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Nonlinear turbulent magnetic diffusion and mean-field dynamo
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The nonlinear coefficients defining the mean electromotive force~i.e., the nonlinear turbulent magnetic
diffusion, the nonlinear effective velocity, the nonlineark tensor, etc.! are calculated for an anisotropic
turbulence. A particular case of an anisotropic background turbulence~i.e., the turbulence with zero-mean
magnetic field! with one preferential direction is considered. It is shown that the toroidal and poloidal magnetic
fields have different nonlinear turbulent magnetic diffusion coefficients. It is demonstrated that even for a
homogeneous turbulence there is a nonlinear effective velocity that exhibits diamagnetic or paramagnetic
properties depending on the anisotropy of turbulence and the level of magnetic fluctuations in the background
turbulence. The diamagnetic velocity results in the field being pushed out from the regions with stronger mean
magnetic field, while the paramagnetic velocity causes the magnetic field to be concentrated in the regions with
stronger field. Analysis shows that an anisotropy of turbulence strongly affects the nonlinear turbulent mag-
netic diffusion, the nonlinear effective velocity, and the nonlineara effect. Two types of nonlinearities~alge-
braic and dynamic! are also discussed. The algebraic nonlinearity implies a nonlinear dependence of the mean
electromotive force on the mean magnetic field. The dynamic nonlinearity is determined by a differential
equation for the magnetic part of thea effect. It is shown that for theaV axisymmetric dynamo the algebraic
nonlinearity alone~which includes the nonlineara effect, the nonlinear turbulent magnetic diffusion, the
nonlinear effective velocity, etc.! cannot saturate the dynamo generated mean magnetic field while the com-
bined effect of the algebraic and dynamic nonlinearities limits the mean magnetic field growth.

DOI: 10.1103/PhysRevE.64.056307 PACS number~s!: 47.65.1a
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I. INTRODUCTION

Generation of magnetic fields by the turbulent flow of
conducting fluid is a fundamental problem that has a la
number of applications in solar physics, astrophysics, g
physics, planetary physics, etc. In recent time the problem
nonlinear mean-field magnetic dynamo is a subject of ac
discussions~see, e.g., Refs.@1–10#!. It was suggested in Ref
@11# that the quenching of the nonlineara effect is very
strong and it causes a very weak saturated mean mag
field. However, the later suggestion is in disagreement w
observations of galactic and solar magnetic fields~see, e.g.,
Refs. @12–17#! and with numerical simulations~see, e.g.,
Refs.@18–20#!.

Saturation of the dynamo generated mean magnetic
is caused by the nonlinear effects, i.e., by the back reac
of the mean magnetic field on thea effect, turbulent mag-
netic diffusion, differential rotation, etc. The evolution of th
mean magnetic fieldB is determined by equation

]B/]t5“3~V3B1E2h“3B!, ~1!

where V is a mean velocity~e.g., the differential rotation!
andh is the magnetic diffusion due to the electrical condu
tivity of fluid. The mean electromotive forceE5^u3b& in
an anisotropic turbulence is given by

Ei5a i j Bj1~Veff3B! i2h i j ~“3B! j2k i jk~]B̂! jk

2@d3~“3B!# i ~2!
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~see Refs.@21,22#!, where (]B̂) i j 5(1/2)(¹ iBj1¹ jBi); u
and b are fluctuations of the velocity and magnetic fiel
respectively; angular brackets denote averaging over an
semble of turbulent fluctuations; the tensorsa i j andh i j de-
scribe thea effect and turbulent magnetic diffusion, respe
tively; Veff is the effective diamagnetic~or paramagnetic!
velocity; k i jk and d describe a nontrivial behavior of th
mean magnetic field in an anisotropic turbulence. Nonl
earities in the mean-field dynamo imply dependencies of
coefficients (a i j ,h i j ,Veff, etc.! defining the mean electromo
tive force on the mean magnetic field. Thea effect and the
differential rotation are the sources of the generation of
mean magnetic field, while the turbulent magnetic diffusi
and thek effect ~which is determined by the tensork i jk)
contribute to the dissipation of the mean magnetic field.

