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Magnetic fluctuations with a zero mean field in a random fluid flow with a finite correlation time
and a small magnetic diffusion
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Magnetic fluctuations with a zero mean field in a random flow with a finite correlation time and a small yet
finite magnetic diffusion are studied. Equation for the second-order correlation function of a magnetic field is
derived. This equation comprises spatial derivatives of high orders due to a nonlocal nature of magnetic field
transport in a random velocity field with a finite correlation time. For a random Gaussian velocity field with a
small correlation time the equation for the second-order correlation function of the magnetic field is a third-
order partial differential equation. For this velocity field and a small magnetic diffusion with large magnetic
Prandtl numbers the growth rate of the second moment of magnetic field is estimated. The finite correlation
time of a turbulent velocity field causes an increase of the growth rate of magnetic fluctuations. It is demon-
strated that the results obtained for the cases of a small yet finite magnetic diffusion and a zero magnetic
diffusion are different.
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I. INTRODUCTION tives). However, the effect of a finite correlation time of the
velocity field on magnetic fluctuations is poorly understood.
In recent time magnetic fluctuations are a subject of in-lt is not clear how conditions for the generation of magnetic
tensive studysee, e.g[1-10). There are two types of mag- fluctuations are changed in a random velocity field with a
netic fluctuations: the fluctuations with a zero and a nonzerdinite correlation time.
mean magnetic field. These two types of magnetic fluctua- [N this study we took into account a finite correlation time
tions have different mechanisms of generation and differenf @ random velocity field and a small yet finite magnetic
properties. Magnetic fluctuations with a zero mean magnetiéiffusion caused by an electrical conductivity of fluid. We
field in a random velocity field are generated by the stretchd€rived an equation for the second-order correlation function
twist-fold mechanismsee, e.g.[1,2]). On the other hand, of magnetic field in a random velocity field with a finite

magnetic fluctuations with a nonzero mean magnetic ﬁelcforrelatlon time using a method described #9-21. The

are generated by a tangling of the mean magnetic field by erived equation comprises spat|al_ de_r|vat|v_es of high or-
N ers. For a random Gaussian velocity field with a small cor-
random velocity fieldsee, e.g.[11-14).

relation time the equation for the second-order correlation

In the present paper we considered only magnetic ﬂuCtuafunction of the magnetic field is a third-order partial differ-

tions with a zero mean magnetic field that were observedypiia| equation. We calculated the growth rate of the second
e.g., in the ionosphere of Venusee, e.g.[15,16]), in the

4 ; X moment of magnetic field for this velocity field and a small
quiet sun(see, e.g.[14]) and probably in galaxietsee, €.9., magnetic diffusion with large magnetic Prandtl numbers. In
[17]). In spite of that the dynamics of a mean magnetic fieldine |imit of extremely small correlation time of a random
at least in kinematiclinear stage is well studiedsee, e.g., yelocity field we recovered the results obtained in &heor-
[11-14,17), a generation of magnetic fluctuations with a related in time approximation for a random velocity field.
zero mean magnetic field even in kinematic stage still re- Recently, the finite correlation time effects of a random
mains a subject of numerous discussions. Most studies stawelocity field in the kinematic dynamo in the case of a zero
ing with a seminal paper by Kazantsgl8] were performed magnetic diffusion have been studied[&0]. We will show
in the & correlated in time approximation for a random ve- that the results obtained for the cases of a zero magnetic
locity field (see, e.g.[1,2,8,9, and references therginThe  diffusion and of a small yet finite magnetic diffusion are
use of § correlated in time approximation for a random ve- different.
locity field is a great mathematical convenience.

