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Electromotive force and large-scale magnetic dynamo in a turbulent flow with a mean shear
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An effect of sheared large-scale motions on a mean electromotive force in a nonrotating turbulent flow of a
conducting fluid is studied. It is demonstrated that in a homogeneous divergence-free turbulent flow thea
effect does not exist, however a mean magnetic field can be generated even in a nonrotating turbulence with an
imposed mean velocity shear due to a ‘‘shear-current’’ effect. A mean velocity shear results in an anisotropy of
turbulent magnetic diffusion. A contribution to the electromotive force related to the symmetric parts of the
gradient tensor of the mean magnetic field~the k effect! is found in nonrotating turbulent flows with a mean
shear. Thek effect and turbulent magnetic diffusion reduce the growth rate of the mean magnetic field. It is
shown that a mean magnetic field can be generated when the exponent of the energy spectrum of the back-
ground turbulence~without the mean velocity shear! is less than 2. The shear-current effect was studied using
two different methods: thet approximation~the Orszag third-order closure procedure! and the stochastic
calculus~the path integral representation of the solution of the induction equation, Feynman-Kac formula, and
Cameron-Martin-Girsanov theorem!. Astrophysical applications of the obtained results are discussed.
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I. INTRODUCTION

Generation of magnetic fields by a turbulent flow of
conducting fluid is a fundamental problem which has a nu
ber of applications in solar physics and astrophysics, g
physics and planetary physics~see, e.g., Refs.@1–5#!. It is
known that small-scale magnetic fluctuations with a z
mean magnetic field can be generated in a homogen
nonhelical and nonrotating turbulence by a stretch-twist-f
mechanism~see, e.g., Refs.@6–11#!. On the other hand, in a
homogeneous divergence-free turbulent flow the helicity
the a effect vanish.

However, the mean magnetic field can be generated
rotating homogeneous turbulent flow due to the combin
action of theV3J effect and a nonuniform~differential!
rotation @12–16#, whereV is the angular velocity andJ is
the mean electric current. The evolution of the mean m
netic field B̄ is determined by equation

]B̄

]t
5“3~Ū3B̄1E2Dm“3B̄!, ~1!

whereŪ is the mean velocity,Dm is the magnetic diffusion
due to the electrical conductivity of fluid,E5^u3b& is the
mean electromotive force. The general form of the me
electromotive force was suggested in Ref.@17# using the
symmetry arguments:

Ei5a i j B̄ j2b i j ~“3B̄! j1~V(eff)3B̄! i2@d3~“3B̄!# i

2k i jk~]B̂! jk , ~2!
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where (]B̂) i j 5(¹i B̄ j1¹j B̄i)/2, u and b are fluctuations of
the velocity and magnetic field, respectively, angular bra
ets denote averaging over an ensemble of turbulent fluc
tions, the tensorsa i j and b i j describe thea effect and tur-
bulent magnetic diffusion, respectively,Veff is the effective
diamagnetic~or paramagnetic! velocity,k i jk andd describe a
nontrivial behavior of the mean magnetic field in an anis
tropic turbulence. TheV3J effect, e.g., is associated wit
the d term in the mean electromotive force.

In the present paper, we suggested a mechanism of
eration of a mean magnetic field by anonrotating homoge-
neousand nonhelical turbulence with an imposed mean
locity shear. This mechanism is associated with a ‘‘she
current’’ effect determined by thed term in the mean
electromotive force. On the other hand, the turbulent m
netic diffusion and thek effect can reduce the growth rate o
the mean magnetic field. Thek effect arises in an anisotropi
turbulence caused by the mean velocity shear. Our ana
of the mean-field magnetic dynamo showed that the gen
tion of a mean magnetic field can occur whenq,2, whereq
is the exponent of the energy spectrum of the backgro
turbulence~without a mean velocity shear!. In particular, in
Kolmogorov background turbulence withq55/3 a mean
magnetic field can be generated. The shear-current effect
studied using two different methods: thet approximation
~the Orszag third-order closure procedure@18#, see Sec. IV!
and the stochastic calculus~the path integral representatio
of the solution of the induction equation, Feynman-Kac f
mula, and Cameron-Martin-Girsanov theorem, see App
dixes A and B!. We also calculated the mean electromoti
force for an arbitrary weakly inhomogeneous turbulence w
an imposed mean velocity shear. The inhomogeneity of
bulence and mean velocity shear cause thea effect and the
effective drift velocity of the mean magnetic field.

The d term in the electromotive force which is respo
sible for the shear-current effect was also independe
found in Ref.@19# in a problem of a screw dynamo using th
©2003 The American Physical Society01-1
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modified second-order correlation approximation. Note a
that for homogeneous and nonhelical flows another mec
nism for the magnetic dynamo associated with a ‘‘negat
turbulent magnetic diffusivity’’ was recently discussed
Refs.@20–22#.

This paper is organized as follows. In Sec. II, the gene
form of the mean electromotive force which includes t
shear-current effect is obtained using simple symmetry
soning, and the mechanism for the shear-current effect is
discussed. In Sec. III, the governing equations for turbul
velocity and magnetic fields are formulated, which then
used for studying an effect of a mean velocity shear o
turbulence~Sec. IV! and on a cross helicity~Sec. V!. This
allows us to determine the mean electromotive force i
turbulent flow of a conducting fluid with an imposed me
velocity shear~Sec. VI!. The implications of the results fo
the mean electromotive force to the mean-field magnetic
namo in a nonrotating homogeneous turbulence are
formed in Sec. VII. Conclusions and astrophysical appli
tions of the obtained results are discussed in Sec. VIII.
Appendixes A and B the shear-current effect is studied us
another approach, i.e., stochastic calculus. In Appendix
we derived identities used for the derivation of equations
the second moment of the velocity field and the cro
helicity tensor.

II. THE QUALITATIVE DESCRIPTION

The mean electromotive force can be written in the fo

Ei5ai j B̄j1bi jkB̄j ,k1O~¹2B̄i !. ~3!

Following Ref.@17# we use an identityB̄j ,k[¹kB̄j5(]B̂) jk

2« jkl(“3B̄) l /2 which allows us to rewrite Eq.~3! for the
mean electromotive force in the form of Eq.~2!, where« i jk
is the fully antisymmetric Levi-Civita` tensor, and

a i j 5~ai j 1aji !/2, ~4!

b i j 5~« ikpbjkp1« jkpbikp!/4, ~5!

Vk
(eff)5«k j iai j /2, ~6!

d i5~bj j i 2bji j !/4, ~7!

k i jk52~bi jk1bik j !/2. ~8!

