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Nonlinear turbulent magnetic diffusion and mean-field dynamo
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The nonlinear coefficients defining the mean electromotive féree, the nonlinear turbulent magnetic
diffusion, the nonlinear effective velocity, the nonlineartensor, etd. are calculated for an anisotropic
turbulence. A particular case of an anisotropic background turbulérece the turbulence with zero-mean
magnetic fieldl with one preferential direction is considered. It is shown that the toroidal and poloidal magnetic
fields have different nonlinear turbulent magnetic diffusion coefficients. It is demonstrated that even for a
homogeneous turbulence there is a nonlinear effective velocity that exhibits diamagnetic or paramagnetic
properties depending on the anisotropy of turbulence and the level of magnetic fluctuations in the background
turbulence. The diamagnetic velocity results in the field being pushed out from the regions with stronger mean
magnetic field, while the paramagnetic velocity causes the magnetic field to be concentrated in the regions with
stronger field. Analysis shows that an anisotropy of turbulence strongly affects the nonlinear turbulent mag-
netic diffusion, the nonlinear effective velocity, and the nonlineasffect. Two types of nonlineariti@lge-
braic and dynamicare also discussed. The algebraic nonlinearity implies a nonlinear dependence of the mean
electromotive force on the mean magnetic field. The dynamic nonlinearity is determined by a differential
equation for the magnetic part of theeffect. It is shown that for the{) axisymmetric dynamo the algebraic
nonlinearity alone(which includes the nonlineas effect, the nonlinear turbulent magnetic diffusion, the
nonlinear effective velocity, etccannot saturate the dynamo generated mean magnetic field while the com-
bined effect of the algebraic and dynamic nonlinearities limits the mean magnetic field growth.
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. INTRODUCTION (see Refs[21,27), where @B);;=(1/2)(V;B;+V;B;); u
and b are fluctuations of the velocity and magnetic field,
Generation of magnetic fields by the turbulent flow of arespectively; angular brackets denote averaging over an en-
conducting fluid is a fundamental problem that has a largesemble of turbulent fluctuations; the tensess and 7;; de-
number of applications in solar physics, astrophysics, geoscribe thea effect and turbulent magnetic diffusion, respec-
physics, planetary physics, etc. In recent time the problem diively; Ve is the effective diamagnetior paramagnetic
nonlinear mean-field magnetic dynamo is a subject of activerelocity; «;; and é describe a nontrivial behavior of the
discussiongsee, e.g., Ref§1—-10). It was suggested in Ref. mean magnetic field in an anisotropic turbulence. Nonlin-
[11] that the quenching of the nonlinear effect is very earities in the mean-field dynamo imply dependencies of the
strong and it causes a very weak saturated mean magneg@efficients @;; , 7;; ,Ve", etc) defining the mean electromo-
field. However, the later suggestion is in disagreement wittiive force on the mean magnetic field. Theeffect and the
observations of galactic and solar magnetic fidse, e.g., differential rotation are the sources of the generation of the
Refs. [12—17) and with numerical simulationésee, e.g., mean magnetic fleld_, whlle the turbulent magnetic diffusion
Refs.[18—20). and ;hex effect (V\{hlc;h is determined by the tenswc_njk)
Saturation of the dynamo generated mean magnetic fiel@ontribute to the dissipation of the mean magnetic field.
is caused by the nonlinear effects, i.e., by the back reaction In spite of the nonllne_aa effect, being under active StL.’dy
of the mean magnetic field on the effect, turbulent mag- (see, 6'9[5’7])’ the nonlinear t.urbuler)t magnetic diffusion,
netic diffusion, differential rotation, etc. The evolution of the the nonlinearc-effect, the nonlinear diamagnetic, and para-

mean magnetic fiel® is determined by equation magnetic effects, etc. are poorly understood.
9 Yy €q In the present paper we derived equations for the nonlin-

ear turbulent magnetic diffusion, the nonlinear effective ve-
IBIJt=V X (VX B+ E— nVXB), (1) locity, the nonlinearx effect, etc. for an anisotropic turbu-
lence. The obtained results for the nonlinear mean
electromotive force are specified for an anisotropic back-
whereV is a mean velocity(e.g., the differential rotation ~ ground turbulence with one preferential direction. The back-
and 7 is the magnetic diffusion due to the electrical conduc-ground turbulence is the turbulence with zero mean magnetic
tivity of fluid. The mean electromotive forc&=(uxb) in  field. We demonstrated that toroidal and poloidal magnetic
an anisotropic turbulence is given by fields have different nonlinear turbulent magnetic diffusion
coefficients. It is shown that even for a homogeneous turbu-
lence there is a nonlinear effective velocity that can be a

&= B+ (Ve B),— 7ij(VXB);— Kijk(aé)jk diamagnetic or paramagnetic depe_nding on _the a}nisotropy of
turbulence and the level of magnetic fluctuations in the back-
—[6X(VXB)]; (20 ground turbulence.
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Il. THE GOVERNING EQUATIONS the tensor anch(?=[h;;(k,R)—h;;(—k,R)1/2 determines

In order to derive equations for the nonlinear turbulentth® helical part of the tensor. Such splitting is caused, e.g., by
magnetic diffusion and other nonlinear coefficients definingdifférent times of evolution of the helical and nonhelical
the mean electromotive force. we will use a mean-field apparts of the magnetic tensor. In particular, the characteristic

1 . . N .
proach in which the magnetiel and velocityv fields are ~time of evolution of the ter?SOhi(j ) is of the order 7o
divided into the mean and fluctuating partd=B+b, v =I¢/ug, while the relaxation time of the tensbfjs) is of the
=V +u, where the fluctuating parts have zero mean valuesprder of 7oRm (see, e.g.[15,23-29).
V=<V>=C0nSt, andB:(H)_ The momentum equation and (c) Equations for the second moments contain hlgher mo-
the induction equation for the turbulent fieldsandb in a  ments and a problem of closing the equations for the higher

frame moving with a local velocity of the large-scale flows Moments arises. Various approximate methods have been
are given by proposed for the solution of problems of this tysee, e.g.

[26-28). The simplest procedure is the approximation,
Aulgt=—=VP'[p—[bX(VXB)+BX(VXb)]/(uop)+T which is widely used in the theory of kinetic equations. For
magnetohydrodynamic turbulence this approximation was

+vAutFlp, 3 usedin Ref[29] (see als¢7,30,31). In the simplest variant,
_ _ it allows us to express the third moments in terms of the
dblot=V X (uxB—5nVXb)+G, (4) second moments
andV-u=0, whereP’ are the fluctuations of the hydrody-
namic pressure; is a random external stirring force,is the Mij =M= = (f;; = )/ 7(k), ®)
kinematic viscosity,n is the magnetic diffusion due to the
electrical conductivity of fluidp is the density of fluidwg is RN = — (h(N — hON))/ (k) 9
ij ij i '

the magnetic permeability of the fluid, the nonlinear tefins

and G are given by T=((u-V)u)—(u-V)u+[(bx(V

X b)) —bX (VXb)]/(ugp), and G=V X (uxb—(uxb)). Cij=—gi/7(k), (10
We consider the case of large hydrodynamic {Rguy/v

>1) and magnetic (Rmlquy/7>1) Reynolds numbers, whereM;;, R;;, andC;; are the third moments in equations
whereuy is the characteristic velocity in the maximum scalefor fj; ,h;;, andg;;, respectively[see Egs.(A3)—(A5) in

I, of turbulent motions. Appendix Al. The superscript (0) corresponds to the back-
ground magnetohydrodynamic turbulen@eis a turbulence
A. The procedure of the derivation of equation for with zero mean magnetic field=0), h® is the nonhelical

the nonlinear mean electromotive force part of the tensor of magnetic fluctuations of the background

