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Magnetic fluctuations with a zero mean field in a random fluid flow with a finite correlation time
and a small magnetic diffusion
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Magnetic fluctuations with a zero mean field in a random flow with a finite correlation time and a small yet
finite magnetic diffusion are studied. Equation for the second-order correlation function of a magnetic field is
derived. This equation comprises spatial derivatives of high orders due to a nonlocal nature of magnetic field
transport in a random velocity field with a finite correlation time. For a random Gaussian velocity field with a
small correlation time the equation for the second-order correlation function of the magnetic field is a third-
order partial differential equation. For this velocity field and a small magnetic diffusion with large magnetic
Prandtl numbers the growth rate of the second moment of magnetic field is estimated. The finite correlation
time of a turbulent velocity field causes an increase of the growth rate of magnetic fluctuations. It is demon-
strated that the results obtained for the cases of a small yet finite magnetic diffusion and a zero magnetic
diffusion are different.
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I. INTRODUCTION

In recent time magnetic fluctuations are a subject of
tensive study~see, e.g.,@1–10#!. There are two types of mag
netic fluctuations: the fluctuations with a zero and a nonz
mean magnetic field. These two types of magnetic fluct
tions have different mechanisms of generation and differ
properties. Magnetic fluctuations with a zero mean magn
field in a random velocity field are generated by the stret
twist-fold mechanism~see, e.g.,@1,2#!. On the other hand
magnetic fluctuations with a nonzero mean magnetic fi
are generated by a tangling of the mean magnetic field b
random velocity field~see, e.g.,@11–14#!.

In the present paper we considered only magnetic fluc
tions with a zero mean magnetic field that were observ
e.g., in the ionosphere of Venus~see, e.g.,@15,16#!, in the
quiet sun~see, e.g.,@14#! and probably in galaxies~see, e.g.,
@17#!. In spite of that the dynamics of a mean magnetic fi
at least in kinematic~linear! stage is well studied~see, e.g.,
@11–14,17#!, a generation of magnetic fluctuations with
zero mean magnetic field even in kinematic stage still
mains a subject of numerous discussions. Most studies s
ing with a seminal paper by Kazantsev@18# were performed
in the d correlated in time approximation for a random v
locity field ~see, e.g.,@1,2,8,9#, and references therein!. The
use ofd correlated in time approximation for a random v
locity field is a great mathematical convenience.

However, a real velocity field in astrophysical and ge
physical applications cannot be considered as thed corre-
lated in time velocity field. As follows from the analysis i
@19,20# a finite correlation time of the velocity field does n
essentially change a form of the mean-field equations and
growth rates of the mean fields. In particular, there is a w
range of scales in which the mean-field equations are
second-order partial differential equations~in spatial deriva-
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tives!. However, the effect of a finite correlation time of th
velocity field on magnetic fluctuations is poorly understoo
It is not clear how conditions for the generation of magne
fluctuations are changed in a random velocity field with
finite correlation time.

In this study we took into account a finite correlation tim
of a random velocity field and a small yet finite magne
diffusion caused by an electrical conductivity of fluid. W
derived an equation for the second-order correlation func
of magnetic field in a random velocity field with a finit
correlation time using a method described in@19–21#. The
derived equation comprises spatial derivatives of high
ders. For a random Gaussian velocity field with a small c
relation time the equation for the second-order correlat
function of the magnetic field is a third-order partial diffe
ential equation. We calculated the growth rate of the sec
moment of magnetic field for this velocity field and a sm
magnetic diffusion with large magnetic Prandtl numbers.
the limit of extremely small correlation time of a rando
velocity field we recovered the results obtained in thed cor-
related in time approximation for a random velocity field.

Recently, the finite correlation time effects of a rando
velocity field in the kinematic dynamo in the case of a ze
magnetic diffusion have been studied in@10#. We will show
that the results obtained for the cases of a zero magn
diffusion and of a small yet finite magnetic diffusion a
different.

