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Formation of large-scale semiorganized structures in turbulent convection
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A new mean-field theory of turbulent convection is developed by considering only the small-scale part of
spectra as ‘‘turbulence’’ and the large-scale part, as a ‘‘mean flow,’’ which includes both regular and semior-
ganized motions. The developed theory predicts the convective wind instability in a shear-free turbulent
convection. This instability causes formation of large-scale semiorganized fluid motions in the form of cells.
Spatial characteristics of these motions, such as the minimum size of the growing perturbations and the size of
perturbations with the maximum growth rate, are determined. This study predicts also the existence of the
convective shear instability in a sheared turbulent convection. This instability causes formation of large-scale
rolls and generation of convective shear waves which have a nonzero hydrodynamic helicity. Increase of shear
promotes excitation of the convective shear instability. Applications of the obtained results to the atmospheric
turbulent convection and the laboratory experiments on turbulent convection are discussed.
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I. INTRODUCTION

In the last decades it has been recognized that the
high Rayleigh number convective boundary layer~CBL! has
more complex nature than might be reckoned. Besides
fully organized component naturally considered as the m
flow and the chaotic small-scale turbulent fluctuations, o
more type of motion has been discovered, namely, long-li
large-scale structures, which are neither turbulent nor de
ministic ~see, e.g., Refs.@1–14#!. These semiorganized struc
tures considerably enhance the vertical transports and re
them essentially nonlocal in nature. In the atmospheric sh
free convection, the structures represent three-dimensi
Benard-type cells composed of narrow uprising plumes
wide downdraughts. They embrace the entire convec
boundary layer (;2 km in height! and include pronounced
large-scale (;5 km in diameter! convergence flow pattern
close to the surface~see, e.g., Refs.@1,2#, and references
therein!. In sheared convection, the structures repres
CBL-scale rolls stretched along the mean wind. Life times
the semiorganized structures are much larger than the tu
lent time scales. Thus, these structures can be treated as
paratively stable, quasistationary motions, playing the sa
role with respect to small-scale turbulence as the mean fl

In a laboratory turbulent convection several organiz
features of motion, such as plumes, jets, and the large-s
circulation, are known to exist. The experimentally observ
large-scale circulation in the closed box with a heated bot
wall ~the Rayleigh-Benard apparatus! is often called the
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‘‘mean wind’’ ~see, e.g., Refs.@15–22#, and references
therein!. There are several unsolved theoretical questi
concerning these flows, e.g., how do they arise, and what
their characteristics and dynamics.

In spite of a number of studies, the nature of large-sc
semiorganized structures is poorly understood. The Rayle
numbers Ra based on the molecular transport coefficients
very large~of the order of 101121013). This corresponds to
fully developed turbulent convection in atmospheric a
laboratory flows. At the same time the effective Raylei
numbers Ra(eff) based on the turbulent transport coefficien
~the turbulent viscosity and turbulent diffusivity! are not
high, e.g., Ra(eff);Ra/(RePe), where Re and Pe are the R
nolds and Peclet numbers, respectively. They are less
the critical Rayleigh numbers required for the excitation
large-scale convection. Hence the emergence of large-s
convective flows~which are observed in the atmospheric a
laboratory flows! seems puzzling.

The main goal of this study is to suggest a mechanism
excitation of large-scale circulations~large-scale convec
tion!. In particular, in the present paper we develop a n
mean-field theory of turbulent convection by consideri
only the small-scale part of spectra as turbulence and
large-scale part, as a mean flow, which includes both, reg
and semiorganized motions. We found a convective w
instability in a shear-free turbulent convection which resu
in the formation of large-scale semiorganized fluid motio
in the form of cells~convective wind!. We determined the
spatial characteristics of these motions, such as the minim
size of the growing perturbations and the size of pertur
tions with the maximum growth rate. In addition, we studi
a convective shear instability in a sheared turbulent conv
tion which causes formation of large-scale rolls and a g
eration of convective shear waves. We analyzed the
evance of the obtained results to the turbulent convectio
the atmosphere and the laboratory experiments.

Traditional theoretical models of the boundary-layer tu
©2002 The American Physical Society05-1
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bulence, such as the Kolmogorov-type closures and sim
ity theories~e.g., the Monin-Obukhov surface-layer simila
ity theory! imply two assumptions:~i! Turbulent flows can be
decomposed into two components of principally different n
ture: fully organized~mean flow! and fully turbulent flows.
~ii ! Turbulent fluxes are uniquely determined by the lo
mean gradients. For example, the turbulent flux of entrop
given by

^su&52kT“S̄ ~1!

~see, e.g., Ref.@23#!, wherekT is the turbulent thermal con
ductivity, S̄ is the mean entropy,u ands are fluctuations of
the velocity and entropy.

However, the mean-velocity gradients can affect the
bulent flux of entropy. The reason is that additional, ess
tially nonisotropic velocity fluctuations can be generated
tangling of the mean-velocity gradients with th
Kolmogorov-type turbulence. The source of energy of t
‘‘tangling turbulence’’ is the energy of the Kolmogorov tu
bulence.

In the present paper we showed that the tangling tur
lence can cause formation of semiorganized structures du
excitation of large-scale instability. The tangling turbulen
was introduced by Wheelon@24# and Batcheloret al. @25# for
a passive scalar and by Golitsyn@26# and Moffatt@27# for a
passive vector~magnetic field!. Anisotropic fluctuations of a
passive scalar~e.g., the number density of particles or tem
perature! are generated by tangling of gradients of the me
passive scalar field with random velocity field. Similarly, a
isotropic magnetic fluctuations are excited by tangling of
mean magnetic field with the velocity fluctuations. The Re
nolds stresses in a turbulent flow with a mean-velocity sh
is another example of a tangling turbulence. Indeed, they
strongly anisotropic in the presence of shear and hav
steeper spectrum (}k27/3) than a Kolmogorov turbulence
~see, e.g., Refs.@28–31#!. The anisotropic velocity fluctua
tions of tangling turbulence were studied first by Luml
@28#.

This paper is organized as follows. In Sec. II we describ
the governing equations and the method of the derivation
the turbulent flux of entropy and Reynolds stresses. In S
III using the derived mean-field equations we studied
large-scale instability in a shear-free turbulent convect
which causes formation of semiorganized fluid motions
the form of cells. In Sec. IV the instability in a sheare
turbulent convection is investigated and the formation
large-scale semiorganized rolls is described. Application
the obtained results for the analysis of observed semio
nized structures in the atmospheric turbulent convection
discussed in Sec. V.

II. THE GOVERNING EQUATIONS AND THE METHOD
OF THE DERIVATIONS

Our goal is to study the tangling turbulence, in particul
an effect of sheared large-scale motions on a developed
bulent stratified convection. To this end we consider a fu
developed turbulent convection in a stratified nonrotat
06630
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fluid with large Rayleigh and Reynolds numbers. The go
erning equations read

S ]

]t
1v•“ D v52“S P

r0
D2gS1fn~v!, ~2!

S ]

]t
1v•“ DS52v•Nb2

1

T0
“•Fk~S!, ~3!

wherev is the fluid velocity with“•v5L•v, g is the accel-
eration of gravity,r0fn(v) is the viscous force,Fk(S) is the
heat flux that is associated with the molecular heat cond
tivity k, L52r0

21
“r0 is the density stratification scale, an

Nb5(gP0)21
“P02r0

21
“r0. The variables with the sub

script ‘‘0’’ correspond to the hydrostatic equilibrium“P0
5r0g, and T0 is the equilibrium fluid temperature,S
5P/gP02r/r0 are the deviations of the entropy from th
hydrostatic equilibrium value,P andr are the deviations of
the fluid pressure and density from the hydrostatic equi
rium. Note that the variableS5Q/Q0, whereQ is the po-
tential temperature which is used in atmospheric phys
The Brunt-Väisälä frequencyVb is determined by the equa
tion Vb

252g•Nb . In order to derive Eq.~2! we used an
identity: 2“P1gr52r0@“(P/r0)1gS2PNb /r0#,
where we assumed thatuPNb /r0u!ugSu and uPNb /r0u
!u“(P/r0)u. This assumption corresponds to a nearly ise
tropic basic reference state whenNb is very small. For the
derivation of this identity we also used the equation for t
hydrostatic equilibrium. Equations~2! and ~3! are written in
the Boussinesq approximation for“•vÞ0.