In a homogeneous and nonhelical turbulence the tensoai j

vanishes, which implies thata i j 50 andVk
(eff)50. Below we

consider this case.
The general form of the mean electromotive force in

turbulent flow with a mean velocity shear can be obtain
even from simple symmetry reasoning. Indeed, the elec
motive forceE is a true vector, whereas the mean magne
field B̄ is a pseudovector. Therefore, the tensorbi jk is a
pseudotensor@see Eq.~3!#. For homogeneous, isotropic, an
nonhelical turbulence the tensorbi jk5bT« i jk , wherebT is
the turbulent magnetic diffusion coefficient. In a turbule
flow with an imposed mean velocity shear, the tensorbi jk
03630
o
a-
e

l

a-
so
t

e
a

a

y-
r-
-
n
g
,

r
-

d
o-
c

t

depends on the true tensor¹j Ū i . Note that the tensor¹j Ū i
can be written as a sum of the symmetric and antisymme
parts, i.e., ¹j Ū i5(]Û) i j 2(1/2)« i jk W̄k , where (]Û) i j

5(¹i Ū j1¹j Ū i)/2 is the true tensor andW̄5“3Ū is the
mean vorticity ~pseudovector!. Hereafter we take into ac
count the effect which is linear in¹j Ū i . Therefore, the
pseudotensorbi jk has the following general form:

bi jk5bT« i jk1 l 0
2@a1« i jm~]Û !mk1a2« ikm~]Û !m j

1a3« jkm~]Û !mi1a4d i j W̄k1a5d ikW̄j #, ~9!

whereak are the unknown coefficients,l 0 is the maximum
scale of turbulent motions, and the term}d jkW̄i vanishes
since“•B̄50 @see Eq.~3!#. Using Eqs.~4!–~9! we deter-
mine the turbulent coefficients defining the mean electrom
tive force for a homogeneous and nonhelical turbulence:

b i j 5bTd i j 22 b0l 0
2~]Û ! i j , ~10!

d5 l 0
2d0W̄, ~11!

k i jk5 l 0
2@k1d i j W̄k1k2« i jm~]Û !mk#, ~12!

where

b05~a12a222a3!/4, d05~a42a5!/2, ~13!

k152~a41a5!, k252~a11a2!, ~14!

andbT5u0l 0 /3 is the coefficient of isotropic part of turbu
lent magnetic diffusion, while the second term in Eq.~10!
determines anisotropic part of turbulent magnetic diffus
caused by the mean velocity shear. Hereu0 is the character-
istic turbulent velocity in the maximum scale of turbule
motions. Thek effect ~determined by the tensork i jk) de-
scribes a contribution to the electromotive force related
the symmetric parts of the gradient tensor of the mean m
netic field and arises in an anisotropic turbulence caused
the mean velocity shear. Since the tensork i jk is multiplied
by the symmetric tensor (]B̂) jk in the mean electromotive
force, this allows us to rewrite the tensork i jk determined by
Eq. ~12! in a more simple but not in a symmetric form. W
will show in this paper that thed term in Eqs.~2! and ~11!
for the mean electromotive force describes the shear-cur
effect which can cause the mean-field magnetic dynamo
homogeneous nonrotating turbulence with an imposed m
velocity shear.

Consider a homogeneous divergence-free turbulence
a mean velocity shear, e.g.,Ū5(0,Sx,0) andW̄5(0,0,S).
The mean magnetic field is determined by equation

]B̄

]t
5“3@Ū3B̄2b̂~“3B̄!2d3~“3B̄!2k̂~]B̂!#,

~15!
1-2
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where b̂[b i j and k̂[k i jk . Now for simplicity we use the
mean magnetic field in the formB̄5(B̄x(z),B̄y(z),0). Then
Eq. ~15! reads

]B̄x

]t
52Sl0

2s0B̄y91bTB̄x9 , ~16!

]B̄y

]t
5SB̄x1bTB̄y9 , ~17!

where

s05d02b02k1 /22k2 /4, ~18!

and B̄95]2B̄/]z2. In Eq. ~17! we took into account tha
l 0
2B̄x9!B̄x , i.e., the characteristic spatial scaleLB of the mean

magnetic field variations is much larger than the maxim
scale of turbulent motionsl 0. This assumption correspond
to the mean-field approach. The first term (}SB̄x) on the
right hand side of Eq.~17! plays a role of the differ-
ential rotation. Indeed,“3(Ū3B̄)5(B̄•“)Ū2(Ū•“)B̄
5SB̄xey , and for the chosen configuration of the mean m
netic field, (Ū•“)B̄50.

We seek for a solution of Eqs.~16! and ~17! in the form
}exp(gt1iKz), whereg is given by

g5Sl0KAs02bTK2, ~19!

wheres05(a21a312a4)/2. The magnetic dynamo insta
bility can be excited whens0.0. In this paper we will find
unknown coefficientsak , which will allow us to determine
the conditions for the generation of the mean magnetic fi
due to the magnetic dynamo instability caused by the sh
current effect.

In order to elucidate the physics of the shear-current
fect, let us compare thea term in the electromotive force
which is responsible for the generation of the mean magn
field, i.e.,

E i
a[aB̄i}2~V•L!B̄i ~20!

~see, e.g., Refs.@3,16#!, with thed term in the electromotive
force caused by the shear-current effect, i.e.,

E i
d[2„d3~“3B̄!…i}2~W̄•“ !B̄i , ~21!

whereL5“^u2&/^u2& determines the inhomogeneity of tu
bulence. Here for simplicity we considered an isotropica
tensor, i.e.,a i j 5ad i j . There is an analogy between thea
term and thed term in the electromotive force. In particula
the mean vorticityW̄ plays a role of rotationV and an in-
homogeneity of the mean magnetic field plays a role of
inhomogeneity of turbulence in theaV dynamo~see below!.
During the generation of the mean magnetic field in b
cases, the mean electric current along the original mean m
netic field arises. Thea effect is related to the hydrodynam
helicity }(V•L) in an inhomogeneous turbulence. The d
formation of the magnetic field lines is caused by upwa
03630
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and downward rotating turbulent eddies. Since the tur
lence is inhomogeneous~which breaks a symmetry betwee
the upward and downward eddies!, their total effect on the
mean magnetic field does not vanish and it creates the m
electric current along the original mean magnetic field.

In a turbulent flow with an imposed mean velocity she
the inhomogeneity of the original mean magnetic fie
breaks a symmetry between the influence of upward
downward turbulent eddies on the mean magnetic field. T
deformation of the magnetic field lines is caused by upw
and downward turbulent eddies which causes the mean e
tric current along the mean magnetic field and produces
magnetic dynamo. The magnetic dynamo instability due
the shear-current effect is determined by a system of E
~16! and ~17!, and there is a coupling between the comp
nents of the mean magnetic field. In particular, the fieldB̄y

generates the fieldB̄x due to the shear-current effect@see Eq.
~16!#. This is similar to thea effect. On the other hand, th
field B̄x generates the fieldB̄y due to the pure shear effec
@see Eq. ~17!#, such as the differential rotation inaV
dynamo.

In the following sections, we will describe the above ma
netic dynamo effect quantitatively using two different met
ods: thet approximation~the Orszag third-order closure pro
cedure@18#! and the stochastic calculus~the path integral
representation of the solution of the induction equatio
Feynman-Kac formula, and Cameron-Martin-Girsan
theorem!.

III. THE GOVERNING EQUATIONS

Our goal is to study an effect of sheared large-scale m
tions on a mean electromotive force in nonrotating turbul
flows of a conducting fluid. The momentum equation for t
fluid velocity v and the induction equation for the magne
field h read

S ]

]t
1v•“ D v52

“P

r
1Fm~h!1nDv1F(st), ~22!