However, a real velocity field in astrophysical and geo- IIl. GOVERNING EQUATIONS
physical applications cannot be considered as &heorre-
lated in time velocity field. As follows from the analysis in ~ We study magnetic fluctuations with a zero mean mag-
[19,2Q a finite correlation time of the velocity field does not netic field. A mechanism of the generation of magnetic fluc-
essentially change a form of the mean-field equations and theations with a zero mean magnetic field was proposed by
growth rates of the mean fields. In particular, there is a wideZeldovich (see, e.g.[1,2]) and comprises stretching, twist-
range of scales in which the mean-field equations are thing, and folding of the original loop of a magnetic field.
second-order partial differential equatiofiis spatial deriva- These nontrivial motions are three dimensional and result in
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an amplification of the magnetic field. The magnetic field\yhere W(t,r)=<E(t,x)E(t,y)), b=b-r, r=y—x, Pi(1r)
b(t,r) is determined by the induction equation =8 —Tij, Nij=" /r? andW' = dW(t,r)/ar. This form of

the second moment corresponds to the condiVorb=0

and an assumption of the homogeneous and isotropic mag-
netic fluctuations. We considered a homogeneous, isotropic,
and incompressible random velocity fielsee below. The
whereD,, is the magnetic diffusion caused by an electricalequation for the correlation functioW(t,r) is given by
conductivity of a fluid,v is a random velocity field. The goal

Z_?+(V.V)b:(b.V)v—b(V~v)+DmAb, 1)

of the present paper is to derive an equation for the second- JW(L,r) = (U3)a L 3W" + m L)W'+ w(HW' + kW
order correlation function of the magnetic field in a random at ¢ ’
velocity field with a finite correlation time. )

Now we discuss a method of derivation of the equation]c detail A di h in the leadi der of
for the second-order correlation function of the magnetic 0" defails, see Appendix)Bwhere in the leading order o

field (for details, see Appendix)AWe use an exact solution 2SYMPIotic expansior =(20/3)(1+o,/4), and

of Eq. (1) in the form of a functional integral for an arbitrary 1/m(r)=2/Pr+ (2/3)r2(1+8a,)
velocity field taking into account a small yet finite molecular &
magnetic diffusion. The molecular magnetic diffusion can be 4 1\’
described by a random Brownian motions of a particle. The w(r)= —+(—> — 2704,
functional integral implies an averaging over a random m(r)r —\m(r)

Brownian motions of a particle. The form of the exact solu-p, _ VID,, is the magnetic Prandtl numberjs the kinematic

tion ysed in the present paper aIIovys us to_ separate the aVi'scosity, 0'§=(2/3)St2, St=71uq4/l4 is the Strouhal number.

and a random velocity field. This method allows us to deristquatlon(S) IS written n dlmenspnless form: the distance
. . . _1is measured in the units of the inner scale of turbuleiRce
an equation for the second-order correlation function

n T =loRe ¥4 the time t is measured in the unitsry
©ij(t.x,y) =(Pi(t,x)b;(L.y)) of the magnetic field, =1, Re 12 where 74 is the turnover time of eddies in the
inner scalely and the velocityv is measured in the units
Ug=lq/7q, Re=ugly/v>1 is the Reynolds numbeuy is
_ the characteristic turbulent velocity in the maximum scale of

Pijpl (T.1,iV)=MA(G,(x)Gji(y)exp(£-V))},  (3)  turbulent motiondy and 7o=14/u. In this study we con-

sider the case of large magnetic Prandtl numbers. For the

(see Appendix A wherer=t—s, G;;(x)=G;;(t,s,§(x)) is  derivation of Eq.(5) we used a homogeneous, isotropic, and
determined by equatiotiG;;(t,s, £)/ds=N; Gy(t,s, &) with incompressible random velocity field and the correlation
the initial conditionG;j(t=s)=¢;;, and the tensoG;; can  function f;;(t,r)=(v;(t,x)vj(t,y)) for the velocity field is
be considered as the Jacobian for magnetic field transpomgiven by
Here Njy=dv;/dx;— 6;;(V-Vv), M-} denotes the math-
ematical expectation over the Wiener path#x)=x fij=(LI[F(r) &+ (rF'12)Py(r)]. (6)

_ rt=s _ 1/ _ E_ _
[o V(t=0.§)do+(2Dn) "W(t=s), and E=&(Y) = &%) \ye assumed that in dissipative range<(0<1) of a turbu-

—r, r=y—x, V=4/dr, the angular brackets ) denote the L . o _
ensemble average over the random velocity field, and thg?tz velocity field the functionF(r) is given by F(r)=1

molecular magnetic diffusiol ,, is described by a Wiener
processw(t). Another equivalent approach that includes a
weak molecular diffusion in a Lagrangian map, with a
Green's function was considered [i82,23.