In spite of the nonlineara effect, being under active stud
~see, e.g.@5,7#!, the nonlinear turbulent magnetic diffusion
the nonlineark-effect, the nonlinear diamagnetic, and par
magnetic effects, etc. are poorly understood.

In the present paper we derived equations for the non
ear turbulent magnetic diffusion, the nonlinear effective v
locity, the nonlineark effect, etc. for an anisotropic turbu
lence. The obtained results for the nonlinear me
electromotive force are specified for an anisotropic ba
ground turbulence with one preferential direction. The ba
ground turbulence is the turbulence with zero mean magn
field. We demonstrated that toroidal and poloidal magne
fields have different nonlinear turbulent magnetic diffusi
coefficients. It is shown that even for a homogeneous tur
lence there is a nonlinear effective velocity that can be
diamagnetic or paramagnetic depending on the anisotrop
turbulence and the level of magnetic fluctuations in the ba
ground turbulence.
©2001 The American Physical Society07-1
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II. THE GOVERNING EQUATIONS

In order to derive equations for the nonlinear turbule
magnetic diffusion and other nonlinear coefficients defin
the mean electromotive force, we will use a mean-field
proach in which the magneticH and velocityv fields are
divided into the mean and fluctuating parts:H5B1b, v
5V1u, where the fluctuating parts have zero mean valu
V5^v&5const, andB5^H&. The momentum equation an
the induction equation for the turbulent fieldsu and b in a
frame moving with a local velocity of the large-scale flowsV
are given by

]u/]t52“P8/r2@b3~“3B!1B3~“3b!#/~m0r!1T

1nDu1F/r, ~3!

]b/]t5“3~u3B2h“3b!1G, ~4!

and“•u50, whereP8 are the fluctuations of the hydrody
namic pressure,F is a random external stirring force,n is the
kinematic viscosity,h is the magnetic diffusion due to th
electrical conductivity of fluid,r is the density of fluid,m0 is
the magnetic permeability of the fluid, the nonlinear termsT
and G are given by T5^(u•“)u&2(u•“)u1@^b3(“
3b)&2b3(“3b)#/(m0r), and G5“3(u3b2^u3b&).
We consider the case of large hydrodynamic (Re5 l 0u0 /n
@1) and magnetic (Rm5 l 0u0 /h@1) Reynolds numbers
whereu0 is the characteristic velocity in the maximum sca
l 0 of turbulent motions.

A. The procedure of the derivation of equation for
the nonlinear mean electromotive force

The procedure of the derivation of equation for the no
linear mean electromotive force is as follows~for details, see
Appendix A!.

~a! By means of Eqs.~3! and~4! we derive equations fo
the second moments:

f i j ~k,R!5E ^ui~k1K /2!uj~2k1K /2!&exp~ iK•R!dK

5 f j i ~2k,R!, ~5!

hi j ~k,R!5E ^bi~k1K /2!bj~2k1K /2!&

3exp~ iK•R!dK /m0r

5hji ~2k,R!, ~6!

gi j ~k,R!5E ^bi~k1K /2!uj~2k1K /2!&exp~ iK•R!dK ,

~7!

whereR andK correspond to the large scales, andr andk to
the small ones, i.e.,R5(x1y)/2, r5x2y, K5k11k2 , k
5(k12k2)/2.