The procedure of the derivation of equation for the ncm_turbulence, andr(k) is the characteristic relaxation time of

. ) : . the statistical moments. We applied theapproximation
linear mean electromotive force is as follofer details, see : (N) ,
Appendix A. only for the nonhelical parhjj” of the tensor of magnetic

(a) By means of Eqs(3) and (4) we derive equations for fluctuat_ions because the cor_responding h(_alical péﬁ)t is
the second moments: determined by an evolutionary equatiofisee, e.g.,
[15,23,32,24,2,25]8and Sec. Il §. Here we took into ac-
_ count magnetic fluctuations that can be generated by a
fij(k*R):J (Ui(k+K/2)uj(—k+K/2))expiK-R)dK stretch-twist-fold mechanism when a mean magnetic field is
zero(see, e.9.[33,34). This implies thah(”#0. In inertia

=fi(=k,R), (3  range of background turbulend&;(B=0)=0 and C;;(B
=0)=0. We also took into account that the cross-helicity
. _ _ (_ tensorg;; for B=0is zero, i.e.g;;(B=0)=0.
h;i(k,R)= b;(k+K/2)b;(—k+K/2 d . T g -
i(kGR) J’ (bi( )b ( ) The 7 approximation is in general similar to eddy damped

. quasinormal Markovian(EDQNM) approximation. How-
X exp(iK-R)dK/ ugp ever, some principal difference exists between these two ap-
=h;i(—k,R), (6)  proachegsee[26,28). The EDQNM closures do not relax to
equilibrium, and this procedure does not describe properly
) the motions in the equilibrium state in contrast to thap-
gij(k:R):f (bi(k+K/2)uj(—k+K/2))expiK-R)dK, proximation. Within the EDQNM theory, there is no dy-
7) namically determined relaxation time, and no slightly per-
turbed steady state can be approacHgé]. In the 7
whereR andK correspond to the large scales, anghdk to  approximation, the relaxation time for small departures from
the small ones, i.eR=(x+y)/2, r=x—y, K=Kk;+k,, kK  equilibrium is determined by the random motions in the
=(ky—ky)/2. equilibrium state, but not by the departure from equilibrium
(b) We split all correlation functioné.e., f;; ,h;; ,g;;) into  [26]. We use ther approximation, but not the EDQNM ap-
two parts, e.g.h;=h{"+h{”, where the tensoh{”  proximation because we consider a case WiV B2/u,
=[h;j(k,R) +hj;(—k,R)]/2 describes the nonhelical part of <(pu?). As follows from the analysis of Ref26], the =
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approximation describes the relaxation to equilibrium state
(the background turbulengenuch more accurately than the

EDQNM approach.

In this study we consider an intermediate nonlinearity that
implies that the mean magnetic field is not strong enough in
order to affect the correlation time of turbulent velocity field.
The theory for a very strong mean magnetic field can bdsee Ref[7]), wherec;; = fj;

PHYSICAL REVIEW E64 056307

7¢;;(K) = (514{P;; (K[ (2/9) 7 (k) — &(K) Knm]
+2[ 8 B () Knm+ 1P (k) = B (K) kg
—Kimuld (K) T} (17)

" whena=v, andc;;=h{"

corrected after taking into account a dependence of the cowhen a=h, and 7% (k)= (k), 7{ (k)= rhO(k),

relation time of the turbulent velocity field on the mean mag-p;; (k) = &; —k

netic field.

(d) We assume that the characteristic time of variation o

ij» Omn is the Kronecker tensor. The aniso-
tropic part of this tensorﬂ(nﬁ‘%(k) has the properties:

L@ K)=p@(k) and x®(k)=0. Inhomogeneity of the

pp

the mean magnetic fiel® is substantially larger than the background turbulence is assumed to be weak, i.e., in Eq.

correlation timer(k) for all turbulence scales. This allows us
to get a stationary solution for the equations for the secon

moments f;; ,h;;, and g;;. Using these equationgsee
Egs. (Al4)—(A21) in Appendix A] we calculate the
electromotive force &(r=0)=[&(k)dk, where & (k)
=(12)eiml g (k,R) —gN(—k,R)]. The result is given
by

Ei(r=0)=aiij+bijkBj’k, (11)

WhereBi,j B ﬁBi /aRJ y

a1 [ 70 ey (199 -k, (12

D= [ 1) e (HI+ B — 26k Y Tl
(13
(for details, see Appendix W ki;=kik;/k?, h{y)=h{O

+y(1+2¢) M —h (), &ijk s the Levi-Civita tensor,
and y=[(B-K)Uor/2]%, B =4B;/(Up\2pop), f") and

fi(jos) describe the nonhelical and helical tensors of the bac

ground turbulence.

(e) Following Ref.[21] we use an identit;Bj,kz(aB)jk
—&ji(VXB),/2, which allows us to rewrite Eq11) for the
electromotive force in the form

&= a;B;+(UXB);— ﬁij(VXB)j_Kijk(ﬁé)jk, (14
where
@;j(B)=(aj+a;)/2,

U(B)=ga; /2, (15

7ij = (€ikpbjkpT &jkpbikp) /4, Kijk(B)= = (bjj+ b))/ 2.
(16)
B. The model for the background turbulence

For the integration irk space in Eqs(12) and (13) we
have to specify a model for the background turbuletiee,

turbulence with zero mean magnetic fieltVe assume that
the background turbulence is anisotropic and incompressible.

é_l7)

we dropped terms~O(V(7{®;u{?)), where 7{
< 70u3/3, 7\V=r1b3/3uep, and by is the characteristic
value of the magnetic fluctuations in the background turbu-
lence. To integrate ovet in Egs.(12) and(13) we use the
Kolmogorov spectrum of the background turbulence, i.e.,
Tiop () =7 e(k), 7higd(k)=n{"e(k) and uif(k)
= (R ¢(k)/3,  where (k)= (mk?ko) ~*(k/ko) ",
7(K)=27(k/ko) ~?% and ky=I,*. We take into account
that the inertial range of the turbulence exists in the scales:
[4<r=ly. Here the maximum scale of the turbulenige
<Lg, andly=I,/Re’* is the viscous scale of turbulence,
andLg is the characteristic scale of variations of the nonuni-
form mean magnetic field.

In the following section we present results for the nonlin-
ear coefficients defining the mean electromotive force.

III. NONLINEAR COEFFICIENTS DEFINING THE MEAN
ELECTROMOTIVE FORCE

The procedure described in Sec.(8ee also, for details
Appendix A allows us to calculate the nonlinear turbulent
magnetic diffusion tensor, the nonlineatensor, the nonlin-
ear e tensor, and the nonlinear effective drift velocity.

k-

A. Nonlinear turbulent magnetic diffusion tensor
and nonlinear « tensor

The general form of the turbulent magnetic diffusion ten-
sor 7;;(B) contains all possible tensors;;, u® g;; and
their symmetric combinationu{?) = {2 B, + Binu'y [see
Eqg. (A51) in Appendix A], where B;;=3;5; /82, and B;
=4B;/(ugy2uep). For an isotropic background turbulence
(when ,ui(ja)=0) the turbulent magnetic diffusion tensor

7;;(B) is given by
7i(B) = 3 {AL(V2B) 7+ [As(B) — Ar(V2)] 7"}
+ (112 Bii A B) () + ), (18)

where the function®\(3) are defined in Appendix B. For
B<1 Eg.(18) reads

7i(B)= ;[ ) = (2B%/5) (27— 7]

— (219 B:B;( 7+ M), (19

The second moments for the turbulent velocity and magnetic

fields of the background turbulence are given by

and forB>1 it is given by
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ﬁi'(B):(37T/10B){\/Eéi‘[n(T”M' 7 J2-1)] Eq. (23), and using identitie§A30) and(A31) we obtain the
. ' nonlinear dependence of the hydrodynamic part of éhe
— Bij (7 + 7M1 (200 effect on mean magnetic field