Equation(2) for the second moment of a magnetic field
comprises spatial derivatives of high orders due to a nonlocaj
nature of turbulent transport of magnetic field in a random
velocity field with a finite correlation timéfor details, see

CDij(t,r)=Pijp|(7,r,iV)<Dp|(S,r), (2)

Now we analyze a solution of Ed5). In a molecular
magnetic diffusion region of scales wherebgPr 2, all
terms proportional tn? may be neglected. Then the solution
of Eq. (5) is given byW(t,r) = (1— a Prr?)exp(t), wherey
re the eigenvalues to be founds (k— v)/20 andx> . In

turbulent magnetic diffusion region of scales, Pi<r
<1, the molecular magnetic diffusion term proportional to

1/Pr is negligible. Thus, the solution of E@) in this region

Appendix A. is W(t,r)=A;r *exp@t), where \ is determined by an
equation
Ill. THE RANDOM GAUSSIAN VELOCITY FIELD WITH
A SMALL CORRELATION TIME o N3—(3+130,)N?+ (15— 12260 ,)\ +(9/2) y— 30— 50,
Now we use the model of the random Gaussian velocity =0. (7)

field with a small yet finite correlation time. We seek a solu-
tion for the second moment of the magnetic field in the formFor a small parametes, we obtain\~5/2— 4240+ ia,,
wherea3=3(5—2v0)/4, y=7yo+0sy1, and y;~348. For
D (t,r)=(bi(t,x)b;(t,y))=WC(t,r) &+ (rW'/2)P;(r), r>1 the solution forW(t,r) decays rapidly withr. The
(4)  valuevy, can be calculated by matching the correlation func-
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tion W(t,r) and its first and second derivatives at the bound-growth rate of the second moment of magnetic fluctuations
aries of the above regions, i.e., at the pointsPr 2 and  generated by thé correlated in time random velocity field is
r=1. In particular, the matching yielday~2wxk/InPr,  given by

where the parametér=1,2,3 ... determines modes with
different numbers of zero pointd\(=0) in the correlation 10(1+20)
function W(r). In particular, the mode witk=1 has only Y= 3(1+0) (10)
one zero point in the correlation functioN(r). Thus, the
growth ratey of magnetic fluctuations is given by (see[10]), and the compressibility results in an increase of
) the growth rate of the second moment of a turbulent mag-
o E(Z_Tfk) 348 (g  netic field. This implies that a transition from the case of a
Y=27 3 InPr & zero magnetic diffusion to that of a small yet finite magnetic

diffusion is singular. The limit of zero magnetic diffusion is
The correlation functionV(t,r) has global maximum at singular because the growth rageof magnetic fluctuations
=0. This implies that the real part of is positive. Thus,s  is discontinuous at zero magnetic diffusion, i.e., it is different
<0.1 (I4/ug). It follows from Eg.(8) that the finite correla- from the limit of magnetic diffusion tending to zero. This
tion time of a turbulent velocity field causes an increase oktresses a danger for an application of the results obtained for
the growth rate of magnetic fluctuations. The latter is impor-a zero magnetic diffusion to astrophysics and planetary phys-
tant in view of applications in astrophysics and planetaryics where the magnetic diffusion caused by an electrical con-
physics because the real velocity field has a finite correlationluctivity of fluid is small yet finite.
time. Note that the considered case corresponds to the fast
dynamo because the growth rate tends to the nonzero con- ACKNOWLEDGMENTS
stant at very large magnetic Reynolds numbers.
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relation time of a turbulent velocity field on dynamics of scientists.
magnetic fluctuations with a zero mean magnetic field in the
case of a small yet finite magnetic diffusion. The finite cor-
relation time results in an increase of the growth rate of
magnetic fluctuations. However, the developed theory is lim- WhenD,#0 the magnetic field(t,x) is given by
ited by an assumption about small correlation time, ire.,
<0.1 (I4/uy). The latter estimate is quite realistic, e.g., for bi(t,X)=MAG;;(t,§)exp( & - V)b;(s,x)}, (A1)
galactic turbulencésee Ref[17]). We showed also that for
an arbitrary correlation time of a turbulent velocity field the where&* = £—x. In order to derive Eq(Al) we use an exact
equation for the second moment of the turbulent magnetisolution of Eq. (1) with an initial condition b(t=s,x)

