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Formation of large-scale semiorganized structures in turbulent convection
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A new mean-field theory of turbulent convection is developed by considering only the small-scale part of
spectra as “turbulence” and the large-scale part, as a “mean flow,” which includes both regular and semior-
ganized motions. The developed theory predicts the convective wind instability in a shear-free turbulent
convection. This instability causes formation of large-scale semiorganized fluid motions in the form of cells.
Spatial characteristics of these motions, such as the minimum size of the growing perturbations and the size of
perturbations with the maximum growth rate, are determined. This study predicts also the existence of the
convective shear instability in a sheared turbulent convection. This instability causes formation of large-scale
rolls and generation of convective shear waves which have a nonzero hydrodynamic helicity. Increase of shear
promotes excitation of the convective shear instability. Applications of the obtained results to the atmospheric
turbulent convection and the laboratory experiments on turbulent convection are discussed.
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I. INTRODUCTION “mean wind” (see, e.g., Refs[15-22, and references
therein. There are several unsolved theoretical questions
In the last decades it has been recognized that the vemoncerning these flows, e.g., how do they arise, and what are
high Rayleigh number convective boundary lay€BL) has  their characteristics and dynamics.
more complex nature than might be reckoned. Besides the In spite of a number of studies, the nature of large-scale
fully organized component naturally considered as the measemiorganized structures is poorly understood. The Rayleigh
flow and the chaotic small-scale turbulent fluctuations, onenumbers Ra based on the molecular transport coefficients are
more type of motion has been discovered, namely, long-livedrery large(of the order of 16'—10*). This corresponds to
large-scale structures, which are neither turbulent nor detefully developed turbulent convection in atmospheric and
ministic (see, e.g., Ref$1-14]). These semiorganized struc- laboratory flows. At the same time the effective Rayleigh
tures considerably enhance the vertical transports and rendeumbers R&" based on the turbulent transport coefficients
them essentially nonlocal in nature. In the atmospheric shearthe turbulent viscosity and turbulent diffusivityare not
free convection, the structures represent three-dimensionaigh, e.g., R&€™ ~Ra/(RePe), where Re and Pe are the Rey-
Benard-type cells composed of narrow uprising plumes anéolds and Peclet numbers, respectively. They are less than
wide downdraughts. They embrace the entire convectivéhe critical Rayleigh numbers required for the excitation of
boundary layer -2 km in heighj and include pronounced large-scale convection. Hence the emergence of large-scale
large-scale 5 km in diametey convergence flow patterns convective flowgwhich are observed in the atmospheric and
close to the surfacésee, e.g., Refd1,2], and references laboratory flow$ seems puzzling.
therein. In sheared convection, the structures represent The main goal of this study is to suggest a mechanism for
CBL-scale rolls stretched along the mean wind. Life times ofexcitation of large-scale circulationdarge-scale convec-
the semiorganized structures are much larger than the turbtion). In particular, in the present paper we develop a new
lent time scales. Thus, these structures can be treated as comean-field theory of turbulent convection by considering
paratively stable, quasistationary motions, playing the samenly the small-scale part of spectra as turbulence and the
role with respect to small-scale turbulence as the mean flowarge-scale part, as a mean flow, which includes both, regular
In a laboratory turbulent convection several organizedand semiorganized motions. We found a convective wind
features of motion, such as plumes, jets, and the large-scaiestability in a shear-free turbulent convection which results
circulation, are known to exist. The experimentally observedn the formation of large-scale semiorganized fluid motions
large-scale circulation in the closed box with a heated bottonn the form of cells(convective wing. We determined the
wall (the Rayleigh-Benard apparajus often called the spatial characteristics of these motions, such as the minimum
size of the growing perturbations and the size of perturba-
tions with the maximum growth rate. In addition, we studied

*Electronic address: elperin@menix.bgu.ac.il a convective shear instability in a sheared turbulent convec-
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bulence, such as the Kolmogorov-type closures and similafluid with large Rayleigh and Reynolds numbers. The gov-
ity theories(e.g., the Monin-Obukhov surface-layer similar- erning equations read
ity theory) imply two assumptiongi) Turbulent flows can be

decomposed into two components of principally different na- ﬁ ) _ E B

ture: fully organizedmean flow and fully turbulent flows. at V-V jv=-V Po gSH1.(V), @

(i) Turbulent fluxes are uniquely determined by the local

mean gradients. For example, the turbulent flux of entropy is d _ 1

given by vV S——V'Nb—-ITOV'FK(S)- 3
(suy=— KTvg (1) wherev is the fluid velocity withV-v=A-v, g s the accel-

eration of gravity,pof,(v) is the viscous forcef,(S) is the
(see, e.g., Ref23]), wherex is the turbulent thermal con- heat flux that is associated with the molecular heat conduc-
ductivity, S is the mean entropy ands are fluctuations of tVity k<, A=—py 'V p, is the density stratification scale, and
. — -1 -1 ; ;

the velocity and entropy. Np=(¥Po) " "VPo—pgo "Vpo. The variables with the sub-

However, the mean-velocity gradients can affect the turscript “0” correspond to the hydrostatic equilibriuri P,
bulent flux of entropy. The reason is that additional, essen=pog, and T, is the equilibrium fluid temperatureS
tially nonisotropic velocity fluctuations can be generated by=P/yPo—p/po are the deviations of the entropy from the
tangling of the mean-velocity gradients with the hydrostatic equilibrium value? andp are the deviations of
Kolmogorov-type turbulence. The source of energy of thisthe fluid pressure and density from the hydrostatic equilib-
“tangling turbulence” is the energy of the Kolmogorov tur- rium. Note that the variabl&=®/0,, where® is the po-
bulence. tential temperature which is used in atmospheric physics.

In the present paper we showed that the tangling turbuThe Brunt-Vasda frequency(,, is determined by the equa-
lence can cause formation of semiorganized structures due tmn Q§=—g~Nb. In order to derive Eq(2) we used an
excitation of large-scale instability. The tangling turbulenceidentity: —VP+gp=—po[V(P/pgy) +9S—PN,/po],
was introduced by Wheeldi24] and Batcheloet al.[25] for ~ where we assumed thaPN,/py|<|gS and |PN,/pg|
a passive scalar and by Golitsy#6] and Moffatt[27] fora  <|V(P/py)|. This assumption corresponds to a nearly isen-
passive vectofmagnetic fieldl. Anisotropic fluctuations of a tropic basic reference state whél is very small. For the
passive scalafe.g., the number density of particles or tem- derivation of this identity we also used the equation for the
peraturg are generated by tangling of gradients of the mearhydrostatic equilibrium. Equation®) and(3) are written in
passive scalar field with random velocity field. Similarly, an-the Boussinesq approximation f&-v+0.
isotropic magnetic fluctuations are excited by tangling of the
mean magnetic field with the velocity fluctuations. The Rey- A. Mean-field approach
nolds stresses in a turbulent flow with a mean-velocity shear , )
is another example of a tangling turbulence. Indeed, they are Ve use a mean-field approach whereby the velocity, pres-
strongly anisotropic in the presence of shear and have §Ure: and entropy are separated into the mean and fluctuating
steeper spectrumedk™ ") than a Kolmogorov turbulence parts: v=U+u, P=P+p, and S=S+s, the fluctuating
(see, e.g., Refd28-31]). The anisotropic velocity fluctua- parts have zero mean valués=(v), P=(P) and S=(S).
tions of tangling turbulence were studied first by Lumley Averaging Eqs(2) and(3) over an ensemble of fluctuations
[28]. we obtain the mean-field equations