The mean magnetic field causes an anisotropy of the turbue;’(B) = (1/2){5;[2{A1(8) +Ax(B)}af’+ (1
lent magnetic diffusion tensor that is determined by the ten-

sor Bj; . Magnetic fluctuations of the background turbulence —€)Ax(B)vgt5€{Cao(B) +3C5(B)}vp]+w;[(1
contribute to the turbulent magnetic diffusion tensgy(B) —e)2A +A +10efC +C '
in the nonlinear case. It follows from E@20) that for B H2AUB)+ A2l B)) {CalB)+ Cal ]y

>1 the tensory;;>1/8. (25

The « tensor describes a nontrivial behavior of the mean .
magnetic field in an anisotropic turbulence. For an isotropicV.Vhere. vg(R) = ¥mn(R) Bnm and the function$,() are de-
background turbulence the tensor vanishes in spite of an f|ne_d n Appendlx B. Fore=0 Eq._(25) comudes(l/\)nth that
anisotropy caused by the mean magnetic field. For an anis§i€ived in Ref[7]. The asymptotic formulas fosjj” for
tropic background turbulence a general form of theensor <1 andp>1 are given by EqsAS4) and(AS57) in Appen-

is given by Eq(A52) in Appendix A. For3<1 this tensoris 49X A
given by
C. The mean electromotive force and
Kij=—( 1/6)(3£i(jvk) + |"_i(jhk)) + (1/7)32(5|"_i(jvk) + Li(jhk) - 4,§|i(jvk) the nonlinear magnetic a tensor
< (h) Using Eqs(A41), (A44), and(A47) we calculate the elec-
+2Njj) 21D tromotive force&
and forg>1 it reads &= q;iB; +(VeTxB),— 7i;(VXB);— Kijk(&é)jk ,

(26)
K= —(7/168)(v2— [ L +LH +3(NE) + N1,
K e e K (220  where the nonlinear effective drift velocity*"=U+Vv®
and the velocity U,(B)=—(1/2)¢imn@mn=
where L8= e+ ooy and ND=u@oyp ~WAVPAL(/2H) (see Ref[7)) the velociy V0 is
+81nBp))- Note that for3>1 the tensorc<1/8. Thex  9Ven by Eq. (A45), and the tensor of turbulent magnetic
tensor contributes to the turbulent magnetic diffusion of thediffusion 7; is given by Eq.(AS1), the tensorkj is deter-

toroidal and poloidal mean magnetic fieltee Sec. Y. mined by Eq.(A52), and the tenson " is defined in Egs.
(A26) and(A34). In the kinematic dynamo the effective drift

velocity (turbulent diamagnetic velocitys caused by an in-

B. The hydrod i t of th li t . d - .
© nydrocynamic part of the nominear a tensor homogeneity of turbulence. The effective drift velodilyB)

Using Egs.(12) and(15) we get is determined by the tensa; and is due to an induced
)0k R inhomogeneity of turbulence caused by the nonuniform
a")(B R)zf ajj (0K, )dk (23 ~ Mean magnetic field. This implies that the nonuniform mean
e 1+ ¢4(Bk) magnetic field modifies turbulent velocity field and creates

the inhomogeneity of turbulence. The effective velocity
where hereafter{}’(0k,R)=a{’(B=0k,R). Analysis in  V(N(B) is determined by tensds;; and is caused by the
Refs.[7,22] shows that a form of the tensei’(0k,R) in  nonuniform mean magnetic field.
an anisotropic turbulence can be constructed using the ten- The a tensor is determined by the hydrodynamic and
sorskij , Kijmn @nd v , Wherekijm,=kikjknko/k* andv;; is  magnetic contributions, i.ea;j(B)=a{’(B) + o[ (B) with
the anisotropic part of the hydrodynamic contribution of the

a tensor. Thus we use the following model for the tensor a{(B)=af(B)D(B) 5 (27)
(v)
(0K, R)
! (see Ref[7]), where the tensoa&i(j")(B) is determined by Eq.
ai(jv)(o,k,R)Z{Za(OU)(R)kij+(1—€)[Vip(R)kpj (25), the functiohnfb(,B)z(3/,82)[1—arctan(3)//3], and the
magnetic pariz{"(B) of the « effect is determined by the
+Vjp(R)Kpi] + 5€kijmnrmn(R) }o(K)/2, dynamic equation
(24)

da) ol
where the parameter describes an anisotropy of the helical gt |~ T | V- (Wal"+Fyp) = — 9 sop £(B)-B
component of turbulence and it changes in the interval: 0 (28
<e<1. Here af’(0,R)=/a{(0,kR)dk=af’(R)s; ~
+1;i(R), ande{’(R) = (1/3)al})(0,R), the anisotropic part (see Refs[8,25,23,24,3, whereW,=¢;;V; is the velocity
vij(R) of the hydrodynamic contribution of the tensor has ~ that depends on the mean fluid velocity(for an isotropic

the properties;; = vj; andv,,=0. Substituting Eq(24) into  turbulence the tensoEij=5ij and for an anisotropic tur-
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bulence with one preferential direction, say in the direcgon
the tensorc;; = (23/30)5; +(7/10)e;e;, see Ref[25]); the
flux

7)(B)B?

7(B=0)uop

\%
Frue ra?)(B) —

(29
p

is related to the flux of the magnetic helicity and is indepen-€NSOr a;; in the form a;;B;. Thus, VIJB]

dent of the mean fluid velocity [8] (see also Ref.10]), and

PHYSICAL REVIEW E64 056307

Now we consider the hydrodynamic part of theeffect
for an anisotropic background turbulence with one preferen-
tial direction. The tensoe/’(B=0) in this case can be re-
written in the form a(”)(B 0)=a) s+ v;=[af’
—(13)e ] 6ij + &8 wheres isa degree of an anisotropy
of the a-tensor. Thus, the anisotropic parf is given by
vij =g, €j—(1/3)8;;]. The electromotive force contains the

—(113)e [ B
—-3(e-B)e] and VB——(1/3)sa[1 3(e- B)?]. Using Eq.

T~ 7oRm is the characteristic time of relaxation of magnetic(25) we obtain the hydrodynamic part of thetensor in an

helicity. The asymptotic formulas fox[’ for <1 and g
>1 are given by Eqs(A55) and (A58) in Appendix A.

IV. ANISOTROPIC BACKGROUND TURBULENCE WITH
ONE PREFERENTIAL DIRECTION

Now we consider an anisotropic background turbulence

with one preferential direction, say along an unit veator
Thus the tensorp|’(B=0)=(7v;v;) is given by »{ (B
=0)= n(T”)5”+,u|(”)— 788, +ee;, where the trace
7%)(B=0) in this equation yleld37(“)— 7" —(1/3)e{") and
e;=ee; . Therefore, the anisotropic pa/al,‘”) of the tensor
7(B=0) is given by u{)=e{[e; - (1/3)5;] and ul)
—mﬁ)ﬁnﬁﬁ’m#(”’ = s[(eB; + &) (e B) — (2/13)By],
wheree !
<v>—(1/2) )= (e- B)?—1/3]. It follows from these
equations thatn,(”)(B 0)= ;[ 7" — (1/3)e{" ]+ el
Now we take into account that the componenfg)(B O)
7\2)(B=0), and »%(B=0) are positive. This yields-3/2

<a(”)/ 7")<3. The equations for the corresponding mag-

Y is a degree of an anisotropy of the turbulence, and

anisotropic background turbulence with one preferential di-
rection

a)(B)= 5 {[ALB) +AxB) ][ ) — (1I3)e (1 €)]
—(5/6)¢ ,€[2C1(B) +3Co(B) +3C3(B)1}
E(I)a(ﬂ)6|] ' (33)

where we assumed thet=0. For e#0 the tensor{!(B)

can change its sign at some valBg of the mean magnetlc
field [see Eqs(C17) and (C221) in Appendix G. Thus the
point B=B, can determine a steady state configuration of
the mean magnetic field far#0.

