s,w)Gjj(t,5,p)} and M ,{-} means
the path integral taken over the set of trajectogiesvhich
connect pointst(x) and (s,x’). The mathematical expecta-

PHYSICAL REVIEW E 68, 036301 (2003
hi(t,%)=M4J(t,5,0G;;(t,s,0)e;exfig- (x+ (2D ) ¥aw)]}.
(B13)
Comparing Eqs(B11)—(B13) we get
Qij(t,8,%,— ) =(2m) *MAJ(t,5,0Gj;(1,5,0

X exfi(2Dm)Y2-w]}. (B14)

tion E{-} in Eq. (B7) denotes the averaging over the set of Now we rewrite Eq.(B14) using Feynman-Kac formula

random pointsX’ which have a Gaussian statisticee, e.g.,
Ref.[40]). We used here the following property of the aver-
aging over the Wiener proce&gM ,{-}}=M/-}. We con-
sidered a random velocity field with a finite renewal time.

(B1). The result is given by

Qij(tysyxa_Q):(277)73Mg{Gij(taSaf(tyS))quiq' §*]}1
(B15)

Due to a renewal, the velocity field as well as its functionals o )
hi(s,x') andQ;;(t,s,x,x’) in the two time intervals are sta- Where & =&—x. Substituting Eq.B19) into Eq. (BY) we
tistically independent. Now we make a change of variable$btain

(x,x")—(x,x'=z+x) in Eq. (B7), ie., Qj(t,sxXx)
= (”gij (t,8,%x,2+X) = Q;;(t,s,X,2). The Fourier transformation
in Eq. (B7) yields

hi(t,x)=f JQij(t,s,x,k)exp(ik-z)dk

X f h;(s,q)exdiq- (z+x)]dqdz.

Sinces(k+q)=(27) 3fexdi(k+q)-z)]dz, we obtain that

hi(t,x)=(277)3J Qij(t,s,x,—q)h;j(s,q)exp(ig-x)dq.
(B9)

In Eq. (BY) the functionQ;;(t,s,x,—q) is given by

Qij(t,s,x,—q)=(2w)‘3f Qij(t,s,x,2)exp(iq-z)dz.
(B10)

Substitutingf)i,-(t,s,x,x’)zQij(t,s,x,z) in Eq.(B7) and tak-
ing into account thak’ =z+x we obtain

hi(t,x)=f Qij(t,s,x,2)h;(s,z+x)dz. (B11)

Equation(B10) can be rewritten in the form
(2m)3Q;;(t,s,x, —q)expig-X)
:J' Qij(t,s,x,2)exdiq- (z+x)]dz. (B12)

The right hand sides of Eq&811) and(B12) coincide when
h(s,z+x)=eexdiq- (z+x)], whereeis a unit vector. Thus,
a particular solutior{B11) of Eg. (23) with the initial condi-
tion h(s,x")=eexp(q-x’) coincides in form with integral
(B12). On the other hand, a solution of E(3) is given
by Eg. (B5). Substituting the initial conditionh(s,{)
=eexp(q- ) =eexpiq-[x+(2D,)Yw]) into Eq. (B5) we
obtain

hi<t,x>=f M Gy (1,5, Hexiia- £ Ih(s.a)}

X expiq-x)dg. (B16)

The Fourier transformation in E¢B16) yields Eq.(Al). The
above derivation proves that assumpti{8®) is correct for a
Wiener pathé.

APPENDIX C: IDENTITY USED FOR DERIVATION
OF EQS. (27) AND (34)

For the derivation of Eq927) and (34) we used the fol-
lowing identity:

ikiJ fij(k—3Q,K—Q)U,(Q)expiK-R)dKdQ

1—
:_EUpVif

i[of
"2

M) oy
akg)(VSV.up»

1 iy
i+ 5 fiViUp= 7(VsUp) Via_ks
(CY

To derive Eq.(C1) we multiply the equatiorV - u=0 [writ-
ten ink space foru;(k;— Q)] by u;j(k;)Up(Q)exp(K-R),
integrate ovelK and Q, and average over the ensemble of
velocity fluctuations. Heré, =k +K/2 andk,= —k+K/2.
This yields

[
(2

Next, we introduce new variableg&;=k+K/2—Q, k,
—k+K/2 and k=(k;—k,)/2=k—Q/2, K=k;+k,=
—Q. This allows us to rewrite EqC2) in the form

[

k+1K
T2

o0 ([ 5]
ki+§Ki_Qi U; k+§K—Q Uj

X U,(Q)expliK -R)dKdQ=0.

K

1 1 U
ki+EKi_Qi)fij(k_EQ'K_Q)Up(Q)

X exp(iK -R)dKdQ=0. (C3
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Since|Q|<|k| we use the Taylor expansion

1 (9f| k,K_
fij(k—Q/z,K—Q):fi;(k,K—Q)_iJ(TQ) )

+0(Q?). (C4

We also use the following identities:

PHYSICAL REVIEW E68, 036301 (2003
[fij(k:R)Up(R)]K:f fij(k,.K—Q)Uy(Q)dQ,
Vol fij(k,R)UL(R)]
=f iK [ fij (K, R)UH(R)JcexpliK - R)dK.

(CH)
Therefore, Eqs(C3)—(C5) yield Eq.(C1).
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