This paper is organized as follows. In Sec. Il we described
the governing equations and the method of the derivations off ¢ — | —
the turbulent flux of entropy and Reynolds stresses. In Sec.| 71 © U'V> Ui=—-V,
[Il using the derived mean-field equations we studied the %)
large-scale instability in a shear-free turbulent convection
which causes formation of semiorganized fluid motions in/ 9 _ \_ _ 1 -
the form of cells. In Sec. IV the instability in a sheared E+U'V>S=—U'Nb+(Ai—Vi)<5 Ui)‘-r—OV'FK(U,S),
turbulent convection is investigated and the formation of (5)
large-scale semiorganized rolls is described. Application of

the obtained results for the analysis of observed semiorggynere pof_(U) is the mean molecular viscous force

nized structures in the atmospheric turbulent convection i?(Ug) is the mean heat flux that is associated with the
K ’

discussed in Sec. V. S .

molecular thermal conductivity. In order to derive a closed
system of the mean-field equations we have to determine the
mean-field dependencies of the Reynolds stre$gés,S)
=(u;(t,x)u;j(t,x)) and the flux of entropy ®;(U,S)

Our goal is to study the tangling turbulence, in particular,=(s(t,x)u;(t,x)). To this end we used equations for the
an effect of sheared large-scale motions on a developed tuftuctuationsu(t,r) and s(t,r) which are obtained by sub-
bulent stratified convection. To this end we consider a fullytracting Eqs.(4) and(5) for the mean fields from the corre-
developed turbulent convection in a stratified nonrotatingsponding Eqgs(2) and (3) for the total fields,

P o
. + (A= V)(ujuj) —gS+f,(U),

II. THE GOVERNING EQUATIONS AND THE METHOD
OF THE DERIVATIONS
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au _ _ p The 7 approximation is in general similar to Eddy damped
r =—(U'V)U—(U'V)U—V(%) —gs+Uy, (6) quasinormal Markowian EDQNM) approximation. How-
ever, there is a principle difference between these two ap-
9s - proachegqsee Refs[32,33). The EDQNM closures do not
—=—=U-(N,+VS)—(U-V)s+Sy, (7)  relax to the equilibrium, and this procedure does not describe
Jt properly the motions in the equilibrium state. Within the
/(11 . (11, EDQNM theory, there is no dynamically determined relax-
Vi/kzirevL;Q_ éiﬁrg)vwa((ﬂ 5 )aur;r Iﬁ(eu?] ﬁ}%g’; , t<e(rlrjnsv\2v5|‘1>i ch ation time, and no slightly per?urbe_:d steady state can _be ap-
include the molecular dissipative terms. proached32]. In the 7 approxmat_lon, .the relaxgtlon time
for small departures from equilibrium is determined by the
random motions in the equilibrium state, but not by the de-
parture from equilibrium[32]. Analysis performed in Ref.
By means of Eqs(6) and (7) we determined the depen- [32] showed that ther approximation describes the relax-

dencies of the second mometh(U,S) and®;(U,S) onthe ation to the equilibrium statéhe background turbulent con-

mean fieldsU and S. The procedure of the derivation is vection) more accurately than the EDQN.M f”‘pproa‘:h- .
outlined in the following(for details see Appendix A (c) We assumed that the characteristic times of variation

: : : of the second moments;(k), ®;(k), ..., H(k) are sub-
foII(o?vilrJn;Iggcigz.(rg)oaldniz? we derived equations for the stantially larger than the correlation timék) for all turbu-

lence scales. This allowed us to determine a stationary solu-

B. Method of derivations

fij(k):E(ui ), qu(k):r-(S,Ui), ®) tion for the se_cond m_ome_nf$j(k), D,(k), ..., H(k).
(d) For the integration irk space of the second moments
s s fij(k), ®i(k), ..., H(k) we have to specify a model for the
Fk)=L(s,w), Gk)=L(w o), ©) background turbulent convection. Here we used the follow-
- ing model of the background turbulent convection which is
H(k)=L(s;s), (10 discussed in more details in Appendix B:
where L(a,b):<a(k)b(_k)>; w=(V><U)Z, the accelera- f|(JO)(k):f*[P|](k)+8p|(f_)(kl)]\7v(k)v (12)

tion of gravity g is directed opposite to theaxis. Here we
used a two-scale approach. This implies that we assumed that

O(kKy=k™ k2@ P iE(0) .
there exists a separation of scales, i.e., the maximum scale of (k) =k Tk, (k) ey (k) +IFT(k) (ex k)i,

turbulent motiondy is much smaller than the characteristic (13
scale of inhomogeneities of the mean fields. Our final results K \2
showed that this assumption is indeed valid. The equations dO)(k)=d* 2a—3(a—1)(—l W(k) (14)
for the second momeni8)—(10) are given by Eqs(A15), z z k ’
(A16), and(A21)—(A23) in Appendix A. In the derivation we
assumed that the inverse density stratification schfe FO(k)=—6if O(k)[®* - (exk)], (15)
<k?.

(b) The derived equations for the second moments contain GO(k)=(1+¢)f, fO(k)K?, (16)
the third moments, and a problem of closing the equations
for the higher moments arises. Various approximate methods HO(k)=2H,, W(K), 17)

have been proposed for the solution of problems of this type
(see, €.9.[23,32,33). The simplest procedure is theap- ~ ) ) ek
proximation which was widely used for study of different Where Wz(k)ﬂ/\/(k)/%k o PPk =(k 7" W(K), e

problems of turbulent transpofsee, e.9.[32,34—-368). One = (2/3)[{uL)/{uz)— 2] is the degree of anisotropy of the tur-
of the simplest procedures that allows us to express the thirfgulent velocity fieldu=u, +u,e, « is the degree of anisot-

momentsf!\j‘ , ®N, .. Hyin Egs.(A15), (A16), and(A23)  "OPY of the turbulent flux of entropgsee below and Appen-
in terms of the second moments, reads dix B), Py(k)=8;—kj, kj=kikj/k* k=k +keze,
k=k-e Pi(ji)(kl) =0~ kﬁ —€ij, kﬁ = (kp)i(ky); Ik, €ij
O A(k)—AO(k) =e;, eis the unit vector directed along theaxis. Here
A =A== @D g =250m(K), W(K)= —dr(k)/dk, 7(k)= (KIky)* 9, 1

<(q<3 is the exponent of the kinetic energy spectrug (
where the superscript (0) corresponds to the background tue=5/3 for Kolmogorov spectrum ko=1/,, andl, is the
bulent convection(i.e., a turbulent convection witf;u; ~ maximum scale of turbulent motionse=1,/Uo and uo is
=0), and (k) is the characteristic relaxation time of the the characteristic turbulent velocity in the scjeMotion in
statistical moments. Note that we appliedapproximation the background turbulent convection is assumed to be non-
(11) only to study the deviations from the background turbu-helical. In Egs.(12) and (13) we neglected small terms
lent convection which are caused by the spatial derivatives of O(Af, ;Vf,) and ~O(A®*;Vd*), respectively. Note
the mean velocity. The background turbulent convection ighat fi(jo)(k)ei,:f*f(o)(k). Now we calculate fi(jO)
assumed to be known. =[f{P(k)dk using Eq.(12),

066305-3



ELPERINet al. PHYSICAL REVIEW E 66, 066305 (2002

The turbulent flux of entropy can be obtained even from
. (18 simple symmetry reasoning. Indeed, this flux can be pre-
sented as a sum of two tern{sw;) = ®;* +,8ijijUk, where
Note that®(®= [®(©)(k)dk=®*. The parametex can be ~®* determines the contribution of the Kolmogorov turbu-
presented in the form lence and it is independent §fU; , whereas the second term

_ is proportional toVin and describes the contribution of the
a= 1+&(q+1)/(g—1) (19) Engling turbulence. Herg;, is an arbitrary true tensor and

1
fi(jO):f*[g

&
Sij+ 7 (4 —ej)