A. Mean-field approach

We use a mean-field approach whereby the velocity, p
sure, and entropy are separated into the mean and fluctu
parts: v5Ū1u, P5 P̄1p, and S5S̄1s, the fluctuating
parts have zero mean values,Ū5^v&, P̄5^P& and S̄5^S&.
Averaging Eqs.~2! and ~3! over an ensemble of fluctuation
we obtain the mean-field equations

S ]

]t
1Ū•“ D Ū i52¹i S P̄

r0
D 1~L j2¹j !^uiuj&2gS̄1 f̄n~Ū!,

~4!

S ]

]t
1Ū•“ D S̄52Ū•Nb1~L i2¹i !^s ui&2

1

T0
“•F̄k~Ū,S̄!,

~5!

where r0 f̄n(Ū) is the mean molecular viscous forc
F̄k(Ū,S̄) is the mean heat flux that is associated with t
molecular thermal conductivity. In order to derive a clos
system of the mean-field equations we have to determine
mean-field dependencies of the Reynolds stressesf i j (Ū,S̄)
5^ui(t,x)uj (t,x)& and the flux of entropy F i(Ū,S̄)
5^s(t,x)ui(t,x)&. To this end we used equations for th
fluctuationsu(t,r ) and s(t,r ) which are obtained by sub
tracting Eqs.~4! and ~5! for the mean fields from the corre
sponding Eqs.~2! and ~3! for the total fields,
5-2
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]u

]t
52~Ū•“ !u2~u•“ !Ū2“S p

r0
D2gs1UN , ~6!

]s

]t
52u•~Nb1“S̄!2~Ū•“ !s1SN , ~7!

whereUN5^(u•“)u&2(u•“)u1fn(u) and SN5^(u•“)s&
2(u•“)s2(1/T0)“•Fk(u,s) are the nonlinear terms whic
include the molecular dissipative terms.

B. Method of derivations

By means of Eqs.~6! and ~7! we determined the depen
dencies of the second momentsf i j (Ū,S̄) andF i(Ū,S̄) on the
mean fieldsŪ and S̄. The procedure of the derivation i
outlined in the following~for details see Appendix A!.

~a! Using Eqs.~6! and ~7! we derived equations for th
following second moments:

f i j ~k!5L̂~ui ,uj !, F i~k!5L̂~s,ui !, ~8!

F~k!5L̂~s,v!, G~k!5L̂~v,v!, ~9!

H~k!5L̂~s,s!, ~10!

where L̂(a,b)5^a(k)b(2k)&, v5(“3u)z , the accelera-
tion of gravity g is directed opposite to thez axis. Here we
used a two-scale approach. This implies that we assumed
there exists a separation of scales, i.e., the maximum sca
turbulent motionsl 0 is much smaller than the characteris
scale of inhomogeneities of the mean fields. Our final res
showed that this assumption is indeed valid. The equat
for the second moments~8!–~10! are given by Eqs.~A15!,
~A16!, and~A21!–~A23! in Appendix A. In the derivation we
assumed that the inverse density stratification scaleL2

!k2.
~b! The derived equations for the second moments con

the third moments, and a problem of closing the equati
for the higher moments arises. Various approximate meth
have been proposed for the solution of problems of this t
~see, e.g.,@23,32,33#!. The simplest procedure is thet ap-
proximation which was widely used for study of differe
problems of turbulent transport~see, e.g.,@32,34–36#!. One
of the simplest procedures that allows us to express the t
momentsf i j

N , FN, . . . , HN in Eqs.~A15!, ~A16!, and~A23!
in terms of the second moments, reads

AN~k!2AN
(0)~k!52

A~k!2A(0)~k!

t~k!
, ~11!

where the superscript (0) corresponds to the background
bulent convection~i.e., a turbulent convection with¹i Ū j
50), and t(k) is the characteristic relaxation time of th
statistical moments. Note that we appliedt approximation
~11! only to study the deviations from the background turb
lent convection which are caused by the spatial derivative
the mean velocity. The background turbulent convection
assumed to be known.
06630
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Thet approximation is in general similar to Eddy damp
quasinormal Markowian~EDQNM! approximation. How-
ever, there is a principle difference between these two
proaches~see Refs.@32,33#!. The EDQNM closures do no
relax to the equilibrium, and this procedure does not desc
properly the motions in the equilibrium state. Within th
EDQNM theory, there is no dynamically determined rela
ation time, and no slightly perturbed steady state can be
proached@32#. In the t approximation, the relaxation time
for small departures from equilibrium is determined by t
random motions in the equilibrium state, but not by the d
parture from equilibrium@32#. Analysis performed in Ref.
@32# showed that thet approximation describes the relax
ation to the equilibrium state~the background turbulent con
vection! more accurately than the EDQNM approach.

~c! We assumed that the characteristic times of variat
of the second momentsf i j (k), F i(k), . . . , H(k) are sub-
stantially larger than the correlation timet(k) for all turbu-
lence scales. This allowed us to determine a stationary s
tion for the second momentsf i j (k), F i(k), . . . , H(k).

~d! For the integration ink space of the second momen
f i j (k), F i(k), . . . , H(k) we have to specify a model for th
background turbulent convection. Here we used the follo
ing model of the background turbulent convection which
discussed in more details in Appendix B:

f i j
(0)~k!5 f * @Pi j ~k!1«Pi j

(')~k'!#W̃~k!, ~12!

F i
(0)~k!5k'

22@k2Fz
(0)~k!ej Pi j ~k!1 iF (0)~k!~e3k! i #,

~13!

Fz
(0)~k!5Fz* F2a23~a21!S k'

k D 2GW̃~k!, ~14!

F (0)~k!526i f (0)~k!@F* •~e3k!#, ~15!

G(0)~k!5~11«! f * f (0)~k!k2, ~16!

H (0)~k!52H* W̃~k!, ~17!

where W̃(k)5W(k)/8pk2, f (0)(k)5(k' /k)2W̃(k), «
5(2/3)@^u'

2 &/^uz
2&22# is the degree of anisotropy of the tu

bulent velocity fieldu5u'1uze, a is the degree of anisot
ropy of the turbulent flux of entropy~see below and Appen
dix B!, Pi j (k)5d i j 2ki j , ki j 5kikj /k2, k5k'1kze,
kz5k•e, Pi j

(')(k')5d i j 2ki j
'2ei j , ki j

'5(k') i(k') j /k'
2 , ei j

5eiej , e is the unit vector directed along thez axis. Here
t(k)52t0t̄(k), W(k)52dt̄(k)/dk, t̄(k)5(k/k0)12q, 1
,q,3 is the exponent of the kinetic energy spectrumq
55/3 for Kolmogorov spectrum!, k051/l 0, and l 0 is the
maximum scale of turbulent motions,t05 l 0 /u0 and u0 is
the characteristic turbulent velocity in the scalel 0. Motion in
the background turbulent convection is assumed to be n
helical. In Eqs.~12! and ~13! we neglected small term
;O(L f * ;“ f * ) and ;O(LF* ;“F* ), respectively. Note
that f i j

(0)(k)ei j 5 f * f (0)(k). Now we calculate f i j
(0)

[* f i j
(0)(k)dk using Eq.~12!,
5-3
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f i j
(0)5 f * F1

3
d i j 1

«

4
~d i j 2ei j !G . ~18!