S ]

]t
1v•“ Dh5~h•“ !v1DmDh, ~23!

where“•v50 and“•h50, n is the kinematic viscosity,
Fm(h)52(1/mr)@h3(“3h)# is the magnetic force,m is
the magnetic permeability of the fluid,F(st) is the random
external stirring force,P andr are the pressure and densi
of fluid, respectively.

We will use a mean-field approach whereby the veloc
pressure, and magnetic field are separated into the mean
fluctuating parts:v5Ū1u, P5 P̄1p, and h5B̄1b, the
fluctuating parts have zero mean values, andŪ5^v&, P̄

5^P&, B̄5^h&. Averaging Eqs.~22! and ~23! over an en-
semble of fluctuations we obtain the mean-field equations
particular, the evolution of the mean magnetic fieldB̄ is de-
termined by Eq.~1!, whereE5^u3b& is the mean electro-
motive force. To determine the mean electromotive force
use equations for fluctuationsu(t,r ) and b(t,r ) which are
1-3
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obtained by subtracting equations for the mean fields fr
the corresponding equations~22! and~23! for the total fields:

]u

]t
52~Ū•“ !u2~u•“ !Ū2

“p

r
1Fm~b,B̄!1F(st)1UN ,

~24!

]b

]t
52~Ū•“ !b1~b•“ !Ū2~u•“ !B̄1~B̄•“ !u1BN ,

~25!

where

Fm~b,B̄!52
1

mr
@b3~“3B̄!1B̄3~“3b!#,

UN5^~u•“ !u&2~u•“ !u1@^b3~“3b!&

2b~“3b!#/~mr!1nDu,

BN5“3~u3b2^u3b&!1DmDb.

We consider a turbulent flow with large hydrodynamic (R
5 l 0u0 /n@1) and magnetic (Rm5 l 0u0 /Dm@1) Reynolds
numbers, whereu0 is the characteristic velocity in the max
mum scalel 0 of turbulent motions. In the following sections
we will use Eqs.~24! and ~25! to study an effect of a mea
velocity shear on a turbulence~Sec. IV! and on a cross he
licity ~Sec. V! in order to determine the mean electromoti
force.

IV. EFFECT OF A MEAN VELOCITY SHEAR
ON A TURBULENCE

In this section, we study an effect of a mean veloc
shear on a turbulence using Eq.~24!. We neglect an effect o
the mean magnetic field on the turbulence, i.e., we neg
the magnetic forceFm(b,B̄) in Eq. ~24!. This is valid when
B̄2/m!r^u2&/2, i.e., we do not consider the quenching e
fects~see, e.g., Ref.@23–28#!. We use a two-scale approac
i.e., a correlation function is written as follows:

^ui~x!uj~y!&5E ^ui~k1!uj~k2!&

3exp@ i ~k1•x1k2•y!#dk1dk2

5E f i j ~k,R!exp~ ik•r !dk,

f i j ~k,R!5E ^ui~k1K /2!uj~2k1K /2!&exp~ iK•R!dK

~see, e.g., Refs.@29,30#!, whereR andK correspond to the
large scales, andr and k to the small scales, i.e.,R5(x
1y)/2, r5x2y, K5k11k2 , k5(k12k2)/2. We assume
that there exists a separation of scales, i.e., the maxim
scale of turbulent motionsl 0 is much smaller than the cha
acteristic scales of inhomogeneities of the mean fields.

Now we calculate
03630
ct

m

] f i j ~k1 ,k2!

]t
[ K Pin~k1!

]un~k1!

]t
uj~k2!L

1 K ui~k1!Pjn~k2!
]un~k2!

]t L , ~26!

where we multiplied equation of motion~24! rewritten ink
space byPi j (k)5d i j 2ki j in order to exclude the pressur
term from the equation of motion,d i j is the Kronecker ten-
sor, andki j 5kikj /k2. Thus, the equation forf i j (k,R) is
given by

] f i j

]t
5 Î i jmn~Ū! f mn1Fi j 1 f i j

(N) , ~27!

where

Î i jmn~Ū!5S 2kiqdmpd jn12kjqd imdpn2d imd jqdnp

2d iqd jndmp1d imd jnkq

]

]kp
D¹pŪq , ~28!

and f i j
(N)(k,R) is the third moment appearing due to the no

linear term,“5]/]R,

Fi j ~k,R!5^F̃ i~k,R!uj~2k,R!&1^ui~k,R!F̃ j~2k,R!&,

and

F̃~k,R,t !52k3@k3F(st)~k,R!#/k2.

Equation~27! is written in a frame moving with a local ve
locity Ū of the mean flows. In Eqs.~27! and ~28! we ne-
glected small terms which are of the order ofO(u¹3Ūu).
Note that Eqs.~27! and ~28! do not contain terms propor
tional to O(u¹2Ūu). To get Eqs.~27! and ~28! we used an
identity derived in Appendix C.

Equation~27! for the second momentf i j (k,R) contains
the third momentf i j

(N)(k,R) and a problem of closing the
equations for the higher moments arises. Various appr
mate methods have been proposed for the solution of p
lems of this type~see, e.g., Refs.@18,31,32#!. The simplest
procedure is thet approximation~the Orszag third-order clo
sure procedure@18#!. For magnetohydrodynamic turbulenc
this approximation was used in Ref.@33# ~see also Refs.
@26,34–36#!. In the simplest variant, it allows us to expre
the deviations of the third momentf i j

(N)(k,R)2 f i j
(N0)(k,R) in

terms of that for the second momentf i j (k,R)2 f i j
(0)(k,R):

f i j
(N)2 f i j

(N0)52
f i j 2 f i j

(0)

t~k!
, ~29!

where the superscript (0) corresponds to the background
bulence~it is a turbulence with zero gradients of the me
fluid velocity, ¹i Ū j50), andt(k) is the correlation time of
the turbulent velocity field. Here we assumed that the ti
t(k) is independent of gradients of the mean fluid veloc
1-4



ac

ed

ap
t
ib
to
o
er

u
e
m

e

ic
cit
e
a

y

th
r-
dy

o

tu
f

the

e

-

ok

l

ered
etic
of

ELECTROMOTIVE FORCE AND LARGE-SCALE . . . PHYSICAL REVIEW E 68, 036301 ~2003!
because in the framework of the mean-field appro
we may only consider a weak shear:t0u“Ūu!1, where
t05 l 0 /u0.

Thet approximation is in general similar to eddy damp
quasinormal markovian~EDQNM! approximation. However
some principlal difference exists between these two
proaches~see Refs.@18,32#!. The EDQNM closures do no
relax to equilibrium, and this procedure does not descr
properly the motions in the equilibrium state in contrast
the t approximation. Within the EDQNM theory, there is n
dynamically determined relaxation time, and no slightly p
turbed steady state can be approached@18#. In thet approxi-
mation, the relaxation time for small departures from eq
librium is determined by the random motions in th
equilibrium state, but not by the departure from equilibriu
@18#. As follows from the analysis in Ref.@18# thet approxi-
mation describes the relaxation to equilibrium state~the
background turbulence! much more accurately than th
EDQNM approach.