1+¢3 , U is the mean velocity. Using the identity;U;=(8U);
£=(1, N1,)0 11, (20) —(1/2)gjjwy, the turbulent flux of entropy becomes
wherel, and |, are the horizontal and vertical scales in <Sui>:q);k+,mgj+(;x 5)i+M”k(5U)jk, (23

which the correlation functio®{?(r)=(s(x)u(x+r)) tends
to zero (see Appendix B The parameteg describes the

degree of thermal anisotropy. In particular, wHer=1, the ~ Where 6U);;=(ViU;+V,U;)/2, @=V XU is the mean vor-

parameteré=0 and a=1. For |, <l, the parametei= ticity, and g is fthe fully antlsymmetn((j: LeV|—C|v_|ta tensor.
—1 anda=—3/(q—1). The maximum valug,,, of the In Eq. (23), 7 1S a symmetric pseut o'gensaﬁ, is a true.
vector, uij is a true tensor symmetric in the last two in-

parameter¢ is given by éna=9—1 for «=3. Thus, fora ijh
<1 the thermal structures have the form of column or therd€xes,®=(su) and ®* are true vectors. The tensorg; ,

mal jets (,<I,), and fora>1 there exist the “pancake” Hiik and the vectow can be constructed using two vectors:

* H H —
thermal structuresl ( >1,) in the background turbulent con- (E) anfl the vertlcal unit vectoe. *For examp*le,nij =0, 0
vection. For statistically stationary small-scale turbulence the=A1P” +AxP7 € and pjj=Az®; &+ A, O €, where

degree of anisotropy of turbulent velocity field varies in the”Ax areé the unknown coefficients anel;.=e ;.. This
range yields the following expression for the turbulent flux of en-

tropy in a divergence-free mean-velocity field:
4(9+3) 2(19-q) 4
5(q+1)’ 25 '3

—min <eg<w, (21

D=0* — (Az+A,)(V-U)®f + (A +A) (0X D)
The negativepositive) degree of anisotropy of a turbulent +A1(a_)”X<I>*)—A4(V U, )®*], (24)
velocity field corresponds to that the vertical size of turbulent
eddies in the background turbulent convection is larger - N — )
(smallej than the horizontal size. whereU=U, +U e, ®f =®; eandw=we. Equations22)

(e) In order to determine valuefs, , ®*, andH, in the and (24) coincide if one setsA;= 7o(q+1)/5, A= 10(q
background turbulent convection we used balance equatioris 1) (@—3/2)/15, A3=roa(q+1)/3, andA,=0. Note that
(A5)—(A7) for the second momentsee Appendix A ®* = — k;VS—7,®*[dU(2)/dZ], UY(2) is the imposed

horizontal large-scale flow velocitie.g., a wind velocity.
C. Turbulent flux of entropy

The procedure described in this section allows us to de- [1l. CONVECTIVE WIND INSTABILITY IN A
termine the Reynolds stresses and turbulent flux of entropy SHEAR-FREE TURBULENT CONVECTION
which are given by EqstA33) and (A34) in Appendix A,
where we considered the ca¥ U=0. In particular, the
formula for turbulent flux of entropy reads

In this section we studied the mean-field dynamics for a
shear-free turbulent convection. We showed that under cer-
tain conditions a large-scale instability is excited, which

_ — — ax causes the formation of large-scale semiorganized structures
P- 0% =[-5a(V-U, )P +(a+3/2) (X D) in a turbulent convection.
mo(q+1) _ The mean-field _dynamics is determined _b_y EC{B.anc_i
T+(VXT)+(E~V)U, (5). To study the linear stage of an instability we derived
linearized equations for the small perturbations from the

(22 equilibrium, UM=U,-ULd D=4 — oD and S

+3( X ®*)]

— — - — =S—glea),
where 0=(VXU),, ®f=dje, w=we, T=(2/5)7(q
—2)[P* - (exU)] and E=(1/5)7{[2—qg—2a(q T
+1)/3]®f —3®*}. It is shown below that the first and the ATZ T vv i) A(e VD) £ gA. S (2
second terms in Eq22) are responsible for the large-scale ot az( Vifii) - A@Vfi) +eA, ST, (29
convective wind instability in a shear-free turbulent convec-
tion (see Sec. IV, while the third term in the turbulent flux —1) —eq)
of entropy(22) causes the convective shear instabilisge Jor —(exV Vf(1)+‘9Ui ow 26
Sec. V). o (X V) Vifit A — U2, (26)

066305-4



FORMATION OF LARGE-SCALE SEMIORGANIZED . ..

)S(ea)

PSS P
N+

ot

=—(V- @)~ Uy, @

wheref{M=f;; — f{?) and the Reynolds stressks are given
by Egs.(A33) in Appendix A, A, =A—3%/9z%, N,=Npe
and

V-V =—(7,/30)(q+1){(P*-€)[10aA, — (8«
—-3)AJUP+6[(®* X €)- V]oW} -k GV, SV,
(28)

Kij = 100, [1+ (1129708, (4= 7) (e @} +ej<1>i*)].( )
29

Equation(29) follows from Eqs.(A6) and (A7).

A. The growth rate of convective wind instability

Let us consider a shear-free turbulent convectig{®
=0) with a given vertical flux of entropy{*Ye. We also

consider an isentropic basic reference state, i.e., we neglec 11

terms which are proportional td\g + S©®¥ az)UM in Eq.
(27). We seek for a solution of Eq$25)—(27) in the form
cexpynst +1K-R), whereK is the wave vector of small
perturbations andy;,s; is the growth rate of the instability.
Thus, the growth rate of the instability is given by

Yinst= vrK?A[V1+4B/IA?—1]/2, (30

where
A=B,+B,, B=pX(c;—cgX)—B;B,, (31
B;=cC;+CeX—C3X?, B,=c,—csX, ¢;=(q+3)/5, c3

=g(q+3)/4, c,=6,(2+30), c5=36, (0—¢/2), cg=¢(q
+5)/4, c;=u(8a—3)/10, cg=pa, with o=a,(4—7y)(1
+el2), w=6a,(q+1)(1+&/2)/5,, B=(,K)7?% X
=sirfg, a, =26, ®*V 7, /f, , andd is the angle between
and the wave vectdf of small perturbations. Here we used
that in equilibrium®{*9=d* . When>1 the growth rate
of the instability is given by

Sa 1/2
TSIHZH xKUo.

(32

Yinst™ VTK2 ! MBlSin 9|

a— ——

8

Thus for largeB the growth rate of the instability is propor-
tional to the wave numbeéf and the instability occurs when
a(5 cog6—1)>3/2. This yields two ranges for the instabil-

ity,

3
<3 33
2(50020-1) 33

S S 34
g-1"“ 2(1-5cog6)’
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£=5
L/L| 2
41
Instability
3 L
43
2 L
1F <3_0 Instability
0 .
0 10 20 %0 % o
e=0
L/L S— =
4} Instability
3 L
45
2 L
C® (70 Instability o
0
0 10 20 30 40 /1,
e=—1
L /L) ' ' ' | °
4 L
Instability
3 L
43
2 L
1t ‘3_0 Instability
0 .
0 10 20 30 40 L/1

0

FIG. 1. The range of parameterk,(L, ;L/ly) for which the
convective wind instability occurs, for different values of the pa-
rametera: (from —4.5 to 3 and for different values of the param-
etere: (@) e=5; (b) e=0; (c) e=—1.

where we took into account that the parametesaries in the
interval — 3/(g— 1)< a<3 (see Appendix B The first range
for the instability in Eq.(33) is for the angles 3/1@cos6
<1 (for q=5/3, the aspect ratioQL,/L, <1.53), and the
second rangg34) for the instability corresponds to the
angles G<cos6<(3—q)/10 (the aspect ratio 2.55L,/L
<), wherelL,/L, =K, /K,=tanf. The conditions(33)
and (34) correspond td&v - <0,