Note thatF(0)[*F(0)(k)dk5F* . The parametera can be
presented in the form

a5
11j~q11!/~q21!

11j/3
, ~19!

j5~ l' / l z!
q2121, ~20!

where l' and l z are the horizontal and vertical scales
which the correlation functionFz

(0)(r )5^s(x)u(x1r )& tends
to zero ~see Appendix B!. The parameterj describes the
degree of thermal anisotropy. In particular, whenl'5 l z the
parameterj50 and a51. For l'! l z the parameterj5
21 and a523/(q21). The maximum valuejmax of the
parameterj is given byjmax5q21 for a53. Thus, fora
,1 the thermal structures have the form of column or th
mal jets (l', l z), and for a.1 there exist the ‘‘pancake’
thermal structures (l'. l z) in the background turbulent con
vection. For statistically stationary small-scale turbulence
degree of anisotropy of turbulent velocity field varies in t
range

2minH 4~q13!

5~q11!
;
2~192q!

25
;
4

3J ,«,`. ~21!

The negative~positive! degree of anisotropy« of a turbulent
velocity field corresponds to that the vertical size of turbul
eddies in the background turbulent convection is lar
~smaller! than the horizontal size.

~e! In order to determine valuesf * , F* , andH* in the
background turbulent convection we used balance equat
~A5!–~A7! for the second moments~see Appendix A!.

C. Turbulent flux of entropy

The procedure described in this section allows us to
termine the Reynolds stresses and turbulent flux of entr
which are given by Eqs.~A33! and ~A34! in Appendix A,
where we considered the case“•Ū50. In particular, the
formula for turbulent flux of entropy reads

F2F* 5@25a~“•Ū'!Fi* 1~a13/2!~v̄3Fi* !

13~v̄i3F* !#
t0~q11!

15
1~“3T!1~E•“ !Ū,

~22!

where v̄5(“3Ū)z , Fi* 5Fz* e, v̄i5v̄e, T5(2/5)t0(q

22)@F* •(e3Ū)# and E5(1/5)t0$@22q22a(q
11)/3#Fi* 23F* %. It is shown below that the first and th
second terms in Eq.~22! are responsible for the large-sca
convective wind instability in a shear-free turbulent conve
tion ~see Sec. IV!, while the third term in the turbulent flux
of entropy ~22! causes the convective shear instability~see
Sec. V!.
06630
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The turbulent flux of entropy can be obtained even fro
simple symmetry reasoning. Indeed, this flux can be p
sented as a sum of two terms:^sv i&5F i* 1b i jk¹j Ūk , where
F* determines the contribution of the Kolmogorov turb
lence and it is independent of¹i Ū j , whereas the second term
is proportional to¹i Ū j and describes the contribution of th
tangling turbulence. Hereb i jk is an arbitrary true tensor an
Ū is the mean velocity. Using the identity¹j Ū i5(dŪ) i j

2(1/2)« i jkv̄k , the turbulent flux of entropy becomes

^sui&5F i* 1h i j v̄ j1~v̄3d! i1m i jk~dŪ! jk , ~23!

where (dŪ) i j 5(¹i Ū j1¹j Ū i)/2, v̄5“3Ū is the mean vor-
ticity, and« i jk is the fully antisymmetric Levi-Civita tensor
In Eq. ~23!, h i j is a symmetric pseudotensor,d is a true
vector, m i jk is a true tensor symmetric in the last two in
dexes,F[^su& and F* are true vectors. The tensorsh i j ,
m i jk and the vectord can be constructed using two vector
F* and the vertical unit vectore. For example,h i j 50, d
5A1F* 1A2Fz* e, and m i jk5A3Fz* ei jk1A4F i* ejk , where
Ak are the unknown coefficients andei jk5eiejek . This
yields the following expression for the turbulent flux of e
tropy in a divergence-free mean-velocity field:

F5F* 2~A31A4!~“•Ū'!Fi* 1~A11A2!~v̄3Fi* !

1A1~v̄i3F* !2A4~“•Ū'!F'
* ], ~24!

whereŪ5Ū'1Ūze, Fi* 5Fz* e andv̄i5v̄e. Equations~22!
and ~24! coincide if one setsA15t0(q11)/5, A25t0(q
11)(a23/2)/15, A35t0a(q11)/3, andA450. Note that
F* 52kT“S̄2t0Fz* @dŪ(0)(z)/dz#, Ū(0)(z) is the imposed
horizontal large-scale flow velocity~e.g., a wind velocity!.

III. CONVECTIVE WIND INSTABILITY IN A
SHEAR-FREE TURBULENT CONVECTION

In this section we studied the mean-field dynamics fo
shear-free turbulent convection. We showed that under
tain conditions a large-scale instability is excited, whi
causes the formation of large-scale semiorganized struct
in a turbulent convection.

The mean-field dynamics is determined by Eqs.~4! and
~5!. To study the linear stage of an instability we deriv
linearized equations for the small perturbations from
equilibrium, Ūz

(1)5Ūz2Ūz
(eq) , v̄ (1)5v̄2v̄ (eq), and S̄(1)

5S̄2S̄(eq),

D
]Ūz

(1)

]t
5

]

]z
~¹i¹j f i j

(1)!2D~ei¹j f i j
(1)!1gD'S̄(1), ~25!

]v̄ (1)

]t
52~e3“ ! iF¹j f i j

(1)1
]Ū i

(eq)

]z
Ūz

(1)G , ~26!
5-4
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]S̄(1)

]t
52~“•F(1)!2S Nb1

]S̄(eq)

]z
D Ūz

(1) , ~27!

wheref i j
(1)5 f i j 2 f i j

(0) and the Reynolds stressesf i j are given
by Eqs. ~A33! in Appendix A, D'5D2]2/]z2, Nb5Nbe
and

“•F(1)52~t0 /30!~q11!$~F* •e!@10aD'2~8a

23!D#Ūz
(1)16@~F* 3e!•“#v̄ (1)%2k i j ¹i¹j S̄

(1),

~28!

k i j 5t0d* @ f i j
(0)1~1/2!gt0d* ~42g!~eiF j* 1ejF i* !#.

~29!

Equation~29! follows from Eqs.~A6! and ~A7!.

A. The growth rate of convective wind instability

Let us consider a shear-free turbulent convection (¹i Ū j
(0)

50) with a given vertical flux of entropyFz
(eq)e. We also

consider an isentropic basic reference state, i.e., we ne
terms which are proportional to (Nb1]S̄(eq)/]z)Ūz

(1) in Eq.
~27!. We seek for a solution of Eqs.~25!–~27! in the form
}exp(ginstt1 iK•R), whereK is the wave vector of smal
perturbations andg inst is the growth rate of the instability
Thus, the growth rate of the instability is given by

g inst5nTK2A@A114B/A221#/2, ~30!

where

A5B11B2 , B5b X~c72c8X!2B1B2 , ~31!

B15c11c6X2c3X2, B25c42c5X, c15(q13)/5, c3
5«(q13)/4, c45d* (213s), c553d* (s2«/2), c65«(q
15)/4, c75m(8a23)/10, c85ma, with s5a* (42g)(1
1«/2), m56a* (q11)(11«/2)/d* , b5( l 0K)22, X
5sin2u, a* 52d* Fz

(eq)gt0 / f * , andu is the angle betweene
and the wave vectorK of small perturbations. Here we use
that in equilibriumFz

(eq)5Fz* . Whenb@1 the growth rate
of the instability is given by

g inst}nTK2AmbusinuuFa2
3

8
2

5a

4
sin2uG1/2

}Ku0 .

~32!

Thus for largeb the growth rate of the instability is propor
tional to the wave numberK and the instability occurs whe
a(5 cos2u21).3/2. This yields two ranges for the instabi
ity,

3

2~5 cos2u21!
,a,3, ~33!