Note that we applied thet approximation~29! only to
study the deviations from the background turbulence wh
are caused by the spatial derivatives of the mean velo
The background turbulence is assumed to be known. H
we use the following model of the background nonhelic
isotropic, and weakly inhomogeneous turbulence:

f i j
(0)~k,R!5

1

8pk2 S Pi j ~k!1
i

2k2
~ki¹j2kj¹i !D u0

2E~k,R!,

~30!

where t(k)52t0t̄(k), E(k)52dt̄(k)/dk, t̄(k)
5(k/k0)12q, 1,q,3 is the exponent of the kinetic energ
spectrum ~e.g., q55/3 for the Kolmogorov spectrum!,
k051/l 0.

We assume that the characteristic time of variation of
second momentf i j (k,R) is substantially larger than the co
relation timet(k) for all turbulence scales. Thus in a stea
state, Eq.~27! reads

@d imd jn2t Î i jmn~Ū!#@ f mn~k,R!2 f mn
(0)#5t Î i jmn~Ū! f mn

(0) ,
~31!

where we used Eq.~29!. The termFi j in Eq. ~27! determines
the background turbulence. The solution of Eq.~31! yields
the second momentf i j (k,R):

f i j ~k,R!' f i j
(0)1t Î i jmn~Ū! f mn

(0)~k,R!, ~32!

where we neglected terms which are of the order
O(ut“Ūu2)!1. The first term in Eq.~32! is independent of
the mean velocity shear and it describes the background
bulence. The second term in Eq.~32! determines an effect o
the mean velocity shear on turbulence.
03630
h

-

e

-

i-

h
y.
re
l,

e

f

r-

V. EFFECT OF A MEAN VELOCITY SHEAR
ON THE CROSS HELICITY

In order to determine the mean electromotive forceEi(r
50,R)[« inm*gmn(k,R)dk, we derive equation for the
cross-helicity tensor:

gi j ~k,R!5E ^bi~k1K /2!uj~2k1K /2!&exp~ iK•R!dK ,

using Eqs.~24! and ~25!, i.e., we calculate

]gi j ~k1 ,k2!

]t
[ K bi~k1!Pjn~k2!

]un~k2!

]t L
1 K ]bi~k1!

]t
uj~k2!L . ~33!

This yields an equation forgi j (k,R),

]gi j

]t
5 Ĵi jmn~Ū!gmn1M̂ i jmn~B̄! f mn1gi j

(N) , ~34!

which describes an effect of a mean velocity shear on
cross helicity, where

Ĵi jmn~Ū!52kjqd im¹nŪq2d im¹nŪ j1d jn¹mŪi

1d imd jn~¹qŪp!kp

]

]kq
, ~35!

M̂ i jmn~B̄!5d imd jnB̄pS ikp1
1

2
¹pD2d jnB̄i ,m

2
1

2
d imd jnB̄p,qkp

]

]kq
, ~36!

and gi j
(N)(k,R) is the third moment appearing due to th

nonlinear terms,B̄i , j5]B̄i /]Rj . Equation ~34! is written
in a frame moving with a local velocityŪ of the mean
flows. To get Eqs.~34!–~36! we used an identity derived in
Appendix C.

Now we use thet approximation which allows us to ex
press the third momentsgi j

(N)(k,R) in terms of the second
momentsgi j (k,R):

gi j
(N)52

gi j

t̃~k!
, ~37!

wheret̃(k) is the characteristic relaxation time, and we to
into account that the cross-helicity tensorgi j for B̄50 is
zero, i.e.,gi j (B̄50)50. Note that we applied thet approxi-
mation ~37! only to study the deviations from the origina
turbulence~i.e., the turbulence withB̄50). These deviations
are caused by a weak mean magnetic field. We consid
the case when the original turbulence does not have magn
fluctuations. Now we assume that the characteristic time
variation of the second momentgi j (k,R) is substantially
larger than the correlation timet(k);t̃(k) for all turbulence
1-5
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scales. This allows us to get an equation for the cross-hel
tensorgi j (k,R) in a steady state:

gmn~k,R!@d imd jn2t Ĵi jmn~Ū!#5tM̂ i jmn~B̄! f mn , ~38!

where f mn(k,R) in Eq. ~38! is determined by Eq.~32!. The
solution of Eq.~38! yields

gi j ~k,R!5tM̂ i jmn~B̄! f mn
(0)1t2@M̂ i jmn~B̄! Î mnlk~Ū!

1 Ĵi jmn~Ū!M̂mnlk~B̄!# f lk
(0) , ~39!

where we neglected terms which are of the order
O(ut“Ūu2)!1. The first term in Eq.~39! is independent of
the mean velocity shear and it describes the isotropic tu
lent magnetic diffusion. The second term in Eq.~39! deter-
mines an effect of the mean velocity shear on turbule
which causes a modification of the mean electromotive fo
i.e., this term describes an indirect modification of the me
electromotive force. The last term in Eq.~39! determines a
direct modification of the mean electromotive force by t
mean velocity shear.

VI. THE MEAN ELECTROMOTIVE FORCE

Using Eqs.~32! and~39! we determine the mean electro
motive force for an inhomogeneous turbulence with a m
velocity shear:

Ei~r50,R![« inmE gmn~k,R!dk5ai j B̄j1bi jkB̄j ,k ,

~40!

where

ai j 52
l 0
2

18H 6LmF4q29

5
« imn~]Û !n j1« i jn~]Û !mnG

13« i jm~W̄3L!m1d i j ~W̄•L!2W̄iL j J , ~41!

bi jk5bT« i jk2
l 0
2

45
@2~8q211!« i jm~]Û !mk118« ikm~]Û !m j

1~4q217!d i j W̄k1~4q27!d ikW̄j #. ~42!

HereL5“^u2&/^u2& andl 05t0u0. Equations~41! and~42!
allow us to obtain the turbulent coefficients defining t
mean electromotive force:

a i j 52
l 0
2

18S ~W̄•L!d i j 2
1

2
~W̄iL j1W̄jL i !1

3

5
~4q29!

3Lm@« imn~]Û ! jn1« jmn~]Û ! in# D , ~43!

V(eff)5
l 0
2

30S ~4q11!~]Û ! i j L j1
25

6
~W̄3L! D , ~44!
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and the tensor of turbulent magnetic diffusionb i j , the d
effect, and the tensork i jk are determined by Eqs.~10!–~12!
with

b052~522q!/45, d051/9, ~45!

k1528~32q!/45, k254~4q21!/45, ~46!

where we used Eqs.~4!–~8!. It is seen from Eqs.~43! and
~44! that thea effect described by the tensora i j and the
effective drift velocityV(eff) of the mean magnetic field re
quire an inhomogeneity of turbulence~i.e., LÞ0). The k
effect determined by the tensork i jk arises in an anisotropic
turbulence caused by the mean velocity shear. We will sh
in the following section that thed term in the equation for
the mean electromotive force can cause the mean-field m
netic dynamo in a homogeneous nonrotating turbulence w
an imposed mean velocity shear.