Figure 1 demonstrates the range of parameters, and
L/l1y where the instability is excited, for different values of
the parametew (from —4.5 to 3) and different values of the
parameteg=—1; 0; 5. HereLzl/\/Lz’2+ LIZ and we as-
sumed thata, =1. The threshold of the instabilit ., de-
pends on the parameter For example, fow= 3 the thresh-
old of the instabilityL., varies from 3, to 7l (when e
changes from—1 to 5). The negativépositive degree of

066305-5



ELPERINet al. PHYSICAL REVIEW E 66, 066305 (2002
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% 8¢
b
0.05
=0, =2 0.06¢
0.04
0.04}
003 20.0
0.02}
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0.01 48
-0.02f
Z.
o -0.041
-0.01
-0.06¢
0.5 1

0 L‘/L
* 25 3 35 4 45 L4

(=]

FIG. 2. The growth rate of the convective wind instability as h h f th . S i
functions of (a) L/l (for different values of parameter,/L FIG. 3. The growth rate of the convective wind instability as

=0.3;1;1.23); andb) L,/L, (for different values of parameter functions of (a) L/l (for differgnt values of parametdr,/L
L/lo=4.2;4.6:9.6:20) fos =0 anda=2. =3.5;4;5); and(b) L,/L, (for different values of parametér/|,

=6;10;20;40); fore=5 anda=—3.

anisotropye of turbulent velocity field corresponds to that . . .
the vertical size of turbulent eddies in the background turbu-secOnOI range of the instabilifgee Fig. &)).

lent convection is largetsmalley than the horizontal size.

The reason for the increase of the range of instability with B. Mechanism of the convective wind instability

the decrease of the degree of anisotrep that the rate of The convective wind instability results in formation of
dissipation of the kinetic energy of the mean-velocity field|5rge-scale semiorganized structures in the form of cells
decreases with decrease ®fand it causes decrease of the (convective windl in turbulent convection. The mechanism
threshold of the instability. The instability does not occur st the convective wind instability, associated with the first

when 1.53<L,/L. <2.55 for allz. term ®oc — 7y (V- UL)CI)ﬁ‘ in the expression for the turbu-

Figure 2 shows the growth rate of the instability as func- .
. : lent flux of entropy{see Eq(22)], in the shear-free turbulent
tion of the parametet/l, [Fig. 2@)] and of the parameter convection ata>0 is as follows. Perturbations of the verti-

L,/L, [Fig. 2b)] for e=0 and = 2(the first range of the [ ) ]
instability). This range of the instability corresponds to the €@l velocityU, with 9U,/9z>0 have negative divergence of

pancake thermal structures of the background turbulent corihe horizontal velocity, i.e., di, <O (provided that diwJ
vection (,/I, ~2/3 for «=2). The maximum of the growth ~0). This results in the vertical turbulent flux of entropy
rate of the instability §/,,~=0.045r, 1Y reaches at the scale o0 — dile , and it causes an increase of the mean entropy
of perturbations.,~9.4 (for L,/L, ~0.76). In this case (Sxg~12y,d*/u2) [see Eqs(27), (28), and(32)].

the threshold of the instability . ~4.2,. On the other hand, the increase of the mean entropy in-
%reases the buoyancy for@f&gg and results in the increase

range of the instability 4= —3). Note that this range of the
d Y& ) g iof the vertical velocityU o 708"

: - 'S and excitation of the
instability corresponds to the thermal structures of the bac . e 9 -
ground turbulent convection in the form of columns/(, large-scale instabilitysee Eqs(25) and_(32)]. Similar phe-

~2 for a=—3). In contrast to the first range of the insta- Nomenon occurs in the regions wittJ,/9z<0 whereby
bility, the growth rate increases with,/L, in the whole divU,>0. This causes a downward flux of the entropy and
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]

-3
(I)J_

FIG. 5. The effect of a nonzer@x fl)ﬁ‘ which induces the hori-
zontal flux of the mean entrop®, and causes increaggecrease
the mean entropy in the regions with upwaddwnward fluid flow

whena<—3/2.
Al
| ][ a2 mean entropy results in the increase of the buoyancy force,
]I Wﬂﬂ the mean vertical velocity , and the mean vorticity. The

latter amplifies the horizontal turbulent flux of entrog,

and causes the large-scale convective wind instability. This
\/ mechanism determines the second range for the convective

wind instability. The first term in the turbulent flux of en-

tropy at «<0 causes a decrease of the growth rate of the
FIG. 4. The effect of a nonzero div, which causes a redistri- instability because, whea<0, it implies a downward tur-
bution of the vertical turbulent flux of the entropy and results in abulent flux of entropy in the upward flow. This decreases
formation of a large-scale circulation of the velocity field. Fluid both, the mean entropy and the buoyancy force. Note that,
flow with div U, <0 (a) produces regions with vertical fluxes of whena<—3/2, the thermal structure of the background tur-
entropy and vertical fluid flowb) in these regions. bulence has the form of a thermal column or jetsfl |

>3.34. Even fora<0, the ratiol /I, >1.54.
the decrease of the mean entropy. The latter enhances the

downward flow and results in the instability which causes
formation of a large-scale semiorganized convective wind
structure. Thus, nonzero dlJ, causes redistribution of the Let us consider turbulent convection with a linear shear
vertical turbulent flux of entropy and formation of regions U(O)z()\/ro)zey and a nonzero vertical flux of entropP
with large vertical fluxes of entrop§see Fig. 4 This results :cl)geq)e, where\ is dimensionless parameter which charac-
in a formation of a large-scale circulation of the velocity terizes the shear. We also consider an isentropic basic refer-
fieId._ .ThiS mechanism determines the first range for the inence state, i.e., we neglected a term which is proportional to
stability. _ _ o (Np+ S 9z)UY in Eq. (27). We seek for a solution of
The large-scale circulation of the velocity field causes . —1 o

o — : gs. (25-(27) in the form UM =Vexp(ypst)cosOt
nonzero mean vorticity, and the second terfproportional +K-R). Here, for simplicity, we study the casé,= 0.
to (a+3/2)(wx @] )] in the turbulent flux of entropy22) is
responsible for the formation of a horizontal turbulent flux of
the entropy. This causes a decrease of the growth rate of the
convective wind instabilitffor «>0), because it decreases  Using a procedure similar to that employed for the analy-

the mean entropgin the regions With?Uz/(?Z>O. The net Sis of the convective wind instability we found that the

effect is determined by a competition between these effectgrowth rate of the convective shear instability is determined

which are described by the first and second terms in th®Y a cubic equation

turbulent flux of entropy22). The latter determines a lower - ~ o~ » 3

positive limit a,,,=3/8 of the parametes. (y+B3)(y"+Ay=B)+8B%,=0, (39
When o< — 3/2 the signs of the first and second terms in

expression(22) for the_turbulent flux of Qntropy ghangg_. where T),/:('yinst'l'iQ)/VTKzr 70:(1/2)(:%/3()\)()2/3’ Co

Thus, another mechanism of the convective wind instability_ _ _ a(eq) (eq _

: ted with th g ; tor the = 18ub, /5, b, = —®FEN1+2/2)/ (D] ), and By=c,

Is associated with the second term in eXpresm or the +CyX, c,=¢g(q+1)/4. Thegrowth rate of the instability for

turbulent flux of entropy whemx<<—3/2. This term de- B>1 is given by

scribes the horizontal flux of the mean entrofyc 7o(«a

+3/2) (wX ®f). The latter results in the increagdecrease

of the mean entropy in the regions with upwadbwnward Yins= VK2 B 3y0+ ﬂll?»i , (36)
fluid flows (see Fig. 5 On the other hand, the increase of the 12y,

IV. CONVECTIVE SHEAR INSTABILITY

A. The growth rate of convective shear instability
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Lz/LJ WO
4.5} 015 |01 e=50,a=-3  [°*® 0.041
L 0.03}
4 Instability
0.02
3.5t
0.01 08
3r 0 /ﬁ
2.5t -2 e=0, 0=2, A=0.1
-0.01 . . ) )
2r 10 20 30 40 L/1,
1.5}
5 QTO
1T Instability 0.03
08¢ 0.02}
0 10 20 30 40 /1
° 0.011
FIG. 6. The range of parameterk,(L, ;L/ly) for which the 105 10
convective shear instability occurs, far=2, e=0, anda=—3, 0 e=0, 0=2, A=0.1
g =5 for different values of the shear=0.05;0.1;0.15.