APPENDIX A: DERIVATION OF EQ. (2)

field comprises higher-order spatial derivatives. =Db(s,x) in the form of the Feynman-Kac formula:
In this study we took into account a small yet finite mag-
netic diffusion caused by an electrical conductivity of a fluid. bi(t,x)=MLG;;(t,s,&(t,s))b;(s,&(t,9))}, (A2)

The obtained results are different from that derived for a zero

magnetic diffusion(see[10]). In particular, the finite corre- where  dG;;(t,s,£)/ds=N; G(t,s,§), Nji = dv; 1 9x;
lation time of a turbulent velocity field reduces the growth — &;;(V-v), and M-} denotes the mathematical expecta-
rate of magnetic fluctuations in the case of a zero magnetiion over the Wiener paths &t,s)=x—[§ V[t
diffusion (see[10]). A difference between two cases with a — ¢, &(t,0)]Jdo+ (2D ) Yaw(t—s). Now we assume that
zero magnetic diffusion and a small yet finite magnetic dif-

fusion can be demonstrated even for theorrelated in time )
random velocity field. For instance, for large magnetic b(ta§):f exp(i£-g)b(s,q)da. (A3)
Prandtl numbers the growth rate of the second moment of a
turbulent magnetic field is given by Substituting Eq(A3) into Eq. (A2) we obtain
_5(1+0/3) 2(1+30)( 27k 2
YT 2(1+30) 3(1+o) \InPr) © bi(8,X)=f MAGi(t,s &t,s))exdi " - qlbj(s,q)}
where o={(V-Vv)2)/{(V XV)?) is the degree of compress- xXexp(ig-x)dq. (A4)

ibility of fluid velocity field. Equation(9) is obtained using

Egs.(29) and(30) of Ref.[8] and implies that the compress- In Eq. (A4) we expand the function ekg* - q] in Taylor
ibility of fluid velocity field causes a reduction of the growth series ag=0, i.e., expi&* - q]==_o(1k!)(i & - ). Using
rate of the second moment of a turbulent magnetic field. Onhe identity §q)* exdix- q]=V*exdix-q] and Eq.(A4) we
the other hand, in the case of a zero magnetic diffusion thget
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bi<t,x>=M§[Gn<t,s,§> > (1/k!><§*~V>k}

xf bj(s,q)exp(iq-x)dq]. (A5)

After the inverse Fourier transformation in E@\5) we ob-
tain Eq.(Al). Equation(A3) can be formally considered as
an inverse Fourier transformation of the functiby(t,§).

However, & is the Wiener path that is not a usual spatial

variable. Therefore, it is desirable to derive E41) by a
more rigorous method as it is done below.