II. GOVERNING EQUATIONS

We study magnetic fluctuations with a zero mean m
netic field. A mechanism of the generation of magnetic flu
tuations with a zero mean magnetic field was proposed
Zeldovich ~see, e.g.,@1,2#! and comprises stretching, twis
ing, and folding of the original loop of a magnetic field
These nontrivial motions are three dimensional and resu
©2002 The American Physical Society03-1
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an amplification of the magnetic field. The magnetic fie
b(t,r ) is determined by the induction equation

]b

]t
1~v•“ !b5~b•“ !v2b~“•v!1DmDb, ~1!

whereDm is the magnetic diffusion caused by an electric
conductivity of a fluid,v is a random velocity field. The goa
of the present paper is to derive an equation for the seco
order correlation function of the magnetic field in a rando
velocity field with a finite correlation time.

Now we discuss a method of derivation of the equat
for the second-order correlation function of the magne
field ~for details, see Appendix A!. We use an exact solutio
of Eq. ~1! in the form of a functional integral for an arbitrar
velocity field taking into account a small yet finite molecul
magnetic diffusion. The molecular magnetic diffusion can
described by a random Brownian motions of a particle. T
functional integral implies an averaging over a rando
Brownian motions of a particle. The form of the exact so
tion used in the present paper allows us to separate the
eraging over both, a random Brownian motions of a parti
and a random velocity field. This method allows us to der
an equation for the second-order correlation funct
F i j (t,x,y)5^bi(t,x)bj (t,y)& of the magnetic field,

F i j ~ t,r !5Pi jpl ~t,r ,i“ !Fpl~s,r !, ~2!

Pi jpl ~t,r ,i“ !5M j$^Gip~x!Gjl ~y!exp~ j̃•“ !&%, ~3!

~see Appendix A!, wheret5t2s, Gi j (x)[Gi j „t,s,j(x)… is
determined by equationdGi j (t,s,j)/ds5NikGk j(t,s,j) with
the initial conditionGi j (t5s)5d i j , and the tensorGi j can
be considered as the Jacobian for magnetic field transp
Here Nik5]v i /]xj2d i j (“•v), M j$•% denotes the math
ematical expectation over the Wiener pathsj(x)5x
2*0

t2sv(t2s,j)ds1(2Dm)1/2w(t2s), and j̃5j(y)2j(x)
2r , r5y2x, “5]/]r , the angular bracketŝ•& denote the
ensemble average over the random velocity field, and
molecular magnetic diffusionDm is described by a Wiene
processw(t). Another equivalent approach that includes
weak molecular diffusion in a Lagrangian map, with
Green’s function was considered in@22,23#.

Equation~2! for the second moment of a magnetic fie
comprises spatial derivatives of high orders due to a nonlo
nature of turbulent transport of magnetic field in a rand
velocity field with a finite correlation time~for details, see
Appendix A!.

III. THE RANDOM GAUSSIAN VELOCITY FIELD WITH
A SMALL CORRELATION TIME

Now we use the model of the random Gaussian velo
field with a small yet finite correlation time. We seek a so
tion for the second moment of the magnetic field in the fo

F i j ~ t,r ![^bi~ t,x!bj~ t,y!&5W~ t,r !d i j 1~rW8/2!Pi j ~r !,
~4!
03630
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where W(t,r )5^b̃(t,x)b̃(t,y)&, b̃5b•r , r5y2x, Pi j (r )
5d i j 2r i j , r i j 5r i r j /r 2 andW85]W(t,r )/]r . This form of
the second moment corresponds to the condition“•b50
and an assumption of the homogeneous and isotropic m
netic fluctuations. We considered a homogeneous, isotro
and incompressible random velocity field~see below!. The
equation for the correlation functionW(t,r ) is given by

]W~ t,r !

]t
5~1/3!sjr

3W-1m21~r !W91m~r !W81kW,

~5!

~for details, see Appendix B!, where in the leading order o
asymptotic expansionk5(20/3)(11sj/4), and

1/m~r !52/Pr1~2/3!r 2~118sj!,

m~r !5
4

m~r !r
1S 1

m~r ! D 8
227sjr ,

Pr5n/Dm is the magnetic Prandtl number,n is the kinematic
viscosity,sj5(2/3)St2, St5tud / l d is the Strouhal number
Equation~5! is written in dimensionless form: the distancer
is measured in the units of the inner scale of turbulencel d
5 l 0 Re23/4, the time t is measured in the unitstd
5t0 Re21/2, wheretd is the turnover time of eddies in th
inner scalel d and the velocityv is measured in the units
ud5 l d /td , Re5u0l 0 /n@1 is the Reynolds number,u0 is
the characteristic turbulent velocity in the maximum scale
turbulent motionsl 0 and t05 l 0 /u0. In this study we con-
sider the case of large magnetic Prandtl numbers. For
derivation of Eq.~5! we used a homogeneous, isotropic, a
incompressible random velocity field and the correlati
function f i j (t,r )5^v i(t,x)v j (t,y)& for the velocity field is
given by

f i j 5~1/3!@F~r !d i j 1~rF 8/2!Pi j ~r !#. ~6!