10 20 30 40 L/1,
whereC = X(c;—cgX). The instability results in the genera-
tion of the convective shear waves with the frequency T
0.041
C
Q=3r1K?| g7y~ | 37 003}
12’}/0

0.02}
The flow in the convective shear wave has a nonzero hydro: 001}
dynamic helicity '

0
_ _ 2N QK V2 -
X=VA(VxV)=— 3g 001
To( Q%+ Ving)
) ) Qt
Therefore, forA>0 the mode withK,>0 has a negative 0
helicity and the mode witiK,<<0 has a positive helicity.

Figure 6 shows the range of parametkggl | andL/l, 0.1f

where the convective shear instability occurs, for2, ¢

=0 and for different values of the sherr0.05;0.1;0.15.
There are two ranges for the instability. However, even a
small shear causes an overlapping of the two ranges for thi
instability and the increase of shear)(promotes the con- 0
vective shear instability.

Figures 7 and 8 demonstrate the growth rates of the con-
vective shear instability and the frequencies of the generated £, 7. The growth rates of the convective shear instabitily
convective shear waves for the first€2) and secondd  and(c) and the frequencies of the generated convective shear waves
=—23) ranges of the instability. The curves in Figs. 6—8b) and (d) for the first (@=2) range of the instability and fos
have a poinL, whereby the first derivative y;,/dK has @ =0. Corresponding dependencies on the paranigigrare given
singularity. At this point there is a bifurcation which is illus- for differentL,/L, and vice versa.
trated in Figs. 7 and 8. The growth rate of the convective
shear instability is determined by cubic algebraic equatiorfor the parametek ,/L, when the convective shear instabil-
(35). Before the bifurcation pointl(<L,), the cubic equa- ity occurs. For large enough parametter L, the upper limit
tion has three real rootsvhich corresponds to aperiodic in- of the range of the instability does not exist, e.g., for
stability). After the bifurcation point (>L,), the cubic =0.05 the parametdr, =47, and forA=0.15 the param-
equation has one real and two complex conjugate rootsterL ,=13,.

When L>L, the convective shear waves are generated. Note that wherl <L, the convective shear waves are not
When the parametekt,/L, increases, the valué, de- generated and the properties of the convective shear instabil-
creases. Wheh,>L  , the bifurcation point. , <L.,. Fora ity are similar to that of the convective wind instability
given parametet/l, there are the lower and upper bounds{compare Fig. &) and the curve fot./l;=6 in Fig. 8c)].

0.05

0 0.5 1 15 2 LJ/L
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FIG. 9. The effect of a nonzera_”xtl)* which causes a redis-

'Yto T T T VHQ\ VO wind s
003 [0 &=5, 03, 1~0.1 a | | i .
e | vi4
_ _ oI N |
0.01 (b " i Y : Ae Y
3.0 o a x (b ! Lo i
0 —— @ b ‘3 C:D [0} H :
5 © S
/ / / or S04
-0.01¢ . . . . o d
10 20 30 /1,

2.0
40
2.0 b vortices @ andb) with opposite directions of the vorticity, , the
3.0 turbulent flux of entropy is directed towards the boundary between

Q1 tribution of the horizontal turbulent flux of the entropy. For two
0.85 i

0.04} the vortices. The latter increases the mean entropy between the
0.03f vortices @ andb). Similarly, the mean entropy between the vorti-

ciesb andc decreases.

B. Mechanism of convective shear instability

The mechanism of the convective shear instability associ-
ated with the last term in expressi@®2) for the turbulent

flux of entropy[ ®o TO((T)HX(I)*)] is as follows. The vortic-
ity perturbations;E(VxU)Z generate perturbations of en-
tropy: S~ Y87 /ug) @3 N~ exp(ml6)w. Indeed, con-
sider two vortices(say, “a” and “b” in Fig. 9) with the
opposite directions of the vorticith;H . The turbulent flux of

[ 35 17 00 |
— entropy is directed towards the boundary between the vorti-
/ ] ces. The latter increases the mean entropy between the vor-
_ . . . 87 tices (@ andb).
25 3 3.5 4 4.5 L

/L Similarly, the mean entropy between the vorticiels” “
and “c” decreases(see Fig. 9. Such redistribution of the

Q1 mean entropy causes increas¢decrease of the

81 \ buoyancy force and formation of upwardownward
0.08 flows between the vorlicesa and b (b and c): U,
0061 ocﬂl’3)\‘2/3groe£p(—iw/3)s Finally, the vertical flows gen-

' erate vorticity wx — 8~ Y\ Y3exp(n/6)U,/l,, etc. This re-
0.04 sults in the excitation of the instability with the growth rate
0.02} ¥inst< K?? and the generation of the convective shear waves

ok with the frequencyQ) K23, For perturbations with,=0

25 3 35 4 45 L/L the convective shear instability does not occur. However, for
these perturbations witk, =0 the convective wind instabil-
ity can be excitedsee Sec. Il, and it is not accompanied by
the generation of the convective shear waves. We considered

FIG. 8. The growth rates of the convective shear instabiily —here a linear shear for simplicity. The equilibrium is also
and(c) and the frequencies of the generated convective shear waves

. . . ) T2
(b) and(d) for the second ¢= —3) range of the instability and for possible for a quadratic shear, i.e., W=z g -
£=0. Corresponding dependencies on the paranégtgrare given

for differentL,/L, and vice versa. V. DISCUSSION

The convective wind theory of turbulent sheared convec-

However, forL>L, these two instabilities are totally differ- tion is proposed. The developed theory predicts the convec-
ent. The properties of the convective shear instability in thdive wind instability in a shear-free turbulent convection.
first and in the second ranges of the instability are differentThis instability causes the formation of large-scale semiorga-
In particular, in the second range of the convective sheanized fluid motions(convective windl in the form of cells.
instability the growth rate monotonically increases, and theSpatial characteristics of these motions, such as the mini-
frequency of the generated convective shear waves decreasesim size of the growing perturbations and the size of per-
with the parametek ,/L | . turbations with the maximum growth rate, are determined.
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This study predicts also the existence of the convective
shear instability in the sheared turbulent convection. This —
instability causes the formation of large-scale semiorganizec Y REF‘I}J%%,?R
fluid motions in the form of rolls§sometimes visualized as /
the boundary layer cloud stregt3hese motions can exist in TR
the form of generated convective shear waves, which have < o T T i
nonzero hydrodynamic helicity. Increase of shear promotes bJ STRUCTURES
excitation of the convective shear instability.

Here the proposed theory of turbulent sheared convectior
distinguishes between the true turbulence, corresponding ti
the small-scale part of the spectrum, and the convective winc
comprising of large-scale semiorganized motions caused b
the inverse energy cascade through large-scale instabilities
The true turbulence in its turn consists of the two parts: the
familiar “Kolmogorov-cascade turbulence” and an essen-
tially anisotropic tangling turbulence caused by the tangling
of the mean-velocity gradients with the Kolmogorov-type
turbulence. These two types of turbulent motions overlap in
the maximum-scale part of the spectrum. The tangling turbu-
lence does not exhibit any direct energy cascade.