VII. THE MEAN-FIELD MAGNETIC DYNAMO IN A
HOMOGENEOUS TURBULENCE WITH A MEAN SHEAR

Consider a homogeneous divergence-free turbulence
a mean velocity shear, e.g.,Ū5(0,Sx,0). In this caseW̄
5(0,0,S), L50, thea effect and the effective drift velocity
V(eff) of the mean magnetic field vanish. The mean magn
field is determined by Eq.~15!, whered5d0l 0

2W̄ describes

the shear-current effect andb i j 5bTd i j 22b0l 0
2(]Û) i j

corresponds to the turbulent magnetic diffusion with
anisotropic part }b0. The tensor k i jk5 l 0

2@k1d i j W̄k

1k2« i jm(]Û)mk# describes a contribution to the electrom
tive force related to the symmetric parts of the gradient t
sor of the mean magnetic field and arises in an anisotro
turbulence caused by the mean velocity shear. Since the
sor k i jk is multiplied by the symmetric tensor (]B̂) jk in the
mean electromotive force, this allows us to rewrite the ten
k i jk in a more simple but not in a symmetric form. For sim
plicity we use the mean magnetic field in the formB̄
5(B̄x(z),B̄y(z),0). Then Eq.~15! reduces to Eqs.~16! and
~17!, where the parametersd0 , b0 , k1, and k2 are deter-
mined by Eqs.~45! and ~46!.

We seek for a solution of Eqs.~16! and ~17! in the form
}exp(gt1iKz). Thus the growth rate of the mean magne
field is given by

g5Sl0KAd02b02k02bTK2, ~47!

wherek05(2k11k2)/45(8q213)/45. It follows from Eq.
~47! that the shear-current effect (}d0) causes the generatio
of the mean magnetic field, whereas the anisotropic (}b0)
and isotropic (}bT) turbulent magnetic diffusions and thek
effect (}k0) reduce the growth rate of the mean magne
field. Note that the maximum growth rate of the mean ma
netic field, gmax5S2l 0

2(d02b02k0)/4bT , is attained atK
5Km5Sl0Ad02b02k0/2bT . Using expressions ford0 ,
b0, andk0 we rewrite the growth rate of the mean magne
field in the form
1-6
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g5
2

3 S 22q

5 D 1/2

Sl0K2bTK2. ~48!

Therefore, the generation of the mean magnetic field is p
sible when the exponentq of the energy spectrum of th
background homogeneous turbulence~without imposed
mean velocity shear! is less than 2. Thus, in the Kolmogoro
background turbulence withq55/3 the mean magnetic fiel
can be generated due to the shear-current effect. The s
cient condition g.0 for the dynamo instability read
LB / l 0.pA5/(t0SA22q), whereLB[2p/K.

The magnetic dynamo instability due to the shear-curr
effect is different from the magnetic instability suggested
Ref. @22#. The latter instability is caused by the negati
turbulent magnetic diffusivity and is determined by Eq.~4.2!
for B̄x in Ref. @22#. This equation is decoupled from that fo
the fieldB̄y , i.e., there is no real coupling between the co
ponents of the mean magnetic fieldB̄x andB̄y . In contrast to
this, the magnetic dynamo instability due to the shear-cur
effect is determined by a system of equations~16! and ~17!

for the componentsB̄x and B̄y . This implies that there is a
coupling between these components of the mean magn
field. In particular, the fieldB̄y generates the fieldB̄x due to
the d term ~shear-current effect!, see the first term in Eq
~16!. This is similar to thea effect. On the other hand, th
field B̄x generates the fieldB̄y due to the pure shear effec
@see the first term in Eq.~17!#, such as the differential rota
tion in aV dynamo. In this sense the instability due to t
shear-current effect is a pure magnetic dynamo instabilit

However, the above mechanism is different from that
aV dynamo. Indeed, the dynamo mechanism due to
shear-current effect acts even in homogeneous small-s
turbulence, while thea effect vanishes for homogeneous tu
bulence. The difference between these magnetic dyn
mechanisms can be seen in the form of the growth rate of
mean magnetic field. Indeed, the generation of the m
magnetic field is caused by a coupling between the sh
current effect@described by the first term in Eq.~16!, which
is proportional to the second-order spatial derivative of
mean magnetic field# and the pure shear effect@described by
the first term in Eq.~17! which is proportional to the mea
magnetic field#. Then the first term in the expression fo
growth rate in Eq.~47! ~which is responsible for the genera
tion of the mean magnetic field due to the shear-current
fect! is proportional to the wave numberK.

On the other hand, theaV dynamo is caused by a cou
pling of the a effect ~the corresponding term in the mea
field equation is proportional to the first-order spatial deriv
tive of the mean magnetic field! and the differential rotation
~the corresponding term is proportional to the mean magn
field!. Then the term in the expression for growth rate of t
instability ~which is responsible for the generation of th
mean magnetic field in theaV dynamo! is proportional
to K1/2.

Note that the properties of the magnetic dynamo cau
by the shear-current effect are also different from that for
V3J effect. In particular, the mean magnetic field can
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generated due to theV3J effect for an arbitrary exponentq
of the energy spectrum of the background homogeneous
bulence~see Ref.@16#!. The V3J effect is caused by the
term d3(“3B̄) in the mean electromotive force. In a slo
rotating (Vt0!1) and homogeneous turbulenced5
2(2/9)l 0

2V ~for details, see Ref.@16#!. Note also that the
V3J effect cannot generate the mean magnetic field with
a differential rotation.

VIII. CONCLUSIONS

In the present paper, we discussed a mechanism of a
eration of a mean magnetic field by a nonrotationg and n
helical homogeneous turbulence with an imposed mean
locity shear. This mechanism is associated with a sh
current effect. We showed that when the exponent of
energy spectrum of the background turbulence~without the
mean velocity shear! is less than 2, a mean magnetic fie
can be generated. We calculated the mean electromo
force for an arbitrary weakly inhomogeneous turbulen
(L l 0!1) with an imposed mean velocity shear. Inhomog
neity of turbulence and mean velocity shear cause thea
effect and the effective drift velocity of the mean magne
field. The shear-current effect was studied using two diff
ent methods: thet approximation~the Orszag third-order
closure procedure! and the stochastic calculus~the path inte-
gral representation of the solution of the induction equati
Feynman-Kac formula, and Cameron-Martin-Girsanov th
rem, see Appendixes A and B!.

The obtained results may be important in astrophys
e.g., in extragalactic clusters and in interstellar clouds. T
extragalactic clusters are nonrotating objects which hav
homogeneous turbulence in the center of a extragalactic c
ter. Sheared motions are created between interacting clus
The observed magnetic fields cannot be explained b
small-scale turbulent magnetic dynamo~see, e.g., Ref.@5#!.
It is plausible to suggest that the shear-current effect
produce a mean magnetic field in the extragalactic clust
The sheared motions can be also formed between interac
interstellar clouds. The latter can result in a generation o
mean magnetic field.
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APPENDIX A: INVESTIGATION OF THE SHEAR-
CURRENT EFFECT USING
STOCHASTIC CALCULUS

In this appendix, we study the shear-current effect us
stochastic calculus for a random velocity field with a fin
correlation time. In order to derive an equation for the me
magnetic field we use an exact solution of the induct
equation~23! in the form of a functional integral for an ar
bitrary velocity field taking into account a small yet finit
magnetic diffusion caused by the electrical conductivity
1-7
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fluid. This magnetic diffusionDm can be described by a ran
dom Brownian motion of a particle. The functional integr
implies an averaging over a random Brownian motion o
particle. The form of the exact solution used in the pres
paper allows us to separate the averaging over both, a
dom Brownian motion of a particle and a random veloc
field. This method yields the solution of the induction equ
tion ~23! with an initial conditionh(t5s,x)5h(s,x) in the
form

hi~ t,x!5M j$Gi j ~ t,s,j!exp~j* •“ !hj~s,x!% ~A1!