~b! We split all correlation functions~i.e., f i j ,hi j ,gi j ) into
two parts, e.g.,hi j 5hi j

(N)1hi j
(S) , where the tensorhi j

(N)

5@hi j (k,R)1hi j (2k,R)#/2 describes the nonhelical part o
05630
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the tensor andhi j
(S)5@hi j (k,R)2hi j (2k,R)#/2 determines

the helical part of the tensor. Such splitting is caused, e.g.
different times of evolution of the helical and nonhelic
parts of the magnetic tensor. In particular, the characteri
time of evolution of the tensorhi j

(N) is of the ordert0

5 l 0 /u0, while the relaxation time of the tensorhi j
(S) is of the

order oft0Rm ~see, e.g.,@15,23–25#!.
~c! Equations for the second moments contain higher m

ments and a problem of closing the equations for the hig
moments arises. Various approximate methods have b
proposed for the solution of problems of this type~see, e.g.
@26–28#!. The simplest procedure is thet approximation,
which is widely used in the theory of kinetic equations. F
magnetohydrodynamic turbulence this approximation w
used in Ref.@29# ~see also@7,30,31#!. In the simplest variant,
it allows us to express the third moments in terms of
second moments

Mi j 2Mi j
(0)52~ f i j 2 f i j

(0)!/t~k!, ~8!

Ri j
(N)52~hi j

(N)2hi j
(0N)!/t~k!, ~9!

Ci j 52gi j /t~k!, ~10!

whereMi j , Ri j , andCi j are the third moments in equation
for f i j ,hi j , and gi j , respectively@see Eqs.~A3!–~A5! in
Appendix A#. The superscript (0) corresponds to the bac
ground magnetohydrodynamic turbulence~it is a turbulence
with zero mean magnetic field,B50), hi j

(0N) is the nonhelical
part of the tensor of magnetic fluctuations of the backgrou
turbulence, andt(k) is the characteristic relaxation time o
the statistical moments. We applied thet approximation
only for the nonhelical parthi j

(N) of the tensor of magnetic
fluctuations because the corresponding helical parthi j

(S) is
determined by an evolutionary equation~see, e.g.,
@15,23,32,24,2,25,8# and Sec. III C!. Here we took into ac-
count magnetic fluctuations that can be generated b
stretch-twist-fold mechanism when a mean magnetic field
zero~see, e.g.,@33,34#!. This implies thathi j

(0)Þ0. In inertia
range of background turbulenceRi j (B50)50 and Ci j (B
50)50. We also took into account that the cross-helic
tensorgi j for B50 is zero, i.e.,gi j (B50)50.

Thet approximation is in general similar to eddy damp
quasinormal Markovian~EDQNM! approximation. How-
ever, some principal difference exists between these two
proaches~see@26,28#!. The EDQNM closures do not relax t
equilibrium, and this procedure does not describe prope
the motions in the equilibrium state in contrast to thet ap-
proximation. Within the EDQNM theory, there is no dy
namically determined relaxation time, and no slightly pe
turbed steady state can be approached@26#. In the t
approximation, the relaxation time for small departures fro
equilibrium is determined by the random motions in t
equilibrium state, but not by the departure from equilibriu
@26#. We use thet approximation, but not the EDQNM ap
proximation because we consider a case withl 0u“B2u/m0
!^ru2&. As follows from the analysis of Ref.@26#, the t
7-2
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approximation describes the relaxation to equilibrium st
~the background turbulence! much more accurately than th
EDQNM approach.

In this study we consider an intermediate nonlinearity t
implies that the mean magnetic field is not strong enough
order to affect the correlation time of turbulent velocity fiel
The theory for a very strong mean magnetic field can
corrected after taking into account a dependence of the
relation time of the turbulent velocity field on the mean ma
netic field.

~d! We assume that the characteristic time of variation
the mean magnetic fieldB is substantially larger than th
correlation timet(k) for all turbulence scales. This allows u
to get a stationary solution for the equations for the sec
moments f i j ,hi j , and gi j . Using these equations@see
Eqs. ~A14!–~A21! in Appendix A# we calculate the
electromotive force Ei(r50)5*Ei(k)dk, where Ei(k)
5(1/2)« imn@gnm

(N)(k,R)2gmn
(N)(2k,R)#. The result is given

by

Ei~r50!5ai j Bj1bi jkBj ,k , ~11!

whereBi , j5]Bi /]Rj ,

ai j 5 i E t~11c!21« imnkj~ f nm
(0S)2hnm

(S)!dk, ~12!

bi jk5E t~11c!21@« i jn~ f kn
(0N)1hkn

(0N)!22« imnkm jhnk
(N)#dk

~13!