V. APPLICATIONS: MEAN-FIELD EQUATIONS FOR
THE THIN-DISK AXISYMMETRIC a2 DYNAMO

Here we apply the obtained results for the nonlinear mean
electromotive force to the analysis of the thin-disk axisym-
metric a{) dynamo. Using Eqs(30)—(32) we derive the
mean-field equations for the thin-disk axisymmewiQ dy-

netlc tensors are obtained from these equations after tHEAMOo,

changev—h. For the magnetic fluctuations we also obtain B B\ _ A
that —3/2<e(V/ n{V<3. i &—( 78 &—) +G, (34)
For galaxies, e.g., the preferential directeis along ro- z z z
tation (which is parallel to the effective gravity field~or the )
; ; ; A A IA
axisymmetric ) dynamo and large magnetic Reynolds =y Va4 aB, (35)
numbers the toroidal magnetic field is much larger than the ot A g2 972 Az

poloidal field. Therefore, the vale B is very small and can

be neglected becaug®is approximately directed along the

toroidal magnetic field.

wherer, ¢ andz are cylindrical coordinates3=Be,+V
X (Ae,), G=—r(aQ/ar), and

Thus, the nonlinear coefficients defining the mean electro-

motive force in a turbulence with one preferential direction

are given by
7;(B)=M,8; + Mgy +MgB; (30)
vefi(B)=(1/B3)[M{NVB2+M{Pe(e- V)B?],
(31
Kij(B)(9B) ;=M [ex (e V)B]; (32

(see Appendix & where we assumed thet8=0, the func-
tionsM,,, Mg, Mg, M., M{}), andM{? are given by Egs.
(C4—(C9) in Appendix C. The tenso#;;(B) contains three

7A(B)=M,+M, +Mg, 7(B)=M,+M, —2My,
(36)

Va(B)=(7a—7g)(In|B|)’,
a(B)=® ,(B)al+®(B)a{"(B), (37)

and F'=0F/9z, My=M{P+M{? In the axisymmetric
problem dB/d¢=0. The thin-disk approximation implies
that the spatial derivatives of the mean magnetic field with
respect taz are much larger than the derivatives with respect
tor. It is seen from Eqs(30)—(32) and Eqs.(36) and (37)
that the contributions to the turbulent diffusion coefficients
na(B) and 5g(B) are from the tensor of turbulent diffusion

tensorss;;, €, and g;; since here there are two preferred #;;(B), the tensorx;;(B) and the nonlinear velocity)(B)

directions, along the vectoesandB.

+V(N)(B). On the other hand, contributions to the effective
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FIG. 1. (a) Nonlinear turbulent magnetic diffusion coefficients;

(b) the nonlinear effective velocityr) the nonlinear dynamo num-
ber for V=0, &)= —1.357{"), ande{’=0.

FIG. 2. (a) Nonlinear turbulent magnetic diffusion coefficients;
(b) the nonlinear effective velocityr) the nonlinear dynamo num-
ber for 7= 7{" ande() =& =0.

velocity V,(B) are from the tensor of turbulent diffusion
7;(B) and the nonlinear velocity(B) + V™ (B). The func-
tions nA(B), 7g(B), andV(B) are given by Eqs(C11)—
(C13) in Appendix C.

isotropic background turbulenc€ig. 2) the nonlinear effec-
tive velocity V4(B) is negative. The latter implies that it is
diamagnetic velocity that results in the field being pushed out

" . . from the regions with stronger mean magnetic field. In the
The nonlinear dependencids) of the turbulent magnetic anisotropic background turbulencgig. 1 and Fig. 3 the

diffusion coeffipientsV;A(B)lzn(T”) andg(B)/ 7" (b) ofthe  onjinear effective velocity is positivei.e., paramagnetic
effective velocityV(B)/(B?)"; and(c) of the nonlinear dy-  ye|ocity that causes the magnetic field to be concentrated in
namo numbeD(B)/D, are presented in Figs. 1-3. Here yheo regions with stronger fieldThe sign ofs(*) affects the
D,=a,Gh% 7%, D(B)=a)(B)Gh*/[7a(B) 7e(B)], 7+  value of ositi .
“r %) . ) 774\(5), 78(B) andV_A(B), e.g., for positive param
=7y +(2/3)e,”, a, is the maximum value of the hydro- eter of anisotropy the functionga(B), 7g(B), andV(B)
dynamic part of thew effect, h is the disk thickness and gare |arger at least in one order of magnitude than those for
a®(B)=al")® (B). For simplicity we consider the case negatives ).
€=0. In order to separate the study of the algebraic and The dependencies of the nonlinear dynamo number
dynamic nonlingarities we defined the n_onlinear dynamap(B)/D, on the mean magnetic fielB/B, demonstrate
numberD(B) using only the hydrodynamic part of the  that the algebraic nonlinearity alofiiee., quenching of both,
effect. We considered three cases: two types of an anisqhe nonlineara effect and the nonlinear turbulent diffusion
tropic background turbulencee {’=+1.35,{); e"=0)  coefficients cannot saturate the growth of the mean mag-
without magnetic fluctuationG:ig. 1 and F|g ;Band an iso- netic field (Where Beq= Wuo)_ |ndeed7 for anisotropic
tropic ({)=¢{"=0) background turbulence with equipar- background turbulence without magnetic fluctuatiéig. 1
tition of hydrodynamic and magnetic fluctuatiofsig. 2). and Fig. 3 the nonlinear dynamo numbd»(B)/D, is a
The negative degree of anisotropi{) implies that the ver- nonzero constant fog>1, i.e., it is independent g8. This
tical (along axisz) size of turbulent elements is less than theis because, fog>1, the functionsy,=1/8, ng>=1/8, and
horizontal size and positive{") means that the horizontal «1/8% [see Eqs(C18—(C21) in Appendix . In the case
size is less than the vertical size. of isotropic background turbulence with equipartition of hy-
Figures 1-3 and the equations fa(B) and 7g(B) drodynamic and magnetic fluctuatiofsig. 2) the nonlinear
show that the toroidal and poloidal magnetic fields have dif-dynamo numbeb (B)/D, « B for 8>1 because in this case
ferent nonlinear turbulent magnetic diffusion coefficients. Inthe functionsz,>1/8?%, ng*1/B, and ax1/B8? [see Egs.
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(A) of the hydrodynamic part of thex effec). For galaxies
h/ly~5 andC~0.05-0.1. Nondimensional equations for
\ — andB are given by

)
Mgy

1 \ IBldt=(ngB’)' —DoA’, (39)

R IAIt= paA"—V A" + aB, (40)

0 2 4 BB where D= a, Gh®/ 52 andB,=—A’(2). In a steady state

Egs.(38)—(40) yield
- (B)
V, /(B

[78(B)B']?+2CDo® ,(B) 7a(B)B?|f(2)[=0, (41

\ where we used the following boundary conditioB$z=
! +1)=0, B’(z=0)=0 andf(z=0)=0. The solution of Eq.
\ (41) for negativeDy, is given by

B _ 1 —_
0 04 08 BB, fX(B)dB=\/ZC|DO|f| f(z)dz, (42)
0 Z|

R B g where x(B)= 7g(B)/[®,(B) na(B)B2]Y2 Consider the
/ casee=0. For B>1 (i.e., for B>1/{/8) the equilibrium
mean toroidal magnetic fielB(z) is given by