~see Appendix B and Ref.@11#!, wherej* 5j2x, Gi j (t,s,j)
is determined by equationdGi j (t,s,j)/ds5NikGk j(t,s,j)
with the initial condition Gi j (t5s)5d i j . Here Ni j
5]v i /]xj , M j$•% denotes the mathematical expectati
over the Wiener paths j5x2*0

t2sv(t2s,j)ds
1(2Dm)1/2w(t2s), and the magnetic diffusionDm is de-
scribed by a Wiener processw(t).

Consider a random velocity field with a finit
constant renewal time. Assume that in the interv
. . . (2t,0#;(0,t#;(t,2t#; . . . the velocity fields are statis
tically independent and have the same statistics. This imp
that the velocity field loses memory at the prescribed insta
t5kt, wherek50,61,62, . . . . This velocity field cannot
be considered as a stationary velocity field for small tim
;t, however, it behaves like a stationary field fort@t.

In Eq. ~A1! we specify instantst5(m11)t ands5mt.
Note that the fieldshj (mt,x) and Gi j „(m11)t,mt,j… are
statistically independent because the fieldhj (mt,x) is deter-
mined in the time interval (2`,mt#, whereas the function
Gi j „(m11)t,mt,j… is defined on the interval„mt,(m
11)t]. Due to a renewal, the velocity field as well as
functionalshj (mt,x) and Gi j „(m11)t,mt,j… in these two
time intervals are statistically independent. Averaging E
~A1! over the random velocity field yields the equation f
the mean magnetic field,

B̄i„~m11!t,x…5M j$^Gi j ~ t,s,j!exp~j* •“ !&%B̄j~mt,x!,
~A2!

where the operator exp(j* •“) is determined by

exp~j* •“ !511j* •“1
1

2!
~j* •“ !21•••1

1

m!
~j* •“ !m

1•••, ~A3!

and the angular bracketŝ•& denote the ensemble avera
over the random velocity field. Note thatu(j* •“)B̄u/uB̄u
; l 0 /LB!1. Thus in the framework of the mean-field a
proach we can neglect in Eqs.~A2! and ~A3! the terms
;O@(j* •“)3B̄#. Now we use the identity

B̄i~ t1t,x!5expS t
]

]t D B̄i~ t,x!, ~A4!

which follows from the Taylor expansion
03630
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f ~ t1t!5 (
m51

` S t
]

]t D
m

f ~ t !5expS t
]

]t D f ~ t !

m!
.

Therefore, Eqs.~A2!–~A4! yield

expS t
]

]t D B̄i~ t,x!5~Ḡi j 1Ḡi j j̄m¹m1Ai jm¹m

1Ci jmn¹m¹n!B̄j[exp~tL̂ !B̄,

~A5!

where Ḡi j 5M j$^Gi j &%5d i j 1Ū i , jt1O@(“Ū)2#, j̄ i

5M j$^j i* &%52Ū it1O@(“Ū)2#, Ū i , j5]Ū i /]xj , Ai jm

5M j$^Gi j jm* &%, Ci jmn5M j$^Gi j jm* jn* &%, and we introduced

the operatorL̂, which allows us to reduce the integral equ
tion ~A2! to a partial differential equation. Indeed, Eq.~A5!,
which is rewritten in the form

expFtS L̂2
]

]t D G B̄5B̄, ~A6!

reduces to

]B̄

]t
5L̂B̄. ~A7!

The Taylor expansion of the function exp(tL̂) reads

exp~tL̂ !5Ê1tL̂1~tL̂ !2/21•••, ~A8!

whereÊ is the unit operator. Thus, Eqs.~A5! and~A8! yield

L̂[Li j 5
1

t
~Ḡi j 2d i j 1Ḡi j j̄m¹m1Ai jm¹m!1Di jmn¹m¹n

1O~¹3!, ~A9!

whereDi jmn5(Ci jmn2AikmAk jn)/2t. Now we consider ho-
mogeneous and nonhelical background turbulence, t
Ai jk50 and the equation for the mean magnetic field is giv
by

]B̄i

]t
5@“3~Ū3B̄!# i1Di jmn¹m¹nB̄j , ~A10!

where

Di jmn5
1

2t
M j$^Gi j jm* jn* &%. ~A11!

For a turbulent flow with an imposed mean velocity gr
dient, the turbulence is anisotropic. Let us determine the
sor Di jmn in this case. Solution of the equationdGi j /ds
5NikGk j with the initial conditionGi j (t5s)5d i j is given
by
1-8
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Gi j ~ t1t,t !5d i j 1E
0

t

Ni j ~ ts ,j!ds

1E
0

t

Nik~ ts ,j!dsE
0

s

Nk j~ ts ,j!ds1•••,

~A12!

which was solved by iterations, wherets5t1t2s. Since
the velocity field is separated into the mean and fluctua
parts:v5Ū1u, the tensorGi j can be presented in the form

Gi j 5gi j 1Gi j
(L) , ~A13!

gi j 5E
0

t]ui~ ts ,j!

]xk
gk j~ ts ,j!ds, ~A14!

Gi j
(L)~Ū!5Ū i ,kE

0

t

gk j~ ts ,j!ds1E
0

t]ui~ ts ,j!

]xk
Gk j

(L)~Ū!ds.

~A15!

Using Eqs.~A12!–~A15! we obtain

Gi j 5gi j 1gikŪk,pE
0

t

gp j~ ts ,j!ds1O„~“Ū !2
….

~A16!

For the derivation of Eq.~A16! we used the identity

~Ê2X̂!215Ê1X̂1X̂X̂1X̂X̂X̂1•••1, ~A17!

whereX̂ is an arbitrary operator. Similarly, the trajectoryj i*
can be written in the form

j i* 5 j̃ i2Ū i ,kE
0

t

j̃k~ ts ,j!ds1O@~“Ū !2#, ~A18!

where j̃ i52*0
tui(ts ,j)ds1(2Dm)1/2wi(t). Using Eqs.

~A16! and ~A18! we determine the tensorDi jmn ,

Di jmn5@^gi j j̃mj̃n&2~Ūm,pdnk1Ūn,pdmk!Ki jkp1Fi jmn#/2t,
~A19!

where Fi jmn5Ūk,p^gikj̃mj̃n*0
tgp jds& and Ki jmn

5^gi j j̃m*0
t j̃nds&. In this section hereafter the angul

brackets denote both averagings: the averaging over a
dom velocity field and the averaging over the Wiener traj
tories. Now we determine the tensor^gi j j̃mj̃n&, which de-
scribes turbulent magnetic diffusion. We take into acco
that in a homogeneous and nonhelical turbulence with
mean shear (Ū i , j50), the mean-field equation reads

]B̄i

]t
52@“3~bT“3B̄!# i52bT« imk«kn j¹m¹nB̄j .