~for details, see Appendix A!, ki j 5kikj /k2, hnm
(N)5hnm

(0N)

1c(112c)21( f nm
(0N)2hnm

(0N)), « i jk is the Levi-Civita tensor,
and c5@(b•k)u0t/2#2, b i54Bi /(u0A2m0r), f i j

(0N) and
f i j

(0S) describe the nonhelical and helical tensors of the ba
ground turbulence.

~e! Following Ref. @21# we use an identityBj ,k5(]B̂) jk
2« jkl(“3B) l /2, which allows us to rewrite Eq.~11! for the
electromotive force in the form

Ei5a i j Bj1~U3B! i2h i j ~“3B! j2k i jk~]B̂! jk , ~14!

where

a i j ~B!5~ai j 1aji !/2, Uk~B!5«k j iai j /2, ~15!

h i j 5~« ikpbjkp1« jkpbikp!/4, k i jk~B!52~bi jk1bik j !/2.
~16!

B. The model for the background turbulence

For the integration ink space in Eqs.~12! and ~13! we
have to specify a model for the background turbulence~i.e.,
turbulence with zero mean magnetic field!. We assume tha
the background turbulence is anisotropic and incompress
The second moments for the turbulent velocity and magn
fields of the background turbulence are given by
05630
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tci j ~k!5~5/4!$Pi j ~k!@~2/5!h̃T
(a)~k!2mmn

(a)~k!knm#

12@d i j mmn
(a)~k!knm1m i j

(a)~k!2m im
(a)~k!km j

2kimmm j
(a)~k!#% ~17!

~see Ref.@7#!, whereci j 5 f i j
(0N) when a5v, andci j 5hi j

(0N)

when a5h, and h̃T
(v)(k)5t f pp

(0N)(k), h̃T
(h)(k)5thpp

(0N)(k),
Pi j (k)5d i j 2ki j , dmn is the Kronecker tensor. The aniso
tropic part of this tensormmn

(a)(k) has the properties
mmn

(a)(k)5mnm
(a)(k) and mpp

(a)(k)50. Inhomogeneity of the
background turbulence is assumed to be weak, i.e., in
~17! we dropped terms;O„“(hT

(a) ;m i j
(a))…, where hT

(v)

5t0u0
2/3, hT

(h)5t0b0
2/3m0r, and b0 is the characteristic

value of the magnetic fluctuations in the background tur
lence. To integrate overk in Eqs. ~12! and ~13! we use the
Kolmogorov spectrum of the background turbulence, i
t f pp

(0N)(k)5hT
(v)w(k), thpp

(0N)(k)5hT
(h)w(k) and mmn

(a)(k)
5mmn

(a)(R)w(k)/3, where w(k)5(pk2k0)21(k/k0)27/3,
t(k)52t0(k/k0)22/3, and k05 l 0

21. We take into account
that the inertial range of the turbulence exists in the sca
l d<r< l 0. Here the maximum scale of the turbulencel 0
!LB , and l d5 l 0 /Re3/4 is the viscous scale of turbulence
andLB is the characteristic scale of variations of the nonu
form mean magnetic field.

In the following section we present results for the nonl
ear coefficients defining the mean electromotive force.

III. NONLINEAR COEFFICIENTS DEFINING THE MEAN
ELECTROMOTIVE FORCE

The procedure described in Sec. II~see also, for details
Appendix A! allows us to calculate the nonlinear turbule
magnetic diffusion tensor, the nonlineark tensor, the nonlin-
eara tensor, and the nonlinear effective drift velocity.