MEAN-FLOW OBJECTS

y ——— —X

TANGLING

Inverse cascade

It was demonstrated here that the characteristic length ang |- . through
. : . . O | " TRUE" TURBULENCE
time scales of the convective wind motions are much Iargerg large-scale
than the true-turbulence scales. This justifies the separatio® | _(Kolmogorov cascade) instability

of scales which is required for the existence of these twoz
types of motions. It is proposed that the term turbulefore
true turbulencebe kept only for the Kolmogorov and tan-
gling turbulence part of the spectrum. This concept implies
that the convective windas well as semiorganized motions  f|g. 10. Scheme of interactions between turbulent and mean-
in other very high Reynolds number flowshould not be  fiow objects which cause a large-scale instability.

confused with the true turbulence. The diagram of interac-

tions between turbulent and mean-flow objects which cause . _
the large-scale instability and formation of semiorganized® CONVective boundary layer with a depth of about 1 to

structures is shown in Fig. 10. 3 km. The ratio of the minimum size of structures to the
Now let us compare the obtained results with the propermaximum scale of turbulent motions Is/l,=5-20. The
ties of semiorganized structures observed in the atmospherfteveloped theory predicts the following parameters of the
convective boundary layer. The semiorganized structures agonvective cells: the aspect ratlo,/L, ranges from very
observed in the form of rolls(cloud streets or three- small to 1, and./l;=5-15. The characteristic time of for-
dimensional convective cellgcloud cell3. Rolls usually mation of the convective cells 74/ i, Varies from 1 to 3
align along or at angles of up to 10° with the mean horizon-. Therefore the predictions of the developed theory are in a
tal wind of the convective layer, with lengths from 20 to good agreement with observations of the semiorganized
200 km, widths from 2 to 10 km, and convective depthsstructures in the atmospheric convective boundary layer.
from 2 to 3 km[2]. The typical value of the aspect ratio Moreover, the typical temporal and spatial scales of struc-
L,/L,~0.14-1. The ratio of the minimal size of structures tures are always much larger than the turbulence scales. This
to the maximum scale of turbulent motions liglo=10 justifies the separation of scales which was assumed in the
—100. The characteristic life time of rolls varies from 1 to syggested theory.
72 h[1]. Rolls may occur over both, water surface and land
surfaces. The suggested theory predicts the following param-
eters of the convective rolls: the aspect rdtigL , ranges
from very small to 1, and./l,=10—100. The characteristic
time of formation of the rolls~ 74/ i, varies from 1 to 3 h. We have benefited from valuable suggestions made by
The life time of the convective rolls is determined by a non-Arkady Tsinober. The authors acknowledge useful discus-
linear evolution of the convective shear instability. The lattersions with Erland Kben and Branko Grisogono at a seminar
is a subject of a separate ongoing study. at the Meteorological Institute of Stockholm University. This
Convective cells may be divided into two types: open andwork was partially supported by The German-Israeli Project
closed. Open-cell circulation has downward motion and cleaCooperationDIP) administrated by the Federal Ministry of
sky in the cell center, surrounded by cloud associated witlEducation and ReseardBMBF), by the INTAS Program
upward motion. Closed cells have the opposite circulatiorFoundation(Grants No. 00-0309 and 99-34&y the SIDA,
[2]. Both types of cells have diameters ranging from 10 toProject No. SRP-2000-036, and by the Swedish Institute,
40 km and aspect ratids,/L , ~0.05-1, and both occur in Project No. 2570/2002381/N34.

"TANGLING”
TURBULENCE
(no-cascadc)

TURBULE
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APPENDIX A: DERIVATIONS OF EXPRESSIONS FOR dissipations of energy, the flux of entropy and the second
THE REYNOLDS STRESSES AND TURBULENT moment of entropyH are determined by the background tur-
FLUX OF ENTROPY bulent convection described by E¢$2)—(17). In derivation

of Eq. (A6) we wused an identity poSV(P/pg)
=V (yPS?)/2+ yPoS?Ny+ (y/2—1)pogS?, and we as-
sumed thaB=P/yP,, i.e., we neglected fluctuations of den-
sity p/pg. Equations(A5)—(A7) allow us to determind, ,
oW ®*, andH, in the background turbulent convectigaee
at”+V-FU:IU—DU, (A1)  below.

Using Egs.(6) and (7) we derived equations for the fol-
lowing second moments:

Equations(2) and (3) yield the following conservation
equations for the kinetic energyV,=pov?/2, for Wg
=poS?/2 and forW®=p,Sv:

IWs

T TV FeTlsThs (A2 f, (K R)=(u,(k R)u (—k R)), (A8)
Wi . - (—
é]a_tl—i_VJFﬁ):I:D_Drbv (A3) (Dl(k!R) (S(k,R)Ul( kvR)>! (Ag)
F(k,R)=(s(k,R)w(—k,R)), (A10)
wherel,=—po(v-9)S, ls=—1,0%g? and1®=—pg[v(v
-Np) +S?g]+ (P/po) V(Spo) are the source terms in these G(k,R)={w(k,R)w(—k,R)), (A11)
equations, D, = —po(v-f,), Ds=poS(V-F,), and D=
—poSt,+ (po/To)V(V-F,) are the dissipative termsr, H(k,R)=(s(k,R)s(—k,R)), (A12)

=V(W,+P), Fs=VWs, and F;,=p,Svv;+SPs; are the
fluxes. EquationgAl) and(A2) yield conservation equation wherew=(V Xu), and we use a two-scale approach, i.e., a

for WE=WUQ§/g2+WS, correlation function is written as follows:
IWE i
T"‘V'FE:_DE, (A4) <Ui(X)Uj(y)>:f<Ui(k1)Uj(k2)>eXFi|(k1'X+k2'y)]

where Dg=D,02/g?+ Dg is the dissipative term anég _
=F,02/g?+Fg is the flux. Equation/A4) does not have a Xdkldkff fij(kR)exp(ik-r)dk,
source term, and this implies that without dissipatid@g (

=0) the valuefWgdV is conserved, where in the latter for-

mula the integration is performed over the volume. For the fij(klR):f (Ui(k+K/2)uj(—k+K/2))expiK-R)dK
convectionQZ<0 and, thereforeWg~W,|QZ|/g2.

Using Egs.(A1)—(A3) we derived balance equations for (see, e.g.[37,38), whereR andK correspond to the large
the second moments. In particular, averaging Héd)-  scales, and andk to the small scales, i.eR=(x+Y)/2, r
(A3) over the ensemble of fluctuations and subtracting from=y—y K=k, +k,, k=(k;—k,)/2. This implies that we
these equations the corresponding equations for the meaisumed that there exists a separation of scales, i.e., the
fields: poU?/2, poS?/2, poSU, yields maximum scale of turbulent motiothg is much smaller than

the characteristic scale of inhomogeneities of the mean

J  — — 2 fields. In particular, this implies that<I,<R. Our final re-
g UV Tept 26 VUit 20 gt p_OV Ve sults showed that this assumption is indeed valid. Now let us
calculate
L P (A5)
To0x 2)’ afij(ky,ka) dun(ky)
) . — =\ Pinlk)—2—uj(ka)
St UV @i+ (@ V)U+ £;;(Np + VS) - Sge(4—y)H dup(ks)
+ ui(kl)Pjn(kZ)Ta (AL13)
vy (YPO)H(N il (1+P), (A6)
—Vvvy.. — | —— = — N,
po ' " Po I 2700, aPj(ky,ka) dun(kz) ds(kq)
=\ S(k)Pj(ke)—2— )+ ——uj(ka) ),
. (Al4)

(A7)

J _
E‘FUV)H"‘Z(DJ(Nb‘FVS)J:_ 7_05*,

where we multiplied equation of motio®) rewritten ink
where Prv/k is the Prandtl number,v is the space byPj(k)=&;—k; in order to exclude the pressure
kinematic viscosityWe=pof,,u/2+(pu), ¥ij=po(syu;)  term from the equation of motion.