We assumed that in dissipative range (0<r<1) of a turbu-
lent velocity field the functionF(r ) is given by F(r )51
2r 2.

Now we analyze a solution of Eq.~5!. In a molecular
magnetic diffusion region of scales wherebyr !Pr21/2, all
terms proportional tor 2 may be neglected. Then the solutio
of Eq. ~5! is given byW(t,r )5(12a Prr 2)exp(gt), whereg
are the eigenvalues to be found,a5(k2g)/20 andk.g. In
a turbulent magnetic diffusion region of scales, Pr21/2!r
!1, the molecular magnetic diffusion term proportional
1/Pr is negligible. Thus, the solution of Eq.~5! in this region
is W(t,r )5A1r 2l exp(gt), where l is determined by an
equation

sjl
32~3113sj!l

21~1521226sj!l1~9/2!g23025sj

50. ~7!

For a small parametersj we obtainl'5/22424sj6 ia0,
wherea0

253(522g0)/4, g5g01sjg1, and g1'348. For
r @1 the solution forW(t,r ) decays rapidly withr. The
valueg0 can be calculated by matching the correlation fun
3-2
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MAGNETIC FLUCTUATIONS WITH A ZERO MEAN . . . PHYSICAL REVIEW E65 036303
tion W(t,r ) and its first and second derivatives at the bou
aries of the above regions, i.e., at the pointsr 5Pr21/2 and
r 51. In particular, the matching yieldsa0'2pk/ ln Pr,
where the parameterk51,2,3, . . . determines modes with
different numbers of zero points (W50) in the correlation
function W(r ). In particular, the mode withk51 has only
one zero point in the correlation functionW(r ). Thus, the
growth rateg of magnetic fluctuations is given by

g'
5

2
2

2

3 S 2pk

ln PrD
2

1348sj . ~8!

The correlation functionW(t,r ) has global maximum atr
50. This implies that the real part ofl is positive. Thus,t
,0.1 (l d /ud). It follows from Eq.~8! that the finite correla-
tion time of a turbulent velocity field causes an increase
the growth rate of magnetic fluctuations. The latter is imp
tant in view of applications in astrophysics and planet
physics because the real velocity field has a finite correla
time. Note that the considered case corresponds to the
dynamo because the growth rate tends to the nonzero
stant at very large magnetic Reynolds numbers.

IV. DISCUSSION

In the present paper we studied an effect of a finite c
relation time of a turbulent velocity field on dynamics
magnetic fluctuations with a zero mean magnetic field in
case of a small yet finite magnetic diffusion. The finite c
relation time results in an increase of the growth rate
magnetic fluctuations. However, the developed theory is l
ited by an assumption about small correlation time, i.e.t
,0.1 (l d /ud). The latter estimate is quite realistic, e.g., f
galactic turbulence~see Ref.@17#!. We showed also that fo
an arbitrary correlation time of a turbulent velocity field th
equation for the second moment of the turbulent magn
field comprises higher-order spatial derivatives.

In this study we took into account a small yet finite ma
netic diffusion caused by an electrical conductivity of a flu
The obtained results are different from that derived for a z
magnetic diffusion~see@10#!. In particular, the finite corre-
lation time of a turbulent velocity field reduces the grow
rate of magnetic fluctuations in the case of a zero magn
diffusion ~see@10#!. A difference between two cases with
zero magnetic diffusion and a small yet finite magnetic d
fusion can be demonstrated even for thed correlated in time
random velocity field. For instance, for large magne
Prandtl numbers the growth rate of the second moment
turbulent magnetic field is given by

g5
5~11s/3!

2~113s!
2

2~113s!