2
2 | B(z)~ﬁc|Do|Ull \/f(~z)d~z) , (43)

0 2 4 6 8 B/B, A
4 where we used that foB>1 the functionsna(B)~3/58,

FIG. 3. (8 Nonlinear turbulent magnetic diffusion coefficients; 7s(B)~2/58, ® ,(B)~2/82, and x(B)~2/+/B. Here for
(b) the nonlinear effective velocityr) the nonlinear dynamo num- simplicity we considered the Caﬁéf)=0. In a steady state
ber for V=0, () =1.357{"), ande{’=0. A(2)=—ng(B)B’/|Dy|. Now we specify the profile of the

function f(z), e.g., f(2)="f,[sin(@z/2)]*" {cosEz2)T,
(C18—(C21) in Appendix d. Note that the saturation of the Wherek=1,2,3,... and
growth of the mean magnetic field can be achieved when the k43 / 2k+3
derivative of the nonlinear dynamo numhebd(B)/dB<0. f= _)(_
Thus, the algebraic nonlinearity alone cannot saturate the * 2 2k+1
growth of the mean magnetic field. We will show below that ) ) )
the combined effect of the algebraic and dynamic nonlinearit "€ function f(z) changes in the interval 9f(z)<1

(2k+1)/2

ties can limit the growth of the mean magnetic field. and it has a maximum f(z=z,)=1 at z,
Equation(28) in nondimensional form is given by = (2/m)arctafiy(2k+1)/2]. Equation(43) for this profile
f(z) with k=2 yields
PORENG 2 B(z)~0.4C|Do|{1—[sin(7z/2)]"32. (44)
= +T:4(|_) [ 7B’ A’ — (A" —VAA +aB)B]
0

Equation(44) describes the equilibrium configuration of the
+[C|a8”)(2)|f,7(2)<1>a(|3)nA(B)Bz]', mean toroidal magnetic field. Thus, the saturation of the
growth of the mean magnetic field is caused by both, the
(38) algebraic and dynamic nonlinearities. The dynamic nonlin-
earity is determined by the dynamic equati@®), whereas
the algebraic nonlinearity implies the nonlinear dependencies
of the turbulent magnetic diffusion coefficienis(B) and

=al)(2)f,(z). Here we use the standard dimensionIess’7B(.B)f."’llr:jd of thé eff(écltg/e \gellc:);cnyA(B) on the mean mag-
form of the galactic dynamo equatidsee, e.g., Ref16]), in netic field[see Eqs(C11)-(C13)].

particular, the length is measured in units of the disk thick-
nessh, the time is measured in units &f/7{"), andB is

whereC is a coefficient,f,(z) describes the inhomogeneity
of the turbulent magnetic diffusion, and we defifiéz)

VI. DISCUSSION

measured in units of the equipartition enely=vuopUo. In this study we calculated the nonlinear tensor of turbu-
Here u, is the characteristic turbulent velocity in the maxi- jent magnetic diffusion, the nonlineartensor, the nonlinear
mum scald, of turbulent motions{’=1,us/3 andel’,  effective velocity, and other coefficients defining the mean

agh) and« are measured in units of, (the maximum value electromotive force for an anisotropic turbulence. The ob-
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tained results were specified for an anisotropic backgroundy. Without the flux, the total magnetic helicity is conserved
turbulence with one preferential direction. We found that thelocally and the level of the saturated mean magnetic field is
turbulent magnetic diffusion coefficients for the toroidal andvery low[8]. The flux of the magnetic helicity results in that
poloidal magnetic fields are different. We demonstrated thathe total magnetic helicity is not conserved locally because
even for a homogeneous turbulence there is the nonlinedhe magnetic helicity of small-scale magnetic fluctuations is
effective velocity that can be a diamagnetic or paramagnetitedistributed by a helicity flux. In this case an integral of the
depending on the anisotropy of turbulence and the level ofotal magnetic helicity over the disk is conserved. The equi-
magnetic fluctuations in the background turbulence. The dialbrium state is given by a balance between magnetic helicity
magnetic velocity implies that the field is pushed out fromproduction and magnetic helicity transpgg]. These two
the regions with stronger mean magnetic field, while thetypes of the nonlinearitieGlgebraic and dynamiaesult in
paramagnetic velocity causes the magnetic field to be corthe equilibrium strength of the mean magnetic field being of
centrated in the regions with stronger field. the same order as that of the equipartition fiBlg (see Sec.
Note that dependencies of theeffect, the turbulent mag- V) in agreement with observations of the galactic magnetic
netic diffusion coefficient and the effective drift velocity on fields (see, e.g.[16]).
the mean magnetic field for an isotropic turbulence have

been found in Refd.36-3§ using a modified second-order ACKNOWLEDGMENTS
correlation approximation. Our results are different from that
obtained in Refs[36—38. The reason is that in Ref§36— We have benefited from stimulating discussions on non-

38] a phenomenological procedure was used. In particular, iinear dynamo with A. Brandenburg, D. Moss, K.-H.d#er,
the first step of the calculations the nonlinear terms in theé®. H. Roberts, A. Ruzmaikin, D. Sokoloff, and E. T. Vish-
magnetohydrodynamic equations were dropgadhich is ~ niac. This work was partially supported by INTAS Program
valid for small hydrodynamic and magnetic Reynolds num-Foundation(Grant No. 99-348
bers or in a high conductivity limit and small Strouhle and
hydrodynamic Reynolds numbeérdn the next step of the APPENDIX A: CALCULATION OF THE MEAN
calculations in Refs[36—3§ it was assumed that= 7 ELECTROMOTIVE EORCE
=127, wherel; and r, are the correlation length and time ) )
of turbulent velocity field, respectively. The latter is valid Let us derive the equations for the second moments. For
when the hydrodynamic and magnetic Reynolds numbers atgis purpose we rewrite Eq¢3) and (4) in a Fourier space
of the order of unity. In the present paper we use a differenfid repeat twice the vector multiplication of E@) by the
procedure(the = approximatiop for large hydrodynamic and Wave vectork. The result is given by
magnetic Reynolds numbers. R

In this study we also demonstrated an important role of  duj(k,t)/dt=(2P;,(k) — 5ip)S§J°)(b;B)/(Mop)
two types of nonlinearitiegalgebraic and dynamicn the . _ _
mean-field dynamo. The algebraic nonlinearity is determined +SP(0;B)/(pop) —Ti— vk?u; —F;,
by a nonlinear dependence of the mean electromotive force (A1)
on the mean magnetic field. The dynamic nonlinearity is de-
termined by a differential equation for the magnetic part of by . 20, )
the a effect. This equation is a consequence of the conser- dbi(k,t)/dt=5"(u;B) = 5" (u;B) + G;— 7k°b;,,
vation of the total magnetic helicitjwhich includes both, (A2)
the magnetic helicity of the mean magnetic field and the R R
magnetic helicity of small-scale magnetic fluctuations’e ~ where  S9(a;A)=ifa,(k—Q)Q,A(Q)dQ, S (a;A)
found that at least for thex{) axisymmetric dynamo the =ikpfai(k—Q)A,(Q)dQ, T:kx(kxT)/kZ, |~:(k,R,t):k
algebraic nonlinearity alongi.e., the nonlinear functions x[kx F(k,R)]/kZPp, Pij(k)=8;—k;;, &; is the Kronecker
a(B), 7a(B), 7g(B), andV,(B)] cannot saturate the dy- tensor andk;; = kik;/k?. We use the two-scale approach, i.e.,
namo generated mean magnetic field. The important paran correlation function
eter that characterizes the algebraic nonlinearity is the non-
linear dynamo numbédD (B). The saturation of the growth of
the dynamo generated mean magnetic field by the algebraic <Ui(X)Uj(Y)>=J (Ui(kp)uj(ka)yexpli(ky - X
nonlinearity alone is possible when the derivative

dD(B)/dB<0. We found that for thex() axisymmetric dy- +k,-y)dk,dk,

namo the nonlinear dynamo numhbe(B) is either a con-

stant orD(B)=B for B>B,,/3 depending on the model of =f f. (k,K)exp(ik-r+iK-R)dkdK
the background turbulence. Therefore, in this case the alge- ne

braic nonlinearity alone cannot saturate the dynamo gener-

ated mean magnetic field. =J fij(k,R)exp(ik-r)dk,
The situation is changed when the dynamic nonlinearity is

taken into account. The crucial point is that the dynamic

equation for the magnetic part of the effect (i.e., the dy- ) _ . L .