+8j(yPoH/2+(sp)), and we took into account that the  Thus, equations fof;;(k,R) and®(k,R) read
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afij(k) (11)] which allows us to express the third momef{g‘s PN,
=lijmnfmn(K) + N;;(k), (A15) ; ;
at I ] and Hy in Egs. (A15), (A16), and (A23) in terms of the
second moments. Here we define a background turbulent
ad;(k) . convection as the turbulent convection with zero gradients of
=1;;®;(k) +Mi(k), (A16) : UL —
at =) the mean fluid velocity ;U;=0)]. The background turbu-
lent convection is determined by the following equations:
where
. — ‘9fi(io)(k) (0)
ijmn=2(KiqOmpSin+ KigSimSpn) VoUq Ny (k) (A24)
BimBia Bt 8108 O i Binkq—| V.0, IO (k)
— | €imCjaCnp™ C€iginCmp= CimYjn q(;_kp prar I&t —MO(k), (A25)
(A17)
aHO)(k
. — g — %=Q(O)(k). (A26)
Iij:ZkianUn+5ijkn0-,TVmUn_VjUiv (A18)
m

A nonzero gradient of the mean fluid velocity results in de-
Nij (K) = geml Pim(K) @ (K) + Pjm(K) @i(— k) ]+ (k), viations from the background turbulent convection. These
(A19)  deviations are determined by the following equations:

M, (K) = — Frui(Np+ VS) i+ gemPim(K)H+ OV, oty =t . fij— i
(A20) Tzlijmnfmn(k)_ k) (A27)
and hereafter we consider the case wthU=0 (i.e., A D — DOy O, — o0
=0). Heref}j and®}" are the third moments appearing due " hi®ik- R (A28)
to the nonlinear terms. Equatiof&15) and (A16) are writ-
ten in a frame moving with a local velocity of the mean A(H—H©) H-H®O
flow. In Egs.(A15)—(A20) we neglected small terms which =— (A29)

are of the order 0D(V3U) andO(V?f;;;V2®;). Note that " (k)
Egs. (A15)—(A20) do not contain the terms proportional to where the deviationgcaused by a nonzero gradients of the
O(V2U). The first term in the right hand side of Eq&15) ~ mean fluid velocity of the functionsN;; (k) —N{(k) and
and(A16) depends on the gradients of the mean fluid velocM; (k) — Mi(o)(k) from the background state are described by
ity (V;U;). Equations for the second momei@igk), F(k), the relaxation terms: —(fj—f)/7(k) and —(P;
andH (k) read —®®)/7(k), respectively. Similarly, the deviatio®(k)
—QO)(k) is described by the term (H—H )/ (k). Here
afi; (k) we assumed that the correlation timgk) is independent of

g ! the gradients of the mean fluid velocity.

Now we assume that the characteristic times of variation
IF (K) ~  dD;(k) of the second moments;(k), ®;(k), andH(k) are substan-
o (exXky)j——, (A22)  tially larger than the correlation time(k) for all turbulence

scales. This allows us to determine a stationary solution for
IH(K) the second moments;(k), ®;(k), andH(k),

=k, (A23)

dG(k)
at

= (exky)i(exky);

(A21)

fij (k)= F(K) + 7(K) T jmaf QA(K), (A30)

where Q(k)=—2®(k)-(N,+VS)+Hy, and Hy is the
third moment appearing due to the nonlinear terﬁﬁk
—(i/2)V, k,=k+(i/2)V. The terms~® in the tensor H(k)=H®©(k), (A32)
N;j;(k) [see Egs(Al5) and (A19)] can be considered as a
stirring force for the turbulent convection. On the other handwhere we neglected the third and higher-order spatial deriva-
the terms~ (N, +VS) in Egs.(Al16), (A20), and(A23) are tives of the mean-velocity field.
the sources of the flux of entroplh and the second moment  For the integration ink space of the second moments
of entropyH. Note that a stirring force in the Navier-Stokes f;;(k), ®;(k), ... ,H(k,R) we have to specify a model for
turbulence is an external parameter. the background turbulent convection. We used the model of
Since the equations for the second moments contain thine background turbulent convection determined by Egs.
third moments, a problem of closure for the higher moment$12)—(17). For the integration irk space we used identities
arises. In this study we used theapproximation[see Eq. given in Appendix C. The integration ik space of Egs.

®;(k)= DO (k) + (k) T;; {7 (k), (A31)
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(A30) and(A31) yields the following equations for the Rey- whereb,=c,+ c,sirfd and bs=a,+ c3cosd. The function

nolds stresses and the turbulent flux of entropy:

=10 o (YU + 50+ a6 )T,

o —  _  au,
—CZE(Gin'Feri)'FE(Cgeij'f'a:;aij) ,

30 92 1Yz 2 3 z

- %{2@* X €)@+ 5(®* - V)U—2(d*.V,)

XU+ (3—q)(eX V)[®* - (exU)]—(q—1)[(®*
xe)-V](exU)}, (A34)

where vy=74f, /16, ®=(VXU),, a;=c1+Cy, a,=—¢(q
—-1)/4, ag=—¢(5—q)/4, b;=(8a—3)(q+1), b,=3(9
—q)—2a(g+1), b3=(2a+3)(q+1), c;=(g+3)/5, c,
=g(q+1)/4,cy3=¢e(q+3)/4.

Equations(A33) and (A34) imply that there are two con-

Dy(t,K) must be positive for statistically stationary small-
scale turbulence. The latter is valid whensatisfies condi-
tion (21).

APPENDIX B: THE MODEL OF THE BACKGROUND
TURBULENT CONVECTION

A simple approximate model for the three-dimensional
isotropic Navier-Stokes turbulence is described by a two-
point correlation function of the velocity field;;(t,x,y)
=(u;(t,x)u;(t,y)) with the Kolmogorov spectrumn/(k)
k™% and q=5/3. The turbulent convection is determined
not only by the turbulent velocity fieldi(t,x), but by the
fluctuations of the entropg(t,x). This implies that for the
description of the turbulent convection one needs additional
correlation functions, e.g., the turbulent flux of entropy
D;(t,x,y)=(s(t,x)u;(t,y)) and the second moment of the
entropy fluctuationsH(t,x,y) ={s(t,x)s(t,y)). Note also
that the turbulent convection is anisotropic.

Let us derive Egs(12) and(13) for the correlation func-
tions f;; and®; . To this end, the velocity, is written as a
sum of the vortical and the potential components, ie.,
=VXx(Ce)+V, b, where o=(Vxu),=—A,C, A, p=
—du,/dz, V,=V—¢g(e-V). HereafterA=0. Thus, ink
space the velocity is given by

tributions to the Reynolds stresses and turbulent flux of en- . (k) = (k/k, ) e,,Pim(K)u,(K) — i (€XK);w(K)/K2].

tropy which correspond to two kinds of fluctuations of the
velocity field. The first contribution is due to the Kolmog-

orov turbulence with the spectrumeck™ %), and it corre-

(B1)

Multiplying Eqg. (B1) for uj(k,) by uj(k;) and averaging

sponds to the background turbulent convection. The seconaver the turbulent velocity field we obtain
kind of fluctuations depends on gradients of the mean- © . o
velocity field and is caused by a tangling of gradients of the ) = (kIk ) [ FO(K) emnPim(K) Pjn(k)
mean-velocity field by turbulent motions. The spectrum of () 2
the tangling turbulence #/(k) 7(k) k'~ 29 [see Eqs(A30) +(exk)i(exk); G (k)/k, (B2)
and (A31)]. These fluctuations describe deviations from th
background turbulent convection caused by the gradients
the mean fluid velocity field.