3~11s! S 2pk

ln PrD
2

, ~9!

where s5^(“•v)2&/^(“3v)2& is the degree of compress
ibility of fluid velocity field. Equation~9! is obtained using
Eqs.~29! and~30! of Ref. @8# and implies that the compress
ibility of fluid velocity field causes a reduction of the grow
rate of the second moment of a turbulent magnetic field.
the other hand, in the case of a zero magnetic diffusion
03630
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growth rate of the second moment of magnetic fluctuatio
generated by thed correlated in time random velocity field i
given by

g5
10~112s!

3~11s!
~10!

~see@10#!, and the compressibility results in an increase
the growth rate of the second moment of a turbulent m
netic field. This implies that a transition from the case o
zero magnetic diffusion to that of a small yet finite magne
diffusion is singular. The limit of zero magnetic diffusion
singular because the growth rateg of magnetic fluctuations
is discontinuous at zero magnetic diffusion, i.e., it is differe
from the limit of magnetic diffusion tending to zero. Th
stresses a danger for an application of the results obtaine
a zero magnetic diffusion to astrophysics and planetary ph
ics where the magnetic diffusion caused by an electrical c
ductivity of fluid is small yet finite.
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APPENDIX A: DERIVATION OF EQ. „2…

WhenDm5” 0 the magnetic fieldb(t,x) is given by

bi~ t,x!5M j$Gi j ~ t,j!exp~j* •“ !bj~s,x!%, ~A1!

wherej* 5j2x. In order to derive Eq.~A1! we use an exac
solution of Eq. ~1! with an initial condition b(t5s,x)
5b(s,x) in the form of the Feynman-Kac formula:

bi~ t,x!5M j$Gi j „t,s,j~ t,s!…bj„s,j~ t,s!…%, ~A2!

where dGi j (t,s,j)/ds5NikGk j(t,s,j), Nik5]v i /]xj
2d i j (“•v), and M j$•% denotes the mathematical expect
tion over the Wiener paths j(t,s)5x2*0

t2sv@ t
2s,j(t,s)#ds1(2Dm)1/2w(t2s). Now we assume that

b~ t,j!5E exp~ i j•q!b~s,q!dq. ~A3!

Substituting Eq.~A3! into Eq. ~A2! we obtain

bi~s,x!5E M j$Gi j „t,s,j~ t,s!…exp@ i j* •q#bj~s,q!%

3exp~ iq•x!dq. ~A4!

In Eq. ~A4! we expand the function exp@ij* •q# in Taylor
series atq50, i.e., exp@ij* •q#5(k50

` (1/k!)( i j* •q)k. Using
the identity (iq)k exp@ix•q#5“

k exp@ix•q# and Eq.~A4! we
get
3-3
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bi~ t,x!5M jH Gi j ~ t,s,j!F (
k50

`

~1/k! !~j* •“ !kG
3E bj~s,q!exp~ iq•x!dqJ . ~A5!

After the inverse Fourier transformation in Eq.~A5! we ob-
tain Eq.~A1!. Equation~A3! can be formally considered a
an inverse Fourier transformation of the functionbi(t,j).
However, j is the Wiener path that is not a usual spat
variable. Therefore, it is desirable to derive Eq.~A1! by a
more rigorous method as it is done below.

To this end we use an exact solution of the Cauchy pr
lem for Eq.~1! with an initial conditionb(t5s,x)5b(s,x) in
the form

bi~ t,x!5M z$J~ t,s,z!G̃i j ~ t,s,z!bj„s,z~ t,s!…%, ~A6!

where the matrix G̃i j is determined by the equatio
dG̃i j (t,s,z)/ds5NikG̃k j(t,s,z) with the initial condition
G̃i j (t5s)5d i j , and the functionJ(t,s,z) is given by

J~ t,s,z!5expF2~2Dm!21/2E
0

t2s

v„t2h,z~ t,h!…•dw~h!

2~4Dm!21E
0

t2s

v2
„t2h,z~ t,h!…dhG , ~A7!

w(t) is a Wiener process, andM z$•% denotes the mathemat
cal expectation over the pathsz(t,s)5x1(2Dm)1/2@w(t)
2w(s)#. The solution~A6! was first found in@19# for a
magnetic field in an incompressible fluid flow. Equation~A6!
generalizes the solution obtained in@19# for a magnetic field
in a compressible random velocity field. The first integ
*0

t2sv„t2h,z(t,h)…•dw(h) in Eq. ~A7! is the Ito stochastic
integral ~see, e.g.,@24#!.