namic nonlinearity includes the flux of the magnetic helic- fij(K,R)=| (ui(k+K/2)u;(—k+K/2))expiK-R)dK,
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where R=(x+Vy)/2, r=x—y, K=k;+k,, k=(k;
—k,)/2, R andK correspond to the large scales, arahdk

to the small onessee, e.g., Ref$39,40). The other second

moments have the same form, e.g.,

hu(k,R)=f (bi(k+K/2)bj(—k+K/2))

X expliK - R)dK/ mop,

gij(k,R)= J(b(k+K/2)u( k
+K/2))expiK-R)dK.

The two-scale approach is valid when B)(dB/dR)<l,*,

whereB=|B|. Now we derive the equations for the correla-

tion functionsf;; (k,R), andh;;(k,R), andg;;(k,R)

afijlat=i(k-B)Dj;+ M+ Fj; — 2vk?f;; , (A3)
dhij 1ot=—i(k-B)®;; +Rij—27k?h;; , (A4)
agij 19t=1;;+Ci;— (v+ n)K3g;; , (A5)
Lij=i(k-B)(fij—hy)) + (L2 (B-V)(f;+hij)—f,;Bi
+hip[ 2P (K) = 8;11B) p—Bp.gKp( fijg+ hijg), (AB)

where V=0//R, fijq (1/2)(9f|,/<9k hijq

= (1/2)oh;; 1dkg, and  Fjj(k,R)=(Fi(k,R)uj(—k,R))
+(ui(k,R)Fj(—k,R)), B ;=dB;/dR;, and

@i (k,R)=[gjj(k,R) =g (=k,R)J mop. (A7)

The third moments are given
_:ﬁi(k)uj(_k)>_<ui('9?j(_k)>,
=(Gi(k)b;(—k)+(bi()G;(~k))  and
=(Gi(K)uj(—k)) =(bi(K) T;(—K)).

by Mi;(k,R)
Rij(k,R)
Cij(k,R)

For the derivation of EQ9A3)—(A6) we performed sev-
eral calculations that are similar to the following, which
arose in computingyg;; /dt. The other calculations follow f;

similar lines and are not given here. Let us defiigk,R)
by

Yij(k,R)=f (5P (u;B;k+K/2)uj(—k
+K/2)Yexp(iK - R)dK
=if(ui(k+K/2—Q)uj(—k+K/2)>(k
+Ky/2)By(Q)exp(iK - R)dKdQ.
Next, we introduce new variablek,=k+K/2-Q, k,

=-k+K/2 andk=(k;—k,)/2=k—Q/2, K=k;+k,=K
— Q. Therefore,

PHYSICAL REVIEW E64 056307

+Kp/2)By(Q)exp(iK-R)dKdQ.  (A8)
Since|Q|<|k| we use the Taylor expansion

1 0f;(k,K-Q)
ks s

+0(Q?), (A9)

fij(k=Q2K=Q)=f;;(k,K-Q)— 5

and the following identities:

[fiJ-(k,R)Bp(R)]K:f (kK- Q)B,(Q)dQ,
(A10)

Vol fij(k,R)Bp(R)]

:f iK [ (k,R)B,(R) Ik expliK - R)dK.

(A11)
Therefore, Eqs(A8)—(All) yield
Yij(k,R)=[i(k-B)+(1/2)(B- V)]f;;(k,R)
—kpfijs(kK,R)Bp s (A12)

In Egs. (A3) and (A4) we neglected the terms
«(B-V)g;; and =B, ,g,; because they contribute to the
modification of the mean Lorentz force by the turbulence
effect(see, e.g., Ref$30,31)). In Eq. (A5) we neglected the
second and higher derivatives oker We also neglected in

Eq. (A5) the terms that are of the order of
Rm™'V(B;.f;;,h;) and Re'V(B;;f;:h;). When the
mean magnetic fleld is zero EGA3) reads

It P1t=MP+FP— 20k (. (A13)

We assume tha;; is not changed during the generation of
the mean magnetic field, i.e&;;=F{. This implies an as-
sumption of a constant power of the source of turbulence.
Now we split all correlation functions (i.e.,
0 hij .3 . ®;;) into two parts, e.g.f;;=f{V+ (Y, where
fV=[f;(k,R)+f;(-k,R)]/2  and f(s)—[f”(k R)
—f i(—k,R)]/2. Next, we user approximation that is deter-
mlned by Egs.(8)—(10). We assume thapyk?’<7 ! and
vk?< 71 for the inertial range of turbulent fluid flow. We
also assume that the characteristic time of variation of the
mean magnetic fiel® is substantially longer than the corre-
lation time 7(k) for all turbulence scales. Thus, Eq&3)—
(Ab) yield

fi('N)” fi(.ON) +ir(k- B)(I)i(jS) : (Al4)
h(9~hOV—i (k-B)d (S, (A15)
fO~f09+ir(k-B)DY, (A16)
gy~ (A17)
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where =2 (k-B7)?/ uop, kij=kik;/k?, "™ and P9 de-

scribe the nonhelical and helical tensors of the background

turbulence. The tensdr|? is determined by an evolutionary
equation(see, e.g., Ref$15,23,32,24,2,25]&and Sec. 111 G.
Now we calculate®V) and ®{¥. The definition of®;;
given by Eqs(A7) and(Al7) yields

D (k,R)=~7(mop) [ 1;(k,R) = 1;;(—k,R)]. (A18)

Substituting Eq(A6) into Eq. (A18) and using Eqgs(5) and
(6) we obtain

D~ 7( pop) ~H{2i (k- B)(fi— hij) = Bj p(f o+ hpy)

+Bj'p(fip+hip)+ZB|yp(hpjk”—hipk”)}. (A19)

Now using Egs(A14)—(A16) and Eq.(A19) we get

DM~ 7(1+¢) M uop) H2i(k-B)(fPI—h{D)

+Bj (PR +hGY) =By (1Y +hY)

+2By,1(h{Vkpi— h{Vkp )}, (A20)
O~ 2i 7(1+29) " pop) (k- B)(FPV —h(PY)

+0(B; ). (A21)

To calculate the electromotive force we do not take into ac-
count the second- and higher-orders spatial derivatives of the

mean magnetic field. Th|s implies that in the tenlsgy (and,
therefore, in the tens@b )we neglect the first- and higher-
orders spatial derlvatlves of the mean magnetic fialee
Egs.(11), (A21), and(A23) below].

Note that Eqs(A14) and (A15) yield

PHYSICAL REVIEW E64 056307

X®..(B)=XR (B-XR  (2B)+x[ . (V2p),
(A25)
Xk (B=XR_(B=X (B, (A26)
X (B =X (B)+XR (B, (A2])
and
(a) Cij(k)T(k)
Ni(B)= j—lﬂﬁ(ﬁ,k) (A28)
i (k) m(k
Lfina(B) = f —f ‘+( wz;( k)) KK, (A29)
and B;=4B;/(uo\2pop), #(B.K)=[(B-K)uor/2]?, c;
=N for A andc;;=h{™ for AV

ij
For the caJIcuIation of the tensby;, we specified a model

of the background turbulencé.e., turbulence with zero

mean magnetic fie)d The turbulent velocity and magnetic

fields of the background turbulence are determined by Eg.