2
3

q21
,a,2

3

2~125 cos2u!
, ~34!
06630
ct

where we took into account that the parametera varies in the
interval23/(q21),a,3 ~see Appendix B!. The first range
for the instability in Eq.~33! is for the angles 3/10<cos2u
<1 ~for q55/3, the aspect ratio 0,Lz /L',1.53), and the
second range~34! for the instability corresponds to th
angles 0<cos2u,(32q)/10 ~the aspect ratio 2.55,Lz /L'

,`), where Lz /L'[K' /Kz5tanu. The conditions~33!
and ~34! correspond to“•F(1),0.

Figure 1 demonstrates the range of parametersLz /L' and
L/ l 0 where the instability is excited, for different values
the parametera ~from 24.5 to 3) and different values of th
parameter«521; 0; 5. HereL[1/ALz

221L'
22 and we as-

sumed thata* 51. The threshold of the instabilityLcr de-
pends on the parameter«. For example, fora53 the thresh-
old of the instabilityLcr varies from 3l 0 to 7l 0 ~when «
changes from21 to 5). The negative~positive! degree of

FIG. 1. The range of parameters (Lz /L' ;L/ l 0) for which the
convective wind instability occurs, for different values of the p
rametera: ~from 24.5 to 3! and for different values of the param
eter«: ~a! «55; ~b! «50; ~c! «521.
5-5
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anisotropy« of turbulent velocity field corresponds to th
the vertical size of turbulent eddies in the background tur
lent convection is larger~smaller! than the horizontal size
The reason for the increase of the range of instability w
the decrease of the degree of anisotropy« is that the rate of
dissipation of the kinetic energy of the mean-velocity fie
decreases with decrease of« and it causes decrease of th
threshold of the instability. The instability does not occ
when 1.53,Lz /L',2.55 for all«.

Figure 2 shows the growth rate of the instability as fun
tion of the parameterL/ l 0 @Fig. 2~a!# and of the paramete
Lz /L' @Fig. 2~b!# for «50 anda52~the first range of the
instability!. This range of the instability corresponds to t
pancake thermal structures of the background turbulent c
vection (l z / l''2/3 for a52). The maximum of the growth
rate of the instability (gmax'0.045t0

21) reaches at the scal
of perturbationsLm'9.4l 0 ~for Lz /L''0.76). In this case
the threshold of the instabilityLcr'4.2l 0.

Figure 3 demonstrates the growth rate for the sec
range of the instability (a523). Note that this range of the
instability corresponds to the thermal structures of the ba
ground turbulent convection in the form of columns (l z / l'
'2 for a523). In contrast to the first range of the inst
bility, the growth rate increases withLz /L' in the whole

FIG. 2. The growth rate of the convective wind instability
functions of ~a! L/ l 0 ~for different values of parameterLz /L'

50.3;1;1.23); and~b! Lz /L' ~for different values of paramete
L/ l 054.2;4.6;9.6;20) for«50 anda52.
06630
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second range of the instability@see Fig. 3~b!#.

B. Mechanism of the convective wind instability

The convective wind instability results in formation o
large-scale semiorganized structures in the form of c
~convective wind! in turbulent convection. The mechanis
of the convective wind instability, associated with the fir
term F}2t0a(“•Ū')Fi* in the expression for the turbu
lent flux of entropy@see Eq.~22!#, in the shear-free turbulen
convection ata.0 is as follows. Perturbations of the vert
cal velocityŪz with ]Ūz /]z.0 have negative divergence o
the horizontal velocity, i.e., divŪ',0 ~provided that divŪ
'0). This results in the vertical turbulent flux of entrop
F̃z}2div Ū' , and it causes an increase of the mean entr
(S̄}b21/2ŪzF* /u0

2) @see Eqs.~27!, ~28!, and~32!#.
On the other hand, the increase of the mean entropy

creases the buoyancy force}gS̄ and results in the increas
of the vertical velocityŪz}t0b1/2gS̄ and excitation of the
large-scale instability@see Eqs.~25! and ~32!#. Similar phe-
nomenon occurs in the regions with]Ūz /]z,0 whereby
div Ū'.0. This causes a downward flux of the entropy a

FIG. 3. The growth rate of the convective wind instability
functions of ~a! L/ l 0 ~for different values of parameterLz /L'

53.5;4;5); and~b! Lz /L' ~for different values of parameterL/ l 0

56;10;20;40); for«55 anda523.
5-6
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the decrease of the mean entropy. The latter enhances
downward flow and results in the instability which caus
formation of a large-scale semiorganized convective w
structure. Thus, nonzero divŪ' causes redistribution of th
vertical turbulent flux of entropy and formation of region
with large vertical fluxes of entropy~see Fig. 4!. This results
in a formation of a large-scale circulation of the veloc
field. This mechanism determines the first range for the
stability.

The large-scale circulation of the velocity field cause
nonzero mean vorticityv̄, and the second term@proportional
to (a13/2)(v̄3Fi* )] in the turbulent flux of entropy~22! is
responsible for the formation of a horizontal turbulent flux
the entropy. This causes a decrease of the growth rate o
convective wind instability~for a.0), because it decrease
the mean entropyS̄ in the regions with]Ūz /]z.0. The net
effect is determined by a competition between these eff
which are described by the first and second terms in
turbulent flux of entropy~22!. The latter determines a lowe
positive limit amin53/8 of the parametera.

Whena,23/2 the signs of the first and second terms
expression~22! for the turbulent flux of entropy change
Thus, another mechanism of the convective wind instabi
is associated with the second term in expression~22! for the
turbulent flux of entropy whena,23/2. This term de-
scribes the horizontal flux of the mean entropyFy}t0(a
13/2)(v̄3Fi* ). The latter results in the increase~decrease!
of the mean entropy in the regions with upward~downward!
fluid flows ~see Fig. 5!. On the other hand, the increase of t

FIG. 4. The effect of a nonzero divŪ' which causes a redistri
bution of the vertical turbulent flux of the entropy and results in
formation of a large-scale circulation of the velocity field. Flu

flow with div Ū',0 ~a! produces regions with vertical fluxes o
entropy and vertical fluid flow~b! in these regions.
06630
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mean entropy results in the increase of the buoyancy fo
the mean vertical velocityŪz and the mean vorticityv̄. The
latter amplifies the horizontal turbulent flux of entropyFy
and causes the large-scale convective wind instability. T
mechanism determines the second range for the conve
wind instability. The first term in the turbulent flux of en
tropy at a,0 causes a decrease of the growth rate of
instability because, whena,0, it implies a downward tur-
bulent flux of entropy in the upward flow. This decreas
both, the mean entropy and the buoyancy force. Note t
whena,23/2, the thermal structure of the background tu
bulence has the form of a thermal column or jets:l z / l'
.3.34. Even fora,0, the ratiol z / l'.1.54.

IV. CONVECTIVE SHEAR INSTABILITY

Let us consider turbulent convection with a linear she
Ū(0)5(l/t0)zey and a nonzero vertical flux of entropyF
5Fz

(eq)e, wherel is dimensionless parameter which chara
terizes the shear. We also consider an isentropic basic r
ence state, i.e., we neglected a term which is proportiona
(Nb1]S̄(eq)/]z)Ūz

(1) in Eq. ~27!. We seek for a solution of

Eqs. ~25!–~27! in the form Ū(1)5V̄exp(ginstt)cos(Vt
1K•R). Here, for simplicity, we study the caseKy50.

A. The growth rate of convective shear instability

Using a procedure similar to that employed for the ana
sis of the convective wind instability we found that th
growth rate of the convective shear instability is determin
by a cubic equation

~ g̃1B3!~ g̃21Ag̃2B!18b2g0
350, ~35!

where g̃5(g inst1 iV)/nTK2, g05(1/2)c9
1/3(lX)2/3, c9

518mb* /5, b* 52Fy
(eq)(11«/2)/(lFz

(eq)), and B35c1

1c2X, c25«(q11)/4. Thegrowth rate of the instability for
b@1 is given by

g inst.nTK2S b2/3g01b1/3
C

12g0
D , ~36!