PHYSICAL REVIEW 65 036303

S;(t,s,x,x")=M {J(t,s,m)Gj;(t,s,m)} and M {-} means
the path integral taken over the set of trajectorgeghat
connect pointst(x) and (s,x’). The mathematical expecta-
tion E{-} in Eq. (A8) denotes the averaging over the set of
random pointsX’ that have a Gaussian statisticee, e.g.,
[25]). We used here the following property of the averaging
over the Wiener process{M ,{-}}=M-}. We considered a
random velocity field with a finite renewal time. In the inter-
vals ...(—70],(0,7],(7,27], ... the velocity fields are
assumed to be statistically independent and have the same
statistics. This implies that the velocity field loses memory at
the prescribed instants=nr, wheren=0,+1,=2,....This

To this end we use an exact solution of the Cauchy probyelocity field cannot be considered as a stationary velocity

lem for Eq.(1) with an initial conditionb(t=s,x) =b(s,x) in
the form

bi(t,x) =M J(t,5,0G;;(t,5,0)b;(s,{(1,9)}, (A6)

where the matrixéij is determined by the equation
dGi;(t,s,0)/ds=N;Gy(t,5,¢) with the initial condition
Gjj(t=s)=4;;, and the function)(t,s,?) is given by

t—s
J(LS-Q:eXF{ —(2Dm)‘1’2fo v(t—7.4(t, 7)) - dw(z)

t—s
_(4Dm)_1f0 VA(t—7,4(t,m)d 7|, (A7)

w(t) is a Wiener process, arM f - } denotes the mathemati-
cal expectation over the path&t,s)=x+ (2D )" w(t)
—w(s)]. The solution(A6) was first found in[19] for a
magnetic field in an incompressible fluid flow. Equati@®)
generalizes the solution obtained[@8] for a magnetic field

in a compressible random velocity field. The first integral

Io Sv(t—7,4(t,7))-dw(7) in Eq. (A7) is the lto stochastic
integral (see, e.g.[24]).

The difference between the solutio®6) and(A2) is as
follows. The functionb;(s, &(t,s)) in Eq. (A2) explicitly de-
pends on the random velocity fieldvia the Wiener patlz,
while the functionb; (s, {(t,s)) in Eqg. (A6) is independent of

field for small times~ 7, however, it behaves similar to a
stationary field fort>7. Note that the fieldd;(s,x’) and
Qjj(t,s,x,x") are statistically independent because the field
bj(s,x’) is determined in the time intervaH=,s], whereas
the functionQ;;(t,s,x,x") is defined on the intervals(t].
Due to a renewal, the velocity field as well as its functionals
bj(s,x’) and Qjj(t,s,x,x") in these two time intervals are
statistically independent. Now we make a change of vari-

ables &,x')—(x,x'=z+x) in Eq. (A8), i.e., Q;(t,s,x,X")
=Qij(t,s,x,z+ x) =Qj;(t,s,%,2). The Fourier transformation
in Eq. (A8) yields

bi(t,x)zffQij(t,s,x,k)exp(ik-z)dk
xf bj(s,q)exdiqg- (z+x)]dqdz.
Sinced(k+q)=(27) 3fexdi(k+q)-z]dz, we obtain that

bi(t,x)=(2w)3f Qij(t,s,x,—a)bj(s,q)exp(ig-x)dq.
(A10)

In Eq. (A10) the functionQj;(t,s,x,—q) is given by

Qij(t,s,x,—q)=(27-r)‘3f Qij(t,s,x,2)exp(iq-z)dz.
(A11)

the velocity v. Trajectories in the Feynman-Kac formula

(A2) are determined by both, a random velocity field andSubstituting Qi (t,s,x,x)=Qji(t,s,x,2) in Eq. (A8) and
magnetic diffusion. On the other hand, trajectories in Eqtaking into account that’ =z+x we obtain