(17). To integrate over the angles knspace in Eqs(A28)

and (A29) we use the following identities:

f KiSIN0 o= Ans +AL8 (A30)
1tacog o rounTfesi

J kijmn sing

d6de=C1(5; Smnt+ SimSin+ Sindim)
1+aco2d ¢ 1( ij9mn™T Oim9jn in9jm

+62Bijmn+63( é\ijIan_’_ 5imﬁjn

N+ h(W~ O+ h(ON (A22)

This is in agreement with the fact that a uniform mean mag-
netic field performs no work on the turbulence. It can only

+ 5in:8jm+ 5jm:8in+ 5jnﬂim
+ OmnBij), (A31)

redistribute the energy between hydrodynamic fluctuationsvhere a=[ Bugkr(k)/2]?, Bi=pBilB, Bij= ,Bﬂj, Bijk ..

and magnetic fluctuation. Analysis in Rg81] showed that a
change of the total energkinetic and magnetjcof fluctua-
tions caused by a nonuniform mean magnetic field is of the
order~m(T”)ABz. In the case of a very strong mean mag-
netic field Eq.(A22) can be violated.

Using Egs.(A14)—(A16) and (A20)—(A21) we calculate
the electromotive forcé;(r =0)= [ & (k)dk, where the Fou-
rier component; (k) = (1op/2)eimn®{M(K), ande;jy is the
Levi-Civita tensor. The electromotive force is given by Egs.
(11)—(13). Substituting Eq(A15) into Eqg.(13) we get

b= [ L+ 9) o120+ )~ 26 ki [
—i7(k-B)®{ 1} dk. (A23)
The integration irk space in Eq(A23) yields
bijk:‘gijn)‘%i)(ﬁ)_l'Zsinmggi)jm(,g)- (A24)

Hereafter we use the following definitions:
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To integrate ovek in Eqgs. (A28) and (A29) we use the

PHYSICAL REVIEW E64 056307

In order to extract termscsijm,ém, which contribute to

Kolmogorov spectrum of the background turbulence, i.e.the nonlinear diamagnetic and paramagnetic velocities, we

g (K)=nie(k), g0 =7e(k), and (k)
= mij (R)e(k)/3, where  o(k)=(mkKo) "~ (k/ko) ~ ",
(k) =275(k/ko) ~2", whereko<k=ky, ko=I52, I, is the
maximum scale of turbulent motions akg=k,Re** is de-

termined by the Kolmogorov's viscous scale of turbulence.

The integration irk space in Eqs(A28) and (A29) yields

NA(B)=AB(B)+ B[y (B) B+ Vo B) wlD Bol,

(A32)
Eha(B)=ESna(B)+ BALUA(B) +T@(B) 5 Brl,
(A33)
where
AR =T 1B P+ o (Bl Boj+ 8 {[AL(B)
+HARAUB I +(UAH V(B S}, (A34)
YA(B)=(5/12Co(B) )~ (112)Ag(B) 7, (A35)
T@(B)=(5/12Co(B) )+ (112)Ax(B) 7, (A36)

U (8)=(5/6){[ Ax(B) — Ca( B)11{® Brn— Cal( B) (12 B;
+ ) BoSimi— e Bo3i;) = Cal B ) Bojmt
(A37)
EMn(B)=(112) 8l [As(B) P+ (5/6)C4( B) w15
+(5/3)[As(B) = C1(B) I
~(5/3)C3(B) (g Byj} + (516){ 5[ C1(B) e
+Ca(B) ) Boml — Ca(B) i3 3y1
—Ca(B) iy Bpmdin}

W1(B)=(5/6)[A1(B) +Az(B)

(A38)

and  u®=ulp,,

+Cu(B)],  WaB)=(5/6)[C3(B)—AxB)],  W3(B)
=(5/13)Ax(B)+C3(B)]. The functions  A,(B)
= [ An(@) e(K)k?dk=(3B%m) [ ;[ A(X?)/X°]dX  and

similarly ~ for where a=[Bugkr(k)/2]?>=X?

Cn(B),

= B?(klko)?® and we took into account that the inertial

range of the turbulence exists in the scalgssr=<I,. Here
the maximum scale of the turbulendg<Lg, and lq4
=1,/Re¥* is the viscous scale of turbulence, ahg is the

split byj into two parts, i.e.pjjx=b{+b(F), where

b= einmBud Sinl Y (B) Bt Vo B) i) By]

+2[TO(B) 8B+ UA(BI1}, (A39)

b{R=8ijn AR (B) + 22 inmen( B) (A40)
[see the definitions given by EgeA25)—(A27)]. Next, we
calculateb;;B; . Using Egs.(11), (A39), and (A40) we
also split the electromotive force into two parts

E=gM+ 3 (A41)
EM=b{PB . (A42)
&P =a;Bj+b@B; . (A43)
Using Egs.(A39) and (A42) we obtain
EM=(vNxB);— »(VxB);, (A44)

where
VIV(B)= 5 [P(B) + 21 BV B+ 5 [2U)(B)
i =gz B BV gl2Vig (B

+Wo(B) i) Bpdi1ViBy (A45)

7= ¥ P(B)Py; (B), (A46)
and P;;(B)=&;—Bi;. For the calculation of the terms
«y(P)(B) in these equations we used an identity
€imnBnpBmp=—[BX(B-V)B];/B?= —[Bx V(B?/2)];/B?
—Pip(B)(VXB),, which follows from the formula
(B-V)B=(1/2)VB?—BxX (V xB). Following Ref.[21] we
use an identityB; = (9B);x— & (VX B), /2 in order to re-
write Eq. (A43) in the form

€= a;Bj+(UXB); = n{/(VXB);~ Kijic(9B) i,

characteristic scale of variations of the nonuniform mean

magnetic field. For very large Reynolds numbb@;;lgl is

(A47)

where
7= (sipbfeh + & pblep) /4, (A48)
kijk(B) =~ (b{+bi)/2. (A49)

very large and the turbulent hydrodynamic and magnetic en-
ergies are very small in the viscous dissipative range of the Using Eqgs.(A44) and (A47) we obtain the equation for

turbulence Gsr=<Iy. Thus we integrated A, overk from
kozlal to . The functionsA,(B8) andC,(B) are given in

Appendix B. In Eqs(A33)—(A38) we omitted terms that are
symmetric in indexes and n because after multiplication

{8 (B) by ejn these symmetric terms vanidisee Eq.
(A24)].

the electromotive forc€= £+ £3) which is given by Eq.
(26). The tensor of turbulent magnetic diffusion
7iy(B)= 7+ n (A50)

is given by
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7i(B) = 8i{A(B) 77+ (5112[Co(B) +2C5(B)
~[A177]© = (5/6)[ Cap ]9} (1/4)
X[2W (B i+ W o(B) i1+ (5I6)[ (A
+C)paij ]9+ (5112 [ Caprif]©
+(112) B[ Ax(B) 77— (516)Co( B) ],
(A51)

where M(a)_ﬂ(a)ﬁnj+ﬁinﬂ§ﬁ}), and we used EQs(A46),

(A48), and the definitions(A25)—(A27).