FIG. 5. The effect of a nonzerov̄3Fi* which induces the hori-
zontal flux of the mean entropyFy and causes increase~decrease!
the mean entropy in the regions with upward~downward! fluid flow
whena,23/2.
5-7



-

dr

t

o
at

8

-
iv
io

-

ot
e

ds

il-

ot
abil-
y

aves

ELPERIN et al. PHYSICAL REVIEW E 66, 066305 ~2002!
whereC5X(c72c8X). The instability results in the genera
tion of the convective shear waves with the frequency

V.A3nTK2S b2/3g02b1/3
C

12g0
D . ~37!

The flow in the convective shear wave has a nonzero hy
dynamic helicity

x[V̄•~“3V̄!52
2lVKxV̄

2

t0~V21g inst
2 !

. ~38!

Therefore, forl.0 the mode withKx.0 has a negative
helicity and the mode withKx,0 has a positive helicity.

Figure 6 shows the range of parametersLz /L' and L/ l 0
where the convective shear instability occurs, fora52, «
50 and for different values of the shearl50.05;0.1;0.15.
There are two ranges for the instability. However, even
small shear causes an overlapping of the two ranges for
instability and the increase of shear (l) promotes the con-
vective shear instability.

Figures 7 and 8 demonstrate the growth rates of the c
vective shear instability and the frequencies of the gener
convective shear waves for the first (a52) and second (a
523) ranges of the instability. The curves in Figs. 6–
have a pointL* whereby the first derivativedg inst/dK has a
singularity. At this point there is a bifurcation which is illus
trated in Figs. 7 and 8. The growth rate of the convect
shear instability is determined by cubic algebraic equat
~35!. Before the bifurcation point (L,L* ), the cubic equa-
tion has three real roots~which corresponds to aperiodic in
stability!. After the bifurcation point (L.L* ), the cubic
equation has one real and two complex conjugate ro
When L.L* the convective shear waves are generat
When the parameterLz /L' increases, the valueL* de-
creases. WhenLz.L' , the bifurcation pointL* ,Lcr . For a
given parameterL/ l 0 there are the lower and upper boun

FIG. 6. The range of parameters (Lz /L' ;L/ l 0) for which the
convective shear instability occurs, fora52, «50, anda523,
«55 for different values of the shearl50.05;0.1;0.15.
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for the parameterLz /L' when the convective shear instab
ity occurs. For large enough parameterL5Lu the upper limit
of the range of the instability does not exist, e.g., forl
50.05 the parameterLu547l 0 and for l50.15 the param-
eterLu513l 0.

Note that whenL,L* the convective shear waves are n
generated and the properties of the convective shear inst
ity are similar to that of the convective wind instabilit
@compare Fig. 2~b! and the curve forL/ l 056 in Fig. 8~c!#.

FIG. 7. The growth rates of the convective shear instability~a!
and~c! and the frequencies of the generated convective shear w
~b! and ~d! for the first (a52) range of the instability and for«
50. Corresponding dependencies on the parameterL/ l 0 are given
for different Lz /L' and vice versa.
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FORMATION OF LARGE-SCALE SEMIORGANIZED . . . PHYSICAL REVIEW E66, 066305 ~2002!
However, forL.L* these two instabilities are totally differ
ent. The properties of the convective shear instability in
first and in the second ranges of the instability are differe
In particular, in the second range of the convective sh
instability the growth rate monotonically increases, and
frequency of the generated convective shear waves decre
with the parameterLz /L' .

FIG. 8. The growth rates of the convective shear instability~a!
and~c! and the frequencies of the generated convective shear w
~b! and~d! for the second (a523) range of the instability and fo
«50. Corresponding dependencies on the parameterL/ l 0 are given
for different Lz /L' and vice versa.
06630
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B. Mechanism of convective shear instability

The mechanism of the convective shear instability ass
ated with the last term in expression~22! for the turbulent

flux of entropy@F}t0(v̄i3F* )# is as follows. The vortic-

ity perturbationsv̄[(“3Ū)z generate perturbations of en

tropy: S̄}b21/6(t0 /u0)Fy* l22/3exp(ip/6)v̄. Indeed, con-
sider two vortices~say, ‘‘a’’ and ‘‘ b’’ in Fig. 9! with the

opposite directions of the vorticityv̄i . The turbulent flux of
entropy is directed towards the boundary between the vo
ces. The latter increases the mean entropy between the
tices (a andb).

Similarly, the mean entropy between the vorticies ‘‘b’’
and ‘‘c’’ decreases~see Fig. 9!. Such redistribution of the
mean entropy causes increase~decrease! of the
buoyancy force and formation of upward~downward!

flows between the vorticesa and b (b and c): Ūz

}b1/3l22/3gt0exp(2ip/3)S̄. Finally, the vertical flows gen-

erate vorticity v̄}2b21/6l1/3exp(ip/6)Ūz/l0, etc. This re-
sults in the excitation of the instability with the growth ra
g inst}K2/3 and the generation of the convective shear wa
with the frequencyV}K2/3. For perturbations withKx50
the convective shear instability does not occur. However,
these perturbations withKx50 the convective wind instabil-
ity can be excited~see Sec. III!, and it is not accompanied b
the generation of the convective shear waves. We consid
here a linear shear for simplicity. The equilibrium is al

possible for a quadratic shear, i.e., whenŪ(0)5l̃z2ey .

V. DISCUSSION

The convective wind theory of turbulent sheared conv
tion is proposed. The developed theory predicts the conv
tive wind instability in a shear-free turbulent convectio
This instability causes the formation of large-scale semior
nized fluid motions~convective wind! in the form of cells.
Spatial characteristics of these motions, such as the m
mum size of the growing perturbations and the size of p
turbations with the maximum growth rate, are determined

es

FIG. 9. The effect of a nonzerov̄i3F* which causes a redis
tribution of the horizontal turbulent flux of the entropy. For tw

vortices (a andb) with opposite directions of the vorticityv̄i , the
turbulent flux of entropy is directed towards the boundary betw
the vortices. The latter increases the mean entropy between
vortices (a andb). Similarly, the mean entropy between the vor
ciesb andc decreases.
5-9
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ELPERIN et al. PHYSICAL REVIEW E 66, 066305 ~2002!
This study predicts also the existence of the convec
shear instability in the sheared turbulent convection. T
instability causes the formation of large-scale semiorgani
fluid motions in the form of rolls~sometimes visualized a
the boundary layer cloud streets!. These motions can exist i
the form of generated convective shear waves, which ha
nonzero hydrodynamic helicity. Increase of shear promo
excitation of the convective shear instability.

Here the proposed theory of turbulent sheared convec
distinguishes between the true turbulence, correspondin
the small-scale part of the spectrum, and the convective w
comprising of large-scale semiorganized motions caused
the inverse energy cascade through large-scale instabil
The true turbulence in its turn consists of the two parts:
familiar ‘‘Kolmogorov-cascade turbulence’’ and an esse
tially anisotropic tangling turbulence caused by the tangl
of the mean-velocity gradients with the Kolmogorov-ty
turbulence. These two types of turbulent motions overlap
the maximum-scale part of the spectrum. The tangling tur
lence does not exhibit any direct energy cascade.

It was demonstrated here that the characteristic length
time scales of the convective wind motions are much lar
than the true-turbulence scales. This justifies the separa
of scales which is required for the existence of these
types of motions. It is proposed that the term turbulence~or
true turbulence! be kept only for the Kolmogorov and tan
gling turbulence part of the spectrum. This concept impl
that the convective wind~as well as semiorganized motion
in other very high Reynolds number flows! should not be
confused with the true turbulence. The diagram of inter
tions between turbulent and mean-flow objects which ca
the large-scale instability and formation of semiorganiz
structures is shown in Fig. 10.