The difference between the solutions~A6! and ~A2! is as
follows. The functionbj„s,j(t,s)… in Eq. ~A2! explicitly de-
pends on the random velocity fieldv via the Wiener pathj,
while the functionbj„s,z(t,s)… in Eq. ~A6! is independent of
the velocity v. Trajectories in the Feynman-Kac formu
~A2! are determined by both, a random velocity field a
magnetic diffusion. On the other hand, trajectories in E
~A6! are determined only by magnetic diffusion. Due to t
Markovian property of the Wiener process the solution~A6!
can be rewritten in the form

bi~ t,x!5E$Si j ~ t,s,x,X8!bj~s,X8!%

5E Qi j ~ t,s,x,x8!bj~s,x8!dx8, ~A8!

where

Qi j ~ t,s,x,x8!5@4pDm~ t2s!#3/2expS 2
~x82x!2

4Dm~ t2s! D
3Si j ~ t,s,x,x8!, ~A9!
03630
l

-

l

.

Si j (t,s,x,x8)5M m$J(t,s,m)G̃i j (t,s,m)% and M m$•% means
the path integral taken over the set of trajectoriesm that
connect points (t,x) and (s,x8). The mathematical expecta
tion E$•% in Eq. ~A8! denotes the averaging over the set
random pointsX8 that have a Gaussian statistics~see, e.g.,
@25#!. We used here the following property of the averagi
over the Wiener processE$M m$•%%5M z$•%. We considered a
random velocity field with a finite renewal time. In the inte
vals . . . (2t,0#,(0,t#,(t,2t#, . . . the velocity fields are
assumed to be statistically independent and have the s
statistics. This implies that the velocity field loses memory
the prescribed instantst5nt, wheren50,61,62, . . . .This
velocity field cannot be considered as a stationary velo
field for small times;t, however, it behaves similar to
stationary field fort@t. Note that the fieldsbj (s,x8) and
Qi j (t,s,x,x8) are statistically independent because the fi
bj (s,x8) is determined in the time interval (2`,s#, whereas
the functionQi j (t,s,x,x8) is defined on the interval (s,t#.
Due to a renewal, the velocity field as well as its function
bj (s,x8) and Qi j (t,s,x,x8) in these two time intervals are
statistically independent. Now we make a change of va
ables (x,x8)→(x,x85z1x) in Eq. ~A8!, i.e., Q̃i j (t,s,x,x8)
5Q̃i j (t,s,x,z1x)5Qi j (t,s,x,z). The Fourier transformation
in Eq. ~A8! yields

bi~ t,x!5E E Qi j ~ t,s,x,k!exp~ ik•z!dk

3E bj~s,q!exp@ iq•~z1x!#dqdz.

Sinced(k1q)5(2p)23*exp@i(k1q)•z#dz, we obtain that

bi~ t,x!5~2p!3E Qi j ~ t,s,x,2q!bj~s,q!exp~ iq•x!dq.

~A10!

In Eq. ~A10! the functionQi j (t,s,x,2q) is given by

Qi j ~ t,s,x,2q!5~2p!23E Qi j ~ t,s,x,z!exp~ iq•z!dz.

~A11!

Substituting Q̃i j (t,s,x,x8)5Qi j (t,s,x,z) in Eq. ~A8! and
taking into account thatx85z1x we obtain

bi~ t,x!5E Qi j ~ t,s,x,z!bj~s,z1x!dz. ~A12!

Equation~A11! can be rewritten in the form

~2p!3Qi j ~ t,s,x,2q!exp~ iq•x!

5E Qi j ~ t,s,x,z!exp@ iq•~z1x!#dz. ~A13!

The right hand sides of Eqs.~A12! and~A13! coincide when
b(s,z1x)5eexp@iq•(z1x)#, wheree is a unit vector. Thus,
a particular solution~A12! of Eq. ~1! with the initial condi-
tion b(s,x8)5eexp(iq•x8) coincides in form with the inte-
3-4
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gral ~A13!. On the other hand, a solution of Eq.~1! is given
by Eq. ~A6!. Substituting the initial conditionb(s,z)
5eexp(iq•z)5eexp@iq•„x1(2Dm)1/2w…# into Eq. ~A6! we
obtain

bi~ t,x!5M z$J~ t,s,z!G̃i j ~ t,s,z!ej

3exp@ iq•„x1~2Dm!1/2w…#%. ~A14!