~A20!

In this casebi jk5bT« i jk . Therefore,
03630
g

n-
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t
ut

^gi j j̃mj̃n&522tbT« imk«kn j[2tbT~d i j dmn2d indm j!,
~A21!

where

bT5
1

3E0

`

^up~0,j!up~s,j!&ds, ~A22!

and we used an identity

K E
0

t

ui~m,j!dmE
0

t

uj~s,j!dsL
52tE

0

`

^ui~0,j!uj~s,j!&ds. ~A23!

The integration of Eq.~A21! overt yields the tensorKi jmn :

Ki jmn5t2bT~d i j dmn2d indm j!. ~A24!

Now we construct the tensorFi jmn . The general form of this
tensor reads

Fi jmn52t2bT~C1Ūm, jd in1C2Ū j ,md in1C3Ū i , jdmn

1C4Ū j ,idmn!, ~A25!

where we took into account that the tensorFi jmn in Eq.
~A10! is multiplied by a tensor¹m¹nB̄j which is symmetric
with respect to indices (m,n). Since“•B̄50, the tensor
Fi jmn does not contain the terms with the tensorsd jm and
d jn , and Fi jmn satisfies the conditionFi jmn¹i¹m¹nB̄j50.
The latter equation yieldsC152C3 and C252C4. Equa-
tion ~A25! do not have the term}« ink« jpm(]Û)pk because
we considered a nonhelical turbulence. This is the reason
Eqs.~42! and~A27! does not contain the term}« jkm(]Û)mi
@cf. with the general form of the tensorbi jk determined by
Eq. ~9!#. Therefore, Eqs.~A19!, ~A21!, ~A24!, and ~A25!
yield the tensorDi jmn :

Di jmn5bT$d i j dmn1t@C1~Ūm, jd in2Ū i , jdmn!

1C2~Ū j ,md in2Ū j ,idmn!2~]Û !mnd i j #%. ~A26!

Now we use the identities

~Ūm, jd in2Ū i , jdmn!¹m¹nB̄j5@“3„“3~B̄•“ !Ū…# i ,

~Ū j ,md in2Ū j ,idmn!¹m¹nB̄j5@“3„“3~B̄j“Ū j !…# i ,

~]Û !mn¹m¹nB̄i5~“3Q! i ,

where Qi5« i jp(]Û)pn¹nB̄j . The latter identity is derived
using the following identity:« ims«s jp(]Û)pn5(]Û)mnd i j

2(]Û) indm j . Note that we neglect the second- and high
order spatial derivatives of the mean velocity. We also
glected the cross-effect terms which describe an interac
1-9
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between molecular and turbulent effects. Thus, Eq.~A26!
and the above identities allow us to determine the ten
bi jk :

bi jk5bT« i jk1bTt@~C11C2!« ikm~]Û !m j

1 1
2 ~C22C1!d i j W̄k2« i jm~]Û !mk#. ~A27!

Using Eqs.~4!–~8! and ~A27! we determine the turbulen
coefficients defining the mean electromotive force. They
given by Eqs.~10!–~12! with

b052 1
12 ~C11C211!, d05 1

12 ~C22C1!, ~A28!

k152 1
6 ~C22C1!, k252 1

3 ~C11C221!, ~A29!

wherel 05A3bTt. For simplicity we use the mean magnet
field in the formB̄5„B̄x(z),B̄y(z),0…. Then Eq.~15! reduces
to Eqs.~16! and~17!, where the parametersd0 , b0 , k1, and
k2 are determined by Eqs.~A28! and ~A29!. We seek for
solution of Eqs.~16! and ~17! in the form }exp(gt1iKz).
Thus the growth rate of the mean magnetic field due to
shear-current effect is given by

g'Sl0KAC2 /32bTK2, ~A30!

where we used thats05C2 /3. Therefore, the magnetic dy
namo instability can be excited whenC2.0.

This approach does not allow us to take into account
effect of mean velocity shear on turbulence. The meth
used in this appendix only describes the effect of shear
the cross-helicity tensor. This is one of the reasons that
results obtained by this method are quantitatively differ
from that obtained by thet approximation. However, the
form of the electromotive force and a possibility for th
large-scale magnetic dynamo in a homogeneous turbule
due to the shear-current effect are clearly demonstrated
two different approaches.

APPENDIX B: DERIVATION OF EQ. „A1…

In order to derive Eq.~A1! we use an exact solution o
Eq. ~23! with an initial conditionh(t5s,x)5h(s,x) in the
form of the Feynman-Kac formula:

hi~ t,x!5M j$Gi j „t,s,j~ t,s!…hj„s,j~ t,s!…%, ~B1!

where the Wiener pathsj(t,s)5x2*0
t2sv@ t2s,j(t,s)#ds

1(2Dm)1/2w(t2s). Now we assume that

hi~ t,j!5E exp~ i j•q!hi~s,q!dq. ~B2!

Substituting Eq.~B2! into Eq. ~B1! we obtain

hi~s,x!5E M j$Gi j „t,s,j~ t,s!…exp@ i j* •q#hj~s,q!%

3exp~ iq•x!dq. ~B3!
03630
or

e

e

e
d
n
e
t

ce
by

In Eq. ~B3! we expand the function exp@ij* •q# in Taylor
series atq50, i.e., exp@ij* •q#5(k50

` (1/k!)( i j* •q)k. Us-
ing the identity (iq)kexp@ix•q#5“

kexp@ix•q# and Eq.~B3!
we get

hi~ t,x!5M jH Gi j ~ t,s,j!F (
k50

`

~1/k! !~j* •“ !kG
3E hj~s,q!exp~ iq•x!dqJ . ~B4!

After the inverse Fourier transformation in Eq.~B4! we ob-
tain Eq. ~A1!. Equation~B2! can be formally considered a
an inverse Fourier transformation of the functionhi(t,j).
However,j is the Wiener path which is not a usual spat
variable. Therefore, it is desirable to derive Eq.~A1! by a
more rigorous method as it is done below.

To this end we use an exact solution of the Cauchy pr
lem for Eq. ~23! with an initial condition h(t5s,x)
5h(s,x) in the form

hi~ t,x!5M z$J~ t,s,z!G̃i j ~ t,s,z!hj~s,z~ t,s!!%, ~B5!

where the matrix G̃i j is determined by the equatio
dG̃i j (t,s,z)/ds5NikG̃k j(t,s,z) with the initial condition
G̃i j (t5s)5d i j , and the functionJ(t,s,z) is given by

J~ t,s,z!5expS 2
1

A2Dm
E

0

t2s

v i„t2h,z~ t,h!…dwi~h!