Now let us compare the obtained results with the prop
ties of semiorganized structures observed in the atmosph
convective boundary layer. The semiorganized structures
observed in the form of rolls~cloud streets! or three-
dimensional convective cells~cloud cells!. Rolls usually
align along or at angles of up to 10° with the mean horizo
tal wind of the convective layer, with lengths from 20
200 km, widths from 2 to 10 km, and convective dept
from 2 to 3 km @2#. The typical value of the aspect rati
Lz /L''0.1421. The ratio of the minimal size of structure
to the maximum scale of turbulent motions isL/ l 0510
2100. The characteristic life time of rolls varies from 1
72 h @1#. Rolls may occur over both, water surface and la
surfaces. The suggested theory predicts the following par
eters of the convective rolls: the aspect ratioLz /L' ranges
from very small to 1, andL/ l 05102100. The characteristic
time of formation of the rolls;t0 /g inst varies from 1 to 3 h.
The life time of the convective rolls is determined by a no
linear evolution of the convective shear instability. The lat
is a subject of a separate ongoing study.

Convective cells may be divided into two types: open a
closed. Open-cell circulation has downward motion and cl
sky in the cell center, surrounded by cloud associated w
upward motion. Closed cells have the opposite circulat
@2#. Both types of cells have diameters ranging from 10
40 km and aspect ratiosLz /L''0.0521, and both occur in
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a convective boundary layer with a depth of about 1
3 km. The ratio of the minimum size of structures to t
maximum scale of turbulent motions isL/ l 055 –20. The
developed theory predicts the following parameters of
convective cells: the aspect ratioLz /L' ranges from very
small to 1, andL/ l 055 –15. The characteristic time of for
mation of the convective cells;t0 /g inst varies from 1 to 3
h. Therefore the predictions of the developed theory are
good agreement with observations of the semiorgani
structures in the atmospheric convective boundary la
Moreover, the typical temporal and spatial scales of str
tures are always much larger than the turbulence scales.
justifies the separation of scales which was assumed in
suggested theory.
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FIG. 10. Scheme of interactions between turbulent and me
flow objects which cause a large-scale instability.
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APPENDIX A: DERIVATIONS OF EXPRESSIONS FOR
THE REYNOLDS STRESSES AND TURBULENT

FLUX OF ENTROPY

Equations~2! and ~3! yield the following conservation
equations for the kinetic energyWv5r0v2/2, for WS
5r0S2/2 and forWF5r0Sv:

]Wv

]t
1“•Fv5I v2Dv , ~A1!

]WS

]t
1“•FS5I S2DS , ~A2!

]Wi
F

]t
1“ jFi j

F5I i
F2Di

F , ~A3!

where I v52r0(v•g)S, I S52I vVb
2/g2, and IF52r0@v(v

•Nb)1S2g#1(P/r0)“(Sr0) are the source terms in thes
equations, Dv52r0(v•fn), DS5r0S(“•Fk), and DF5
2r0Sfn1(r0 /T0)v(“•Fk) are the dissipative terms,Fv
5v(Wv1P), FS5vWS , and Fi j

F5r0Sv iv j1SPd i j are the
fluxes. Equations~A1! and~A2! yield conservation equation
for WE5WvVb

2/g21WS ,

]WE

]t
1“•FE52DE , ~A4!

where DE5DvVb
2/g21DS is the dissipative term andFE

5FvVb
2/g21FS is the flux. Equation~A4! does not have a

source term, and this implies that without dissipation (DE
50) the value*WEdV is conserved, where in the latter fo
mula the integration is performed over the volume. For
convectionVb

2,0 and, therefore,WS'WvuVb
2u/g2.

Using Eqs.~A1!–~A3! we derived balance equations fo
the second moments. In particular, averaging Eqs.~A1!–
~A3! over the ensemble of fluctuations and subtracting fr
these equations the corresponding equations for the m
fields: r0Ū2/2, r0S̄2/2, r0S̄Ū, yields

S ]

]t
1Ū•“ D f pp12 f i j ¹j Ū i12F•g1

2

r0
“•CE

52
f *

t0d*
S 11

«

2D , ~A5!

S ]

]t
1Ū•“ DF i1~F•“ !Ū i1 f i j ~Nb1“S̄! j2

1

2
gei~42g!H

1
1

r0
¹jC i j 2S gP0

r0
DH~Nb! i52

F i*

2t0d*
~11Pr!, ~A6!

S ]

]t
1Ū•“ DH12F j~Nb1“S̄! j52

H*
t0d*

, ~A7!

where Pr5n/k is the Prandtl number, n is the
kinematic viscosity,CE5r0f ppu/21^pu&, C i j 5r0^suiuj&
1d i j (gP0H/21^sp&), and we took into account that th
06630
e

an

dissipations of energy, the flux of entropy and the seco
moment of entropyH are determined by the background tu
bulent convection described by Eqs.~12!–~17!. In derivation
of Eq. ~A6! we used an identity r0S“(P/r0)
.“(gP0S2)/21gP0S2Nb1(g/221)r0gS2, and we as-
sumed thatS.P/gP0, i.e., we neglected fluctuations of den
sity r/r0. Equations~A5!–~A7! allow us to determinef * ,
F* , and H* in the background turbulent convection~see
below!.

Using Eqs.~6! and ~7! we derived equations for the fol
lowing second moments:

f i j ~k,R!5^ui~k,R!uj~2k,R!&, ~A8!

F i~k,R!5^s~k,R!ui~2k,R!&, ~A9!

F~k,R!5^s~k,R!v~2k,R!&, ~A10!

G~k,R!5^v~k,R!v~2k,R!&, ~A11!

H~k,R!5^s~k,R!s~2k,R!&, ~A12!

wherev[(“3u)z and we use a two-scale approach, i.e.
correlation function is written as follows:

^ui~x!uj~y!&5E ^ui~k1!uj~k2!&exp@ i ~k1•x1k2•y!#

3dk1dk25E f i j ~k,R!exp~ ik•r !dk,

f i j ~k,R!5E ^ui~k1K /2!uj~2k1K /2!&exp~ iK•R!dK

~see, e.g.,@37,38#!, whereR and K correspond to the large
scales, andr andk to the small scales, i.e.,R5(x1y)/2, r
5x2y, K5k11k2 , k5(k12k2)/2. This implies that we
assumed that there exists a separation of scales, i.e.
maximum scale of turbulent motionsl 0 is much smaller than
the characteristic scaleL of inhomogeneities of the mea
fields. In particular, this implies thatr< l 0!R. Our final re-
sults showed that this assumption is indeed valid. Now le
calculate

] f i j ~k1 ,k2!

]t
[ K Pin~k1!

]un~k1!

]t
uj~k2!L

1 K ui~k1!Pjn~k2!
]un~k2!

]t L , ~A13!

]F j~k1 ,k2!

]t
[ K s~k1!Pjn~k2!

]un~k2!

]t L 1 K ]s~k1!

]t
uj~k2!L ,

~A14!

where we multiplied equation of motion~6! rewritten in k
space byPi j (k)5d i j 2ki j in order to exclude the pressur
term from the equation of motion.

Thus, equations forf i j (k,R) andF(k,R) read
5-11
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] f i j ~k!

]t
5 Î i jmnf mn~k!1Ni j ~k!, ~A15!

]F i~k!

]t
5 Î i j F j~k!1Mi~k!, ~A16!

where

Î i jmn52~kiqdmpd jn1kjqd imdpn!¹pŪq

2S d imd jqdnp1d iqd jndmp2d imd jnkq

]

]kp
D¹pŪq ,

~A17!

Î i j 52kin¹j Ūn1d i j kn

]

]km
¹mŪn2¹j Ū i , ~A18!

Ni j ~k!5gem@Pim~k!F j~k!1Pjm~k!F i~2k!#1 f i j
N~k!,

~A19!