[X1O(B)=X)(B) = X®)(2B) + XM (y2p) that implies,

e.9.[A17r]O=As(B) ) — Ay(\2B) n) + AL (V28) .
Using Eqgs.(A40) and (A49) we calculatex;;,(B)

Kijk(B)=—

_3C) |]k](c)_(5/2)[c3 |]k](c)

(L2[P (B LR+ BN+ (5/6)[ (A
(A52)

where Li(j?zsijnl’vg?()"_slknﬂsu)v NG = 1 (8ijn Bok
+eunbp). and [CoN k1@ =Co(BIN{ — C(V2B) (N

N(D) and similarly for [(A;—3C1)Li;]© [see Ea.
(A25)]

The asymptotic formulas for the nonlinear coefficients de-

fining the mean electromotive force f@<1 are given by

1
7ij(B)=8; n{" — EM(M)— —'32[ [277(”)— 7"

(20~ )| + (5~ 194+ 241

+5ui) + By n(TP’} : (A53)

al)(B)=al) 8+ vij— (215 X5, [ 3l + vs{1+(8/7)€}]
(97 €]}, (A54)

alf’(B)=af’(B)(1-3%5)5;, (A55)

+ Vij[z_

and for3>1 they are given by
7;ij(B)= 53[ [ M2+ 7+ B[M(U)(S 2)

g (V2+1)] m‘,-">(9—5f i (5\2

—1)——[u.,”>(5 V2)+ i (3+ ﬁ)]}

- _IBIJ( 77(P)+ :/J«(P)> (A56)
al)(B)=—(37/108)[ 8ij(1— €)vg—v;;(1+9€)]
+(2a187) 55, (A57)

o{)(B)=(3m/28%)

In particular,
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al"(B)§; . (A58)

The asymptotic formulas for the tenser, for <1 and
B>1 are given by Egs21) and (22).

APPENDIX B: THE FUNCTIONS A_(B) AND C,(B)
The functionsA(8) andC_,(B) are given by

B 6| arctarB 5 1 5
A(B)=5 3 1 7_B2 ﬂ'—(ﬁ)—7—32 .
6| arctarB 15 15
e R e R (ﬁ)—7—B2
B 3 | arctarB 10
Ci(B =15 B 1+7_ﬁ2+9_,84 +53L(B)
B/ 5
1898° 9p*
_ 3 arctarB| 3 30 35 16
CaAp)=5 3 5 73 9_,84 + 31
_ S5 3
18982 9p*
_ 3larctaB| 1 6 5 8
Cs(Bp)=—3 3 §+7_Bz+9_,84 ~315-(B)
27 s
18982 9p*]

where L(B)=1-2p8%+2p%In(1+B?). For B<1 these
functions are given by

AL(B)~1—(2/5)8% Ay(B)~—(4I5)B%
CuB)~(UB[1-(2/7) %], Ca(B)~
—(32/1058%In B,  C4(B)~— (413537,
and for 8>1 they are given by
Ai(B)~37I58—21p2,

Ci(B)~3m/208, Cy(B)~9m/208, Ca(B)~
—37/208.

A,(B)~—3mI58+4182,

Since the function\;(8) + A,(B8) ~O(B?) for B> 1 (it de-
scribes an isotropic part of the effect) we took into account
in the functionsA4(B) andA,(B) the terms that are of the
order of ~O(B?). Here we also used that fgg<1 the
function L(B)~1—2B82—4B%In B, and for 8>1 the func-
tion L(B)~2/3B2.
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APPENDIX C: DERIVATION OF THE NONLINEAR
DEPENDENCIES #7a(B), 75(B) AND V(B)

Now we consider an anisotropic background turbulence

with one preferential direction, say along unit vectgr
wheree- B=0. In this case

VN =[vOy B2+ v@ge. V)B2+VE)(B- V)B]/B2,

(Cy
U=[UudVB2+UPee V)B2+UG)(B-V)B]/B?
(C2
Kij(9B)j = —{W[VB2+2(B-V)B]XB—M,e
X (e-V)B};/B?, (C3
where

VO = —(18){Ay(B) 7P+ (5118 Co(B)e ) + (519 (C,

+2A5)e,]1 9 = (112)[ Ay 7]},
V@)= (5/6)[(A,~Cy)e,] ),
—(1/3)‘1’2(ﬁ)8§f) ,

V®)=(5/9)[Cze ,]©
u@=

UWD=— (28148 (+28),
~(2B14)%1(\2p)e ",

UB=(18)W,(V28)e(",  W=—(1/12{¥,(B)e
+5[Cze ]}
In order to derive Eq(C3) we used the following identities:
L{(9B)j=—ePex(e-V)B];,
N (9B) = —(1/6B?)e D[ (VB2+2(B- V)B) X B]; .

Using Egs.(C1)—(C3) and(A51) we calculate the functions
M, Me, Mg, M,, M{, andM{ in Egs.(30—(32),

M, =As(B) 77+ (5136 Ay(B) +4A,(B)+Cy(B)
—Cy(B)—5C3(B) el = (5/118[(C1+Ae,,
—[A ]+ (1) W,(V28) (",

](C)

(C4

M, =(12)¥(B)e'+ (5/6)[(3C;—Ape ],
(C5)

M 5= (1/6){3A(B) 77+ [(516)C( B) + 4¥ 5( B) &
—Wy(V2B)e 4"}, (Co)

Me=—(12W1(B)e )+ (5/6)[(C1+Ae, ],
(€
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MP=vB+U® 42w+ (1/2)(VE+U )
= — (UHALB) 77— (5I72[Co( B) +4C4(B)

V,(\28)eV+(5/36)
X{[Azn7] @ =[(Co+2A,+ 4C3)8M](C)}

—4A,(B)1eD+ (112 W

—(\2B148)V (\2B), (C8)
M{P=V@+U@=(5/6)[(A;—Cs)e,]©
—(N2B18) (V2. (C9

Now we take into account that™), U, and« contribute into
the tensory;; . This implies that in order to calculatd ,,
M, andM g, we perform the change

7ii— 7+ Pij(B[VE+ U +2w], (C10
where the second term in E@C10) [which is proportional to
Pij(B)] describes a contributiov®™, U, and & into the
tensorz;; . Using Egs.(30)—(32) and (C4)—(C9) we calcu-
late the functionsya(B), 7g(B), andV(B)

7a(B)=7(B)+(10/9[(2C1—Ay)e 1O —[A, 771,

(C1)
78(B)=7(B)+(5/18)[(8C,+ Co+10C;—4A;
- 4A2)8,L](C) —[(A1+A2) 77]©
+(\N2B124)W (\2p), (C12

Va(B)={(5/18)[(4A,~C,—10C3)e ] +[A, 7]
—(\2p124) ¥ (\2B)}(InB|)’, (C13

where W (x)=12AJ(X) + (1/2)A5(x) 178 + T 5(x) M,

7(B)=[Ay(B)+(12)Ay(B)] 7 +(e112)Wo(B), Wo(B)
= (5/3)[ 4A,(B) + 3Ao(B) + 4C1(B) — C5(B)] and[X]© is
defined by Eq(A25). The asymptotlc formulas for the func-
tions na, 7, Va, anda ) for B<1 are given by

7a(B) =1, —(2/5 B 37 +(10/63 (14e ) — & M),
(C14

78(B) =1, — (25 897" — 87" + (10/63 (41}
-37:M)], (C19

Va(B)=(4/5 37— 49"+ (5/7)(3e )~ 46 ()]

X(In[B|)", (C16)
al)(B)=5;[(af’)— (1/3e,)(1- (6/5) %)
—(2/105 B?¢ €], (C17)

and for 8>1 they are given by
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7A(B)=(m/6B)[(9/5)(V2— 1) 7"+ (2~ 7/8))
—(V2—-918)("], (C18)

n8(B)=(m/4\2B){(3/5)[(22—1) ")+ (22
+1) 7]+ (1124 (222 - 13+ (182

+13eM1}, (C19
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s 2 (v) @ 4 ()
VA(B):_@ 4\ L[{nr '+ (58, }+ iy
+(5/8)£(” |(In|B), (C20

aPV(B)=— 8;{(7l B)e 46— (218 &) — (113 (1

-l (C21
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