(A6) are determined only by magnetic diffusion. Due to the

Markovian property of the Wiener process the solutiég)
can be rewritten in the form bi(t.x)= | Qjj(t,5,x,2)bj(s,z+x)dz. (A12)
bi(t,x) =E{S;(t,s,x,X")b;(s,X")} Equation(A1l) can be rewritten in the form
3 _ .
:J Qij(t,sxx)b(s,X)dx',  (A8) (2m)7Qy (s X, —a)expiq-x)
where =f Qij(t,s,x,z)exdiq-(z+x)]dz.  (A13)
32 (x" —x)? The right hand sides of Eg6A12) and(A13) coincide when
Qij(t,s,x,X")=[47Dy(t—5)] exp( - m) b(s,z+x) =eexdiq- (z+x)], wheree is a unit vector. Thus,
m a particular solutiofA12) of Eq. (1) with the initial condi-
X Sjj(t,s,%,X"), (A9)  tion b(s,x")=eexplqg-x") coincides in form with the inte-
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gral (A13). On the other hand, a solution of E{) is given
by Eq. (A6). Substituting the initial conditionb(s,?)
=eexplq- §)=eexdiq- (x+ (2D,,)Yw)] into Eq. (A6) we
obtain

bi(t,x)=M4JI(t,5,0G;;(t,5,0€,

X exfiq- (x+ (2D ) Yaw)]}. (A14)
Comparing Egqs(A12)—(A14) we get
Qij(t.s.x,—q)=(2m) *MJI(t,5.0)G;;(1.5.0)
X exfli(2Dm) Y- w]}. (A15)

Now we rewrite Eq.(A15) using Feynman-Kac formula
(A2). The result is given by

Qij(t,s,x,—a)=(27m) *MLG;;(t,s,&t,s)exdiqg- &1},
(A16)

where & = £—x. Substituting Eq(A16) into Eq. (A10) we
obtain

bi(t-X)=f ML£G;(t,s,Hexdiq- £ Ibj(s,a)}

Xexp(ig-x)dg. (A17)
The Fourier transformation in EqA17) yields Eq. (Al).
The above derivation proves that the assumptiég) is
correct for a Wiener patlg. In order to derive an equation
for the second-order correlation functiorb;(t,x,y)
=(b;(t,x)b;(t,y)) we use Eq.(Al7), where the angular

brackets(-) denote the ensemble average over the random

velocity field. After the Fourier transformation we obtain
Cbij(t,X,Y):(ZWYGJ J Pijpi (7,%,Y, Ky, ko) expli(ky - x
]| [ [ @ptsxy et -itkyx

+k2-y’)]dx'dy’}dkldk2,

(A18)

where

)=MA(Gip(X)Gji(y)exdi(ky- £ (x)
ko E (YD}, (A19)

Piij(TvxiyvklIKZ

Gjj(x)=G;j;j(7,£&(x)) and r=t—s. For a homogeneous and

isotropic random flow Eq(A18) reads

Dji(t,r)= ff ijpi (

X Py (s,r')dr'dq,

—qg,n)exdiqg-(r—r")]
(A20)

wherer=y—x,

PHYSICAL REVIEW E65 036303

Pijpi(7,—q,r)= M§{<Gip(X)Gj|(Y)eXF3(iQ'~§)>}
(A21)

and &= £ (y)— & (x). The Fourier transformation of Eq.
(A20) yields Eq.(2).
APPENDIX B: DERIVATION OF EQ. (5)

Now we use the model of the random velocity field with a
small correlation time. We expand the functiogs and
Gjj(7,€) in Taylor series of small time. Then an expression
for the functionPjj,(7,r,iV) reads

Pijp|(7,r,iV): 5ip5jl + TBijp| + TUijp|me

+ DijpimnVmVnt -, (B1)
where
Dijpimn=(1/20)M{(EnénGip(¥)Gyi(y)},  (B2)
Uijpim() =718 M(gip () En(Y)}
+8ipM£(9; () En(y))}
— (UM (gip(0) g (VEm}],  (BI)
Bijpi (N =7""M(gip(x) ;i (¥))}, (B4)
and Gj; = §;j+g;; and M 4(g;;)}=0. Thus an equation for

the second-order correlation function for a magnetic field in
a random velocity field with a small yet finite correlation
time reads

dPi; 1t=[Bijjp1 + UijpimVm+ DijplmanVn]q)pl(tar)(-Bs)

Now we consider a random velocity field with a Gaussian
statistics. This assumption allows us to calculate the tensors
Dijpimn» Uijpim » andBjj,; . We omit the lengthy algebra and
present the final results