Mi~k!52 f mi~Nb1“S̄!m1gemPim~k!H1F i
N ,

~A20!

and hereafter we consider the case with“•Ū50 ~i.e., L
50). Heref i j

N andF i
N are the third moments appearing d

to the nonlinear terms. Equations~A15! and ~A16! are writ-
ten in a frame moving with a local velocityŪ of the mean
flow. In Eqs.~A15!–~A20! we neglected small terms whic
are of the order ofO(¹3Ū) andO(¹2f i j ;¹2F i). Note that
Eqs. ~A15!–~A20! do not contain the terms proportional
O(¹2Ū). The first term in the right hand side of Eqs.~A15!
and~A16! depends on the gradients of the mean fluid vel
ity (¹i Ū j ). Equations for the second momentsG(k), F(k),
andH(k) read

]G~k!

]t
5~e3 k̃1! i~e3 k̃2! j

] f i j ~k!

]t
, ~A21!

]F~k!

]t
52 i ~e3 k̃1! j

]F j~k!

]t
, ~A22!

]H~k!

]t
5Q~k!, ~A23!

where Q(k)522F(k)•(Nb1“S̄)1HN , and HN is the
third moment appearing due to the nonlinear terms,k̃15k
2( i /2)“, k̃25k1( i /2)“. The terms;F in the tensor
Ni j (k) @see Eqs.~A15! and ~A19!# can be considered as
stirring force for the turbulent convection. On the other ha
the terms;(Nb1“S̄) in Eqs.~A16!, ~A20!, and~A23! are
the sources of the flux of entropyF and the second momen
of entropyH. Note that a stirring force in the Navier-Stoke
turbulence is an external parameter.

Since the equations for the second moments contain
third moments, a problem of closure for the higher mome
arises. In this study we used thet approximation@see Eq.
06630
-

,

he
ts

~11!# which allows us to express the third momentsf i j
N , FN,

and HN in Eqs. ~A15!, ~A16!, and ~A23! in terms of the
second moments. Here we define a background turbu
convection as the turbulent convection with zero gradients
the mean fluid velocity (¹i Ū j50)]. The background turbu-
lent convection is determined by the following equations:

] f i j
(0)~k!

]t
5Ni j

(0)~k!, ~A24!

]F i
(0)~k!

]t
5Mi

(0)~k!, ~A25!

]H (0)~k!

]t
5Q(0)~k!. ~A26!

A nonzero gradient of the mean fluid velocity results in d
viations from the background turbulent convection. The
deviations are determined by the following equations:

]~ f i j 2 f i j
(0)!

]t
5 Î i jmnf mn~k!2

f i j 2 f i j
(0)

t~k!
, ~A27!

]~F i2F i
(0)!

]t
5 Î i j F j~k!2

F i2F i
(0)

t~k!
, ~A28!

]~H2H (0)!

]t
52

H2H (0)

t~k!
, ~A29!

where the deviations~caused by a nonzero gradients of t
mean fluid velocity! of the functionsNi j (k)2Ni j

(0)(k) and
Mi(k)2Mi

(0)(k) from the background state are described
the relaxation terms: 2( f i j 2 f i j

(0))/t(k) and 2(F i

2F i
(0))/t(k), respectively. Similarly, the deviationQ(k)

2Q(0)(k) is described by the term2(H2H (0))/t(k). Here
we assumed that the correlation timet(k) is independent of
the gradients of the mean fluid velocity.

Now we assume that the characteristic times of variat
of the second momentsf i j (k), F i(k), andH(k) are substan-
tially larger than the correlation timet(k) for all turbulence
scales. This allows us to determine a stationary solution
the second momentsf i j (k), F i(k), andH(k),

f i j ~k!5 f i j
(0)~k!1t~k! Î i jmnf mn

(0)~k!, ~A30!

F i~k!5F i
(0)~k!1t~k! Î i j F j

(0)~k!, ~A31!

H~k!5H (0)~k!, ~A32!

where we neglected the third and higher-order spatial der
tives of the mean-velocity fieldŪ.

For the integration ink space of the second momen
f i j (k), F i(k), . . . ,H(k,R) we have to specify a model fo
the background turbulent convection. We used the mode
the background turbulent convection determined by E
~12!–~17!. For the integration ink space we used identitie
given in Appendix C. The integration ink space of Eqs.
5-12
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~A30! and~A31! yields the following equations for the Rey
nolds stresses and the turbulent flux of entropy:

f i j 5 f i j
(0)2nTS a1~¹i Ū j1¹j Ū i !1a2~ei¹j1ej¹i !Ūz

2c2

]

]z
~eiŪ j1ejŪ i !1

]Ūz

]z
~c3ei j 1a3d i j ! D ,

~A33!

F5F* 1
t0

30
~F* •e!S ]

]z
~b1Ūze1b2Ū!2b3“

'ŪzD
2

t0

5
$2~F* 3e!v̄15~F* •“ !Ū22~F* •“'!

3Ū1~32q!~e3“ !@F* •~e3Ū!#2~q21!@~F*

3e!•“#~e3Ū!%, ~A34!

wherenT5t0f * /6, v̄5(“3Ū)z , a15c11c2 , a252«(q
21)/4, a352«(52q)/4, b15(8a23)(q11), b253(9
2q)22a(q11), b35(2a13)(q11), c15(q13)/5, c2
5«(q11)/4, c35«(q13)/4.

Equations~A33! and~A34! imply that there are two con
tributions to the Reynolds stresses and turbulent flux of
tropy which correspond to two kinds of fluctuations of t
velocity field. The first contribution is due to the Kolmog
orov turbulence with the spectrum (}k2q), and it corre-
sponds to the background turbulent convection. The sec
kind of fluctuations depends on gradients of the me
velocity field and is caused by a tangling of gradients of
mean-velocity field by turbulent motions. The spectrum
the tangling turbulence isW(k)t(k)}k122q @see Eqs.~A30!
and ~A31!#. These fluctuations describe deviations from t
background turbulent convection caused by the gradient
the mean fluid velocity field.

Now we calculate a dissipation of the kinetic energy
the mean flowŪ,

DU[2~1/2!~ f i j 2 f i j
(0)!~¹i Ū j1¹j Ū i !, ~A35!

using a general form of the velocity fieldŪ i

5V̄i(t,K )exp(iK•R), where

V̄i~ t,K !5S K

K'
D 2

@Pi j ~K !ejV̄z~ t,K !2 iK 22~e3K ! iṽ~ t,K !#,

~A36!

and ṽ5(“3V̄)z . The result is given by

DU~ t,K !5nTH b4S K

K'
D 2

@K2V̄z
2~ t,K !1ṽ2~ t,K !#

1b5K2V̄z
2~ t,K !J , ~A37!
06630
-
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whereb45c11c2sin2u and b55a21c3cos2u. The function
DU(t,K ) must be positive for statistically stationary sma
scale turbulence. The latter is valid when« satisfies condi-
tion ~21!.

APPENDIX B: THE MODEL OF THE BACKGROUND
TURBULENT CONVECTION

A simple approximate model for the three-dimension
isotropic Navier-Stokes turbulence is described by a tw
point correlation function of the velocity fieldf i j (t,x,y)
5^ui(t,x)uj (t,y)& with the Kolmogorov spectrumW(k)
}k2q and q55/3. The turbulent convection is determine
not only by the turbulent velocity fieldu(t,x), but by the
fluctuations of the entropys(t,x). This implies that for the
description of the turbulent convection one needs additio
correlation functions, e.g., the turbulent flux of entro
Fi(t,x,y)5^s(t,x)ui(t,y)& and the second moment of th
entropy fluctuationsH(t,x,y)5^s(t,x)s(t,y)&. Note also
that the turbulent convection is anisotropic.