Now we caEuIate a dissipation of the kinetic energy of
the mean flowJ, (KIK1 ) ?mnPim(K) Pjn(K) =) + kij —kij =Py (k) — P (k,),

(B3)

here we assumed that the turbulent velocity field in the
ackground turbulent convection is nonhelical. Now we use
an identity

Dy=—(L2(f;—fH(VU;+VU),  (A35) . e derived from
using a general form of the velocity fieldU; ky(K.&ij +eki +ejki) =kijk?—kik? .

=Vi(t,K)eprK-R), where . .
Here we also used the identity k(Xe)i(k, Xe€);
B K \2 B =k?P{)(k,). Substituting Eq(B3) into Eq.(B2) we obtain
vi(t,K>=(—) [Py (K)ejVy(t,K) —iK ~2(exK)jm(t,K)], .
Ky (A36) FP00) = (kik )P F, FOK) Py (k)
+[GO(K)/K2— £, fO(K) TP (k, )} (B4

andw=(V xV),. The result is given b
0=( )z g y Thus two independent functions determine the correlation
K \2 function of the anisotropic turbulent velocity field. In the
DU(t,K)=vT[b4(—) [KAV2(t,K) + @2(t,K)] isotropic ~ three-dimensional turbulent  flowG(¥(k)/k
K. =f,f(O(k) and the correlation function reads

n bSszg(t,K)] , (A37) (k) =, W(K)Pjj (k)/87k>. (B5)
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In the isotropic two-dimensional turbulent flo®©(k)/k?> ties, where kX q<3. Thus, the two-point correlation func-
>f, f(O(k) and the correlation function is given by tion rbgo)(r) of the flux of entropy for the background turbu-
lent convection is given by

(q—1)(1+T cogd) rya-t
1—( o +1)( ) |

fP(k)=GO(k) P (k, /K . (B6)

A simplest generalization of these correlation functions is anbgo)(r)=(<1>* -e)
assumption thaG©(k)/[k?f, f©(k)]—1=e=const, and

thus the correlation functiorﬁi(jo)(k) is given by Eq.(12).

This correlation function can be considered as a combinatiogimple analysis shows that 3/(q—1)<a<3, where we
of Egs. (BS) and (B6) for the three-dimensional and two- 4 into account thad®{)(r)/ar <0 for all anglesd. The
dimensional tur_bulence. _\Nha%wdepgnds on th_e wave vector parameter « can be presented asm=[1+£&(q+1)/(q
k, the correlation functlonfi(j )(k) is determined by two —1))/(1+&3) andé=(1, /1,)9 1—1, wherel, andl, are
spectral functions.

Now we derive Eq(13) for the turbulent flux of entropy.
Multiplying Eq. (B1) written for u;(k,) by s(k;) and aver-
aging over turbulent velocity field we obtain E@.3). Mul-
tiplying Eq. (13) by i(k, X€); we get

(B13)

the horizontal §=m/2) and the vertical §=0) scales in
which the correlation functionb{®)(r) tends to zero. The
parameteré describes the degree of thermal anisotropy. In
particular, whenl, =1, the paramete(€=0 anda=1. For
|, <l, the parameteé=—1 anda=—3/(gq—1). The maxi-
F(O)(k)=i(kL><e)'<I)£0)(k). (B7) mum valueé,,,, of the parametet is given by &,,,=q—1
for «=3. Thus, fora<1 the thermal structures have the
Now we assume thab(io)(k);xq)ff(o)(k). The integration in for_m of column or thermal jetsl(<l,), ano] a>1 there
k space in Eq(B7) yields the numerical factor in Eq15). exist the pancake therm_al structurds %1,) in the back-
Note that for simplicity we assumed that the correlation9round turbulent convection.
functions F(©(k) and f(®)(k) have the same spectrum. If
these functions have different spectra, it results only in a  APPENDIX C: THE IDENTITIES USED FOR THE
different value of a numerical coefficient in EA.5). INTEGRATION IN k SPACE
Now let us discuss the physical meaning of the parameter
a. To this end we derived the equation for the two-point
correlation functiond{?)(r)=(s(x)u(x+r)) of the turbulent
flux of entropy for the background turbulent convection f

To integrate over the angles knspace of Eqs(A30) and
(A31) we used the following identities:

[which corresponds to Eq14) written in k spacé. Let us KijmndQ = (47/15) Ajjmn

rewrite Eq.(14) in the following form:
quo)(k):(cp* .e)[k2+]"(e.k)2]a)w(k)1 (B8) f kijsinzedﬂ=(877/15)(25ij—e”-),

(k) =—(3— a)W(k)/8mk*, B9 .
wll) =~ (3= )Wk (B9) J KijmnSir? 0dQ = (877/105)(3Ajmn— Cijmn).
whereI'=3(a—1)/(3—«). The Fourier transform of Eq.
(B8) reads .
f kﬁdQZZWP”(e),
®O(r)=(®*-g[A+T (e V)?]d,(r),  (B10)

where®,,(r) is the Fourier transform of the functiah,,(k). f kﬁ K dQ = (m/3)[Pi;(€)(Smnt€mn) + Pin(€)Pnj(e)
Now we use the identity
, + Pim(e) Pnj(e)]-
ViVi®, (r)=¢(r) & +ri’ (r)ri;, (B11)

where (r)=r ®.(r) and ¢'(r)=dy/dr. Equations e,-f ki kiKmok 2dQ = (27/3)[ Pin(€)€m+ Pim(€)ey],
(B10) and (B11) yield the two-point correlation function

d(r): 3
ejf kiikjkmnkfzdﬂz(477/3)[Pin(e)em+ Pim(E)en],
®O(1r)=(@* ) w(r>+r¢'<r)—1”c°§~a)
z 3+r )’ where  P;j(€)=8;—€j, Kjmn=kikikmka/kK? ~ d
(B12  =sin#déde, and
whered is the angle betweemandr. The functiony(r) has Aijmn= 8ij SmnT SimOnjt 6inOmj,

the following propertiesy(r=0)=1 and ¢ ¢'),-0=0, e.g.,
the functiony(r)=1—(r/l)9 ! satisfies the above proper- [ijmn= 8ij€mnT 6im€jnt 9in€jmt Sjm€inT Sjn€im+ Imn€ij »
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Yijm=Aijmn€n= ij€m+ Sim€j T Sjmei ,
€mYijm= Gij T 28&;j ,
enl'ijmn= Yijm+3€ijm,  €mnlijmn= &i; +5€ij,

Pll(k)+8Pﬁ(kL):(1+8)5” —Seij _kij —SkiJ] .

PHYSICAL REVIEW B6, 066305 (2002

J 7(K)Kmnf P(K)dk= (f, 70/6)[ (£/4)(T}jmn— Eijmn)

_(1/5+ 8/4)Aijmn+(1+8)5ij 5mn
- (8/2)5ijemn_8eij Omnl,

The above identities allow us to calculate the following in- where

tegrals(which were used for the derivation of equations for

the Reynolds stresses and turbulent flux of entyopy

fT(k)ki,-@g?)(k)dk:(cb*-e)(70/30)[155ijem+10aeijm

—(2a+3) yijm T+ 6bjjm],

Bijm= 6ij(PT)m+t [&im(P* X&)+ £jm(P* Xe)i]ey,

and we used an identitgye ;g P* X €) mAijmn=bijp -
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