Duplqn D|(le|qn Dl(JZp)an Dl(Jap))an+2D 5 5 5JI ,(BG)
D{Dmn=27{Fmn+ SEL(V i) (Vifmg)
_’fsk(vskamn)]}5ip5jl ) (87)
Di(j2p)|mn:(1/2)TStz[(kaim)(fonk)_(kamn)(foik)
+ 28 nd VoV ofin) 1851, (B8)
D {imn=(1/2) 7SEL(V i) (V1) — mn<vpv|fi,->](,89)
Bijpi = —27{(V,Vfi)) = SE[(ViVFi)(V,V fio)

+2(vamfis)(vlvsfjm)]}v (BlO)
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Uijpim=47{(V pfim) 81 + SELA(VicFis) (V pVsFim) + (Vi)
><(Vszfim) - (stkm)(vkvpfis))5j| +2((kajm)
X(VpVifid) + (Vifm (ViVfi) 1}, (B1y

where Struy/ly is the Strouhal numberf ,,= fm,n(0)
—fmn(r), and we changed— 27 in order to compare the
obtained results with those for th& correlated in time ap-

proximation for a random velocity field. Here the small

terms of the order of~O(St") are being neglected. In Egs.

(B6)—(B11) we took into account a commutative symmetry

in every pair of the following indexes:i(); (p,!) and

PHYSICAL REVIEW E65 036303
OW=rUjjpimV m®@pi = (27/3){ = 6rW' + (o JA)[F2W"
+(29/2)rW' T} (B14)

Equations(B12)—(B14) are derived by means of Eq&),
(B6)—(B11), and we also used the following identities:

Vo ® o= (U2)[ (W' =W Ir)Pyr

+(W'/r)(48p m— Spmf1— Simlp),  (B1Y)

(m,n). The latter is due to a symmetry of the following Vi Vo® o= (L2)[(tW") P il it (W =W /1) (PP

tensors:ry;, @, andV,V,,. In Egs.(B6)—(B11) we as-
sumed also that the form of the tendoy, is given byf,,
=Cmnpd pf's, WhereCy,psis an arbitrary constant tensor.
This satisfies for the model of the velocity fiel@) with
F(r)=1-r2

+ 4'Pplrmn_ I:)pmrln - lerpn_ I:)pnrlm_ I:)Inrpm
+ erlmn) + (W,/r)(45plémn_ 5pm5In

- 5Im5pn)]- (B16)

Now we seek a solution for the second moment of the

magnetic field in the form of Eq4). Multiplying Eq. (B5)
by ri; and using Eq(4) we obtain the equation for the cor-
relation functionW(t,r)=(b,(t,x)b,(t,y)). This equation is
given by Eq.(5). For the derivation of Eq(5) we used the
following identities:

DW=r{;DijpimnV mV n® pi= (27/3)[r°W" +8rW' + (o /4)
X(2r3W” + 31r2W"+ 12r'W")

+(3/PH(W"+4W/r)], (B12)
BW=r;Bjjp;® = (47/3)[ 2rW’ +5W
+(08)(rW' +5W)], (B13)

The corresponding derivatives fdr, coincide with Egs.
(B15) and (B16) after the chang&V(r)—(1/3)F(r). Note
that for F(r)=1-r? the following identities are validE”
—F'/r=0 andF"”=0. Turbulent magnetic diffusion is de-
termined by functionDWzrijDijp,manVndbp,(t,r). The
latter depends on the field of Lagrangian trajectogdsee
Egs. (B2) and (B5)]. Due to a finite correlation time of a
random velocity field (V - £2)# 0 even if the velocity field

is incompressible. Indeed(V - £?)~(4/9)St=0%. Thus
the parametes; describes the compressibility of the field of
Lagrangian trajectories. The latter results in a change of the
dynamics of magnetic fluctuations. Thus, the equation for the
correlation functionW(t,r) is given by Eq.(5).
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