Comparing Eqs.~A12!–~A14! we get

Qi j ~ t,s,x,2q!5~2p!23M z$J~ t,s,z!G̃i j ~ t,s,z!

3exp@ i ~2Dm!1/2q•w#%. ~A15!

Now we rewrite Eq.~A15! using Feynman-Kac formula
~A2!. The result is given by

Qi j ~ t,s,x,2q!5~2p!23M j$Gi j „t,s,j~ t,s!…exp@ iq•j* #%,

~A16!

wherej* 5j2x. Substituting Eq.~A16! into Eq. ~A10! we
obtain

bi~ t,x!5E M j$Gi j ~ t,s,j!exp@ iq•j* #bj~s,q!%

3exp~ iq•x!dq. ~A17!

The Fourier transformation in Eq.~A17! yields Eq. ~A1!.
The above derivation proves that the assumption~A3! is
correct for a Wiener pathj. In order to derive an equatio
for the second-order correlation functionF i j (t,x,y)
5^bi(t,x)bj (t,y)& we use Eq.~A17!, where the angular
brackets^•& denote the ensemble average over the rand
velocity field. After the Fourier transformation we obtain

F i j ~ t,x,y!5~2p!26E E Pi jpl ~t,x,y,k1 ,k2!exp@ i ~k1•x

1k2•y!#F E E Fpl~s,x8,y8!exp@2 i ~k1•x8

1k2•y8!#dx8dy8Gdk1dk2 , ~A18!

where

Pi jpl ~t,x,y,k1 ,k2!5M j$^Gip~x!Gjl ~y!exp@ i „k1•j* ~x!

1k2•j* ~y!…#&%, ~A19!

Gi j (x)[Gi j „t,j(x)… and t5t2s. For a homogeneous an
isotropic random flow Eq.~A18! reads

F i j ~ t,r !5E E Pi jpl ~t,2q,r !exp@ iq•~r2r 8!#

3Fpl~s,r 8!dr 8dq, ~A20!

wherer5y2x,
03630
m

Pi jpl ~t,2q,r !5M j$^Gip~x!Gjl ~y!exp~ iq• j̃!&%
~A21!

and j̃5j* (y)2j* (x). The Fourier transformation of Eq
~A20! yields Eq.~2!.

APPENDIX B: DERIVATION OF EQ. „5…

Now we use the model of the random velocity field with
small correlation time. We expand the functionsj* and
Gi j (t,j) in Taylor series of small timet. Then an expression
for the functionPi jpl (t,r ,i“) reads

Pi jpl ~t,r ,i“ !5d ipd j l 1tBi jpl 1tUi jplm“m

1tDi jplmn“m“n1•••, ~B1!

where

Di jplmn5~1/2t!M j$^j̃mj̃nGip~x!Gjl ~y!&%, ~B2!

Ui jplm~r !5t21@d j l M j$^gip~x!jm* ~y!&%

1d ipM j$^gjl ~x!jm* ~y!&%

2~1/2!M j$^gip~x!gjl ~y!j̃m&%#, ~B3!

Bi jpl ~r !5t21M j$^gip~x!gjl ~y!&%, ~B4!

and Gi j 5d i j 1gi j and M j$^gi j &%50. Thus an equation for
the second-order correlation function for a magnetic field
a random velocity field with a small yet finite correlatio
time reads

]F i j /]t5@Bi jpl 1Ui jplm“m1Di jplmn“m“n#Fpl~ t,r !.
~B5!

Now we consider a random velocity field with a Gaussi
statistics. This assumption allows us to calculate the ten
Di jplmn , Ui jplm , andBi jpl . We omit the lengthy algebra an
present the final results

Di jplqn5Di jplqn
(1) 1Di jplqn

(2) 1Di jplqn
(3) 12Dmdqnd ipd j l ,

~B6!

Di jplmn
(1) 52t$ f̃ mn1St2@~“sf kn!~“kf ms!