2
1

4Dm
E

0

t2s

v2
„t2h,z~ t,h!…dh D , ~B6!

w(t) is a Wiener process, andM z$•% denotes the mathemat
cal expectation over the pathsz(t,s)5x1(2Dm)1/2@w(t)
2w(s)#. Solution~B5! was first found in Ref.@37#. The first
integral *0

t2sv„t2h,z(t,h)…•dw(h) in Eq. ~B6! is the Ito
stochastic integral~see, e.g., Ref.@38#!. As follows from
Cameron-Martin-Girsanov theorem the transformation fr
Eq. ~B1! to Eq. ~B5! can be considered as a change of va
ablesj→z in the path integral~B1! ~see, e.g., Ref.@39#!.

The difference between the solutions~B1! and ~B5! is as
follows. The functionhj„s,j(t,s)… in Eq. ~B1! explicitly de-
pends on the random velocity fieldv via the Wiener pathj,
while the functionhj„s,z(t,s)… in Eq. ~B5! is independent of
the velocity v. Trajectories in the Feynman-Kac formu
~B1! are determined by both, a random velocity field a
magnetic diffusion. On the other hand, trajectories in E
~B5! are determined only by magnetic diffusion. Due to t
Markovian property of the Wiener process, solution~B5! can
be rewritten in the form

hi~ t,x!5E$Si j ~ t,s,x,X8!hj~s,X8!%

5E Qi j ~ t,s,x,x8!hj~s,x8!dx8, ~B7!

where
1-10
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Qi j ~ t,s,x,x8!5@4pDm~ t2s!#3/2expS 2
~x82x!2

4Dm~ t2s! D
3Si j ~ t,s,x,x8!, ~B8!

Si j (t,s,x,x8)5M m$J(t,s,m)G̃i j (t,s,m)% and M m$•% means
the path integral taken over the set of trajectoriesm which
connect points (t,x) and (s,x8). The mathematical expecta
tion E$•% in Eq. ~B7! denotes the averaging over the set
random pointsX8 which have a Gaussian statistics~see, e.g.,
Ref. @40#!. We used here the following property of the ave
aging over the Wiener processE$M m$•%%5M z$•%. We con-
sidered a random velocity field with a finite renewal tim
Due to a renewal, the velocity field as well as its function
hj (s,x8) andQi j (t,s,x,x8) in the two time intervals are sta
tistically independent. Now we make a change of variab
(x,x8)→(x,x85z1x) in Eq. ~B7!, i.e., Q̃i j (t,s,x,x8)
5Q̃i j (t,s,x,z1x)5Qi j (t,s,x,z). The Fourier transformation
in Eq. ~B7! yields

hi~ t,x!5E E Qi j ~ t,s,x,k!exp~ ik•z!dk

3E hj~s,q!exp@ iq•~z1x!#dqdz.

Sinced(k1q)5(2p)23*exp@i(k1q)•z)]dz, we obtain that

hi~ t,x!5~2p!3E Qi j ~ t,s,x,2q!hj~s,q!exp~ iq•x!dq.

~B9!

In Eq. ~B9! the functionQi j (t,s,x,2q) is given by

Qi j ~ t,s,x,2q!5~2p!23E Qi j ~ t,s,x,z!exp~ iq•z!dz.

~B10!

SubstitutingQ̃i j (t,s,x,x8)5Qi j (t,s,x,z) in Eq. ~B7! and tak-
ing into account thatx85z1x we obtain

hi~ t,x!5E Qi j ~ t,s,x,z!hj~s,z1x!dz. ~B11!

Equation~B10! can be rewritten in the form

~2p!3Qi j ~ t,s,x,2q!exp~ iq•x!

5E Qi j ~ t,s,x,z!exp@ iq•~z1x!#dz. ~B12!

The right hand sides of Eqs.~B11! and~B12! coincide when
h(s,z1x)5eexp@iq•(z1x)#, wheree is a unit vector. Thus,
a particular solution~B11! of Eq. ~23! with the initial condi-
tion h(s,x8)5eexp(iq•x8) coincides in form with integral
~B12!. On the other hand, a solution of Eq.~23! is given
by Eq. ~B5!. Substituting the initial conditionh(s,z)
5eexp(iq•z)5eexp„iq•@x1(2Dm)1/2w#… into Eq. ~B5! we
obtain
03630
f

.
s

s

hi~ t,x!5M z$J~ t,s,z!G̃i j ~ t,s,z!ejexp@ iq•„x1~2Dm!1/2w…#%.
~B13!

Comparing Eqs.~B11!–~B13! we get

Qi j ~ t,s,x,2q!5~2p!23M z$J~ t,s,z!G̃i j ~ t,s,z!

3exp@ i ~2Dm!1/2q•w#%. ~B14!

Now we rewrite Eq.~B14! using Feynman-Kac formula
~B1!. The result is given by

Qi j ~ t,s,x,2q!5~2p!23M j$Gi j „t,s,j~ t,s!…exp@ iq•j* #%,
~B15!

where j* 5j2x. Substituting Eq.~B15! into Eq. ~B9! we
obtain

hi~ t,x!5E M j$Gi j ~ t,s,j!exp@ iq•j* #hj~s,q!%

3exp~ iq•x!dq. ~B16!

The Fourier transformation in Eq.~B16! yields Eq.~A1!. The
above derivation proves that assumption~B2! is correct for a
Wiener pathj.

APPENDIX C: IDENTITY USED FOR DERIVATION
OF EQS. „27… AND „34…

For the derivation of Eqs.~27! and ~34! we used the fol-
lowing identity:

ik iE f i j ~k2 1
2 Q,K2Q!Ūp~Q!exp~ iK•R!dKdQ

52
1

2
Ūp¹i f i j 1

1

2
f i j ¹i Ūp2

i

4
~¹sŪp!S ¹i

] f i j

]ks
D

1
i

4 S ] f i j

]ks
D ~¹s¹i Ūp!. ~C1!

To derive Eq.~C1! we multiply the equation“•u50 @writ-
ten in k space forui(k12Q)] by uj (k2)Ūp(Q)exp(iK•R),
integrate overK and Q, and average over the ensemble
velocity fluctuations. Herek15k1K /2 andk252k1K /2.
This yields

E i S ki1
1

2
Ki2Qi D K ui S k1

1

2
K2QDuj S 2k1

1

2
K D L

3Ūp~Q!exp~ iK•R!dKdQ50. ~C2!

Next, we introduce new variables:k̃15k1K /22Q, k̃25

2k1K /2 and k̃5( k̃12 k̃2)/25k2Q/2, K̃5 k̃11 k̃25K
2Q. This allows us to rewrite Eq.~C2! in the form

E i S ki1
1

2
Ki2Qi D f i j S k2

1

2
Q,K2QD Ūp~Q!

3exp~ iK•R!dKdQ50. ~C3!
1-11
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SinceuQu!uku we use the Taylor expansion

f i j ~k2Q/2,K2Q!. f i j ~k,K2Q!2
1

2

] f i j ~k,K2Q!

]ks
Qs

1O~Q2!. ~C4!

We also use the following identities:
-

-

,

.

t

d,

id

s-

fth

03630
@ f i j ~k,R!Ūp~R!#K5E f i j ~k,K2Q!Ūp~Q!dQ,

¹p@ f i j ~k,R!Ūp~R!#

5E iK p@ f i j ~k,R!Ūp~R!#Kexp~ iK•R!dK .

~C5!

Therefore, Eqs.~C3!–~C5! yield Eq. ~C1!.
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