Let us derive Eqs.~12! and ~13! for the correlation func-
tions f i j andFi . To this end, the velocityu' is written as a
sum of the vortical and the potential components, i.e.,u'

5“3(C̃e)1“'f̃, where v[(“3u)z52D'C̃, D'f̃5
2]uz /]z, “'5“2e(e•“). HereafterL50. Thus, in k
space the velocityu is given by

ui~k!5~k/k'!2@emPim~k!uz~k!2 i ~e3k! iv~k!/k2#.
~B1!

Multiplying Eq. ~B1! for ui(k1) by uj (k2) and averaging
over the turbulent velocity field we obtain

f i j
(0)~k!5~k/k'!4@ f * f (0)~k!emnPim~k!Pjn~k!

1~e3k! i~e3k! jG
(0)~k!/k4#, ~B2!

where we assumed that the turbulent velocity field in
background turbulent convection is nonhelical. Now we u
an identity

~k/k'!2emnPim~k!Pjn~k!5ei j 1ki j
'2ki j 5Pi j ~k!2Pi j

'~k'!,
~B3!

which can be derived from

kz~kzei j 1eikj
'1ejki

'!5ki j k
22ki j

'k'
2 .

Here we also used the identity (k'3e) i(k'3e) j

5k'
2 Pi j

(')(k'). Substituting Eq.~B3! into Eq.~B2! we obtain

f i j
(0)~k!5~k/k'!2$ f * f (0)~k!Pi j ~k!

1@G(0)~k!/k22 f * f (0)~k!#Pi j
'~k'!%. ~B4!

Thus two independent functions determine the correlat
function of the anisotropic turbulent velocity field. In th
isotropic three-dimensional turbulent flowG(0)(k)/k2

5 f * f (0)(k) and the correlation function reads

f i j
(0)~k!5 f * W~k!Pi j ~k!/8pk2. ~B5!
5-13
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In the isotropic two-dimensional turbulent flowG(0)(k)/k2

@ f * f (0)(k) and the correlation function is given by

f i j
(0)~k!5G(0)~k!Pi j

'~k'!/k'
2 . ~B6!

A simplest generalization of these correlation functions is
assumption thatG(0)(k)/@k2f * f (0)(k)#215«5const, and
thus the correlation functionf i j

(0)(k) is given by Eq.~12!.
This correlation function can be considered as a combina
of Eqs. ~B5! and ~B6! for the three-dimensional and two
dimensional turbulence. When« depends on the wave vecto
k, the correlation functionf i j

(0)(k) is determined by two
spectral functions.

Now we derive Eq.~13! for the turbulent flux of entropy.
Multiplying Eq. ~B1! written for ui(k2) by s(k1) and aver-
aging over turbulent velocity field we obtain Eq.~13!. Mul-
tiplying Eq. ~13! by i (k'3e) i we get

F (0)~k!5 i ~k'3e!•F'
(0)~k!. ~B7!

Now we assume thatF'
(0)(k)}F'

* f (0)(k). The integration in
k space in Eq.~B7! yields the numerical factor in Eq.~15!.
Note that for simplicity we assumed that the correlati
functions F (0)(k) and f (0)(k) have the same spectrum.
these functions have different spectra, it results only in
different value of a numerical coefficient in Eq.~15!.

Now let us discuss the physical meaning of the param
a. To this end we derived the equation for the two-po
correlation functionFz

(0)(r )5^s(x)u(x1r )& of the turbulent
flux of entropy for the background turbulent convecti
@which corresponds to Eq.~14! written in k space#. Let us
rewrite Eq.~14! in the following form:

Fz
(0)~k!5~F* •e!@k21G~e•k!2#F̃w~k!, ~B8!

F̃w~k!52~32a!W~k!/8pk4, ~B9!

where G53(a21)/(32a). The Fourier transform of Eq
~B8! reads

Fz
(0)~r !5~F* •e!@D1G~e•“ !2#Fw~r !, ~B10!

whereFw(r ) is the Fourier transform of the functionF̃w(k).
Now we use the identity

¹i¹jFw~r !5c~r !d i j 1rc8~r !r i j , ~B11!

where c(r )5r 21Fw8 (r ) and c8(r )5dc/dr. Equations
~B10! and ~B11! yield the two-point correlation function
Fz

(0)(r ):

Fz
(0)~r !5~F* •e!S c~r !1rc8~r !

11G cos2ũ

31G
D ,

~B12!

whereũ is the angle betweene andr . The functionc(r ) has
the following properties:c(r 50)51 and (rc8) r 5050, e.g.,
the functionc(r )512(r / l 0)q21 satisfies the above prope
06630
n

n

a

er
t

ties, where 1,q,3. Thus, the two-point correlation func
tion Fz

(0)(r ) of the flux of entropy for the background turbu
lent convection is given by

Fz
(0)~r !5~F* •e!F12S ~q21!~11G cos2ũ !

31G
11D S r

l 0
D q21G .

~B13!

Simple analysis shows that23/(q21),a,3, where we
took into account that]Fz

(0)(r )/]r ,0 for all anglesũ. The
parameter a can be presented asa5@11j(q11)/(q
21)#/(11j/3) andj5( l' / l z)

q2121, wherel' and l z are
the horizontal (ũ5p/2) and the vertical (ũ50) scales in
which the correlation functionFz

(0)(r ) tends to zero. The
parameterj describes the degree of thermal anisotropy.
particular, whenl'5 l z the parameterj50 anda51. For
l'! l z the parameterj521 anda523/(q21). The maxi-
mum valuejmax of the parameterj is given byjmax5q21
for a53. Thus, fora,1 the thermal structures have th
form of column or thermal jets (l', l z), and a.1 there
exist the pancake thermal structures (l'. l z) in the back-
ground turbulent convection.

APPENDIX C: THE IDENTITIES USED FOR THE
INTEGRATION IN k SPACE

To integrate over the angles ink space of Eqs.~A30! and
~A31! we used the following identities:

E ki jmndV̂5~4p/15!D i jmn ,

E ki j sin2udV̂5~8p/15!~2d i j 2ei j !,

E ki jmnsin2udV̂5~8p/105!~3D i jmn2G i jmn!,

E ki j
'dV̂52pPi j ~e!,

E ki j
'kmndV̂5~p/3!@Pi j ~e!~dmn1emn!1Pin~e!Pm j~e!

1Pim~e!Pn j~e!#,

ejE ki
'kjkmnk'

22dV̂5~2p/3!@Pin~e!em1Pim~e!en#,

ejE ki
'kjkmnk

22dV̂5~4p/3!@Pin~e!em1Pim~e!en#,

where Pi j (e)5d i j 2ei j , ki jmn5kikjkmkn /k4, dV̂
5sinududw, and

D i jmn5d i j dmn1d imdn j1d indm j ,

G i jmn5d i j emn1d imejn1d inejm1d jmein1d jneim1dmnei j ,
5-14
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g i jm5D i jmnen5d i j em1d imej1d jmei ,

emg i jm5d i j 12ei j ,

enG i jmn5g i jm13ei jm , emnG i jmn5d i j 15ei j ,

Pi j ~k!1«Pi j
'~k'!5~11«!d i j 2«ei j 2ki j 2«ki j

' .

The above identities allow us to calculate the following
tegrals~which were used for the derivation of equations f
the Reynolds stresses and turbulent flux of entropy!:

E t~k!ki j Fm
(0)~k!dk5~F* •e!~t0 /30!@15d i j em110aei jm

2~2a13!g i jm16bi jm#,
ro

ro

l.

s-

i.

06630
E t~k!kmnf i j
(0)~k!dk5~ f * t0 /6!@~«/4!~G i jmn2ei jmn!

2~1/51«/4!D i jmn1~11«!d i j dmn

2~«/2!d i j emn2«ei j dmn#,

where

bi jm5d i j ~F'
* !m1@« iml~F* 3e! j1« jml~F* 3e! i #el ,

and we used an identityeq«pqn(F* 3e)mD i jmn5bi jp .
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