2 f̃ sk~“s“kf mn!#%d ipd j l , ~B7!

Di jplmn
(2) 5~1/2!tSt2@~“kf im!~“pf nk!2~“kf mn!~“pf ik!

12 f̃ ms~“s“pf in!#d j l , ~B8!

Di jplmn
(3) 5~1/2!tSt2@~“pf im!~“ l f jn!2 f̃ mn~“p“ l f i j !#,

~B9!

Bi jpl 522t$~“p“ l f i j !2St2@~“k“sf i j !~“p“ l f ks!

12~“p“mf is!~“ l“sf jm!#%, ~B10!
3-5



ll
.
ry

g

r.

th

r-

-

f
the
the

KLEEORIN, ROGACHEVSKII, AND SOKOLOFF PHYSICAL REVIEW E65 036303
Ui jplm54t$~“pf im!d j l 1St2@„~“kf is!~“p“sf km!1~“pf sk!

3~“k“sf im!2~“sf km!~“k“pf is!…d j l 12„~“kf jm!

3~“p“ l f ik!1~“ l f km!~“k“pf i j !…#%, ~B11!

where St5tud / l d is the Strouhal number,f̃ mn5 f mn(0)
2 f mn(r ), and we changedt→2t in order to compare the
obtained results with those for thed correlated in time ap-
proximation for a random velocity field. Here the sma
terms of the order of;O(St4) are being neglected. In Eqs
~B6!–~B11! we took into account a commutative symmet
in every pair of the following indexes: (i , j ); (p,l ) and
(m,n). The latter is due to a symmetry of the followin
tensors:r i j , Fpl , and“m“n . In Eqs. ~B6!–~B11! we as-
sumed also that the form of the tensorf̃ mn is given by f̃ mn
5Cmnpsr pr s , whereCmnps is an arbitrary constant tenso
This satisfies for the model of the velocity field~6! with
F(r )512r 2.

Now we seek a solution for the second moment of
magnetic field in the form of Eq.~4!. Multiplying Eq. ~B5!
by r i j and using Eq.~4! we obtain the equation for the co
relation functionW(t,r )5^br(t,x)br(t,y)&. This equation is
given by Eq.~5!. For the derivation of Eq.~5! we used the
following identities:

D̂W[r i j Di jplmn“m“nFpl5~2t/3!@r 2W918rW81~sj/4!

3~2r 3W-131r 2W9112rW8!

1~3/Pr!~W914W/r !#, ~B12!

B̂W[r i j Bi jpl Fpl5~4t/3!@2rW815W

1~sj/4!~rW815W!#, ~B13!
d

t

.

03630
e

ÛW[r i j Ui jplm“mFpl5~2t/3!$26rW81~sj/4!@r 2W9

1~29/2!rW8#%. ~B14!

Equations~B12!–~B14! are derived by means of Eqs.~6!,
~B6!–~B11!, and we also used the following identities:

“nFpl5~1/2!@~W92W8/r !Pplr m

1~W8/r !~4dplr m2dpmr l2d lmr p!, ~B15!

“m“nFpl5~1/2!@~rW-!Pplr mn1~W92W8/r !~PmnPpl

14Pplr mn2Ppmr ln2Plmr pn2Ppnr lm2Plnr pm

12r plmn!1~W8/r !~4dpldmn2dpmd ln

2d lmdpn!#. ~B16!

The corresponding derivatives forf pl coincide with Eqs.
~B15! and ~B16! after the changeW(r )→(1/3)F(r ). Note
that for F(r )512r 2 the following identities are valid:F9
2F8/r 50 andF-50. Turbulent magnetic diffusion is de
termined by functionD̂W5r i j Di jplmn“m“nFpl(t,r ). The
latter depends on the field of Lagrangian trajectoriesj @see
Eqs. ~B2! and ~B5!#. Due to a finite correlation time of a
random velocity field̂ (“•j)2&Þ 0 even if the velocity field
is incompressible. Indeed,̂(“•j)2&'(4/9)St45sj

2 . Thus
the parametersj describes the compressibility of the field o
Lagrangian trajectories. The latter results in a change of
dynamics of magnetic fluctuations. Thus, the equation for
correlation functionW(t,r ) is given by Eq.~5!.
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