A. Nonlinear turbulent magnetic diffusion tensor
and nonlinear k tensor

The general form of the turbulent magnetic diffusion te
sor h i j (B) contains all possible tensors:d i j , m i j

(a) b i j and

their symmetric combinationm̄ i j
(a)5m in

(a)bn j1b inmn j
(a) @see

Eq. ~A51! in Appendix A#, where b i j 5b ib j /b2, and b i

54Bi /(u0A2m0r). For an isotropic background turbulenc
~when m i j

(a)50) the turbulent magnetic diffusion tenso
h i j (B) is given by

h i j ~B!5d i j $A1~A2b!hT
(v)1@A1~b!2A1~A2b!#hT

(h)%

1~1/2!b i j A2~b!~hT
(v)1hT

(h)!, ~18!

where the functionsAk(b) are defined in Appendix B. Fo
b!1 Eq. ~18! reads

h i j ~B!5d i j @hT
(v)2~2b2/5!~2hT

(v)2hT
(h)!#

2~2/5!b ib j~hT
(v)1hT

(h)!, ~19!

and forb@1 it is given by
7-3
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h i j ~B!5~3p/10b!$A2d i j @hT
(v)1hT

(h)~A221!#

2b i j ~hT
(v)1hT

(h)!%. ~20!

The mean magnetic field causes an anisotropy of the tu
lent magnetic diffusion tensor that is determined by the t
sor b i j . Magnetic fluctuations of the background turbulen
contribute to the turbulent magnetic diffusion tensorh i j (B)
in the nonlinear case. It follows from Eq.~20! that for b
@1 the tensorh i j }1/b.

The k tensor describes a nontrivial behavior of the me
magnetic field in an anisotropic turbulence. For an isotro
background turbulence thek tensor vanishes in spite of a
anisotropy caused by the mean magnetic field. For an an
tropic background turbulence a general form of thek tensor
is given by Eq.~A52! in Appendix A. Forb!1 this tensor is
given by

k i jk52~1/6!~3L̂ i jk
(v)1L̂ i jk

(h)!1~1/7!b2~5L̂ i jk
(v)1L̂ i jk

(h)24N̂i jk
(v)

12N̂i jk
(h)! ~21!

and forb@1 it reads

k i jk52~p/16b!~A221!@ L̂ i jk
(v)1L̂ i jk

(h)13~N̂i jk
(v)1N̂i jk

(h)!#,
~22!

where L̂ i jk
(a)5« i jnmnk

(a)1« iknmn j
(a) and N̂i jk

(a)5mnp
(a)(« i jnbpk

1« iknbp j). Note that forb@1 the tensork i jk}1/b. The k
tensor contributes to the turbulent magnetic diffusion of
toroidal and poloidal mean magnetic fields~see Sec. V!.

B. The hydrodynamic part of the nonlinear a tensor

Using Eqs.~12! and ~15! we get

a i j
(v)~B,R!5E a i j

(v)~0,k,R!

11c~B,k!
dk, ~23!

where hereaftera i j
(v)(0,k,R)[a i j

(v)(B50,k,R). Analysis in
Refs. @7,22# shows that a form of the tensora i j

(v)(0,k,R) in
an anisotropic turbulence can be constructed using the
sorski j , ki jmn andn i j , whereki jmn5kikjkmkn/k4 andn i j is
the anisotropic part of the hydrodynamic contribution of t
a tensor. Thus we use the following model for the tens
a i j

(v)(0,k,R)

a i j
(v)~0,k,R!5$2a0

(v)~R!ki j 1~12e!@n ip~R!kp j

1n jp~R!kpi#15eki jmnnmn~R!%w~k!/2,

~24!

where the parametere describes an anisotropy of the helic
component of turbulence and it changes in the interval
<e<1. Here a i j

(v)(0,R)5*a i j
(v)(0,k,R)dk5a0

(v)(R)d i j

1n i j (R), anda0
(v)(R)5(1/3)app

(v)(0,R), the anisotropic part
n i j (R) of the hydrodynamic contribution of thea tensor has
the propertiesn i j 5n j i andnpp50. Substituting Eq.~24! into
05630
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Eq. ~23!, and using identities~A30! and~A31! we obtain the
nonlinear dependence of the hydrodynamic part of thea
effect on mean magnetic field

a i j
(v)~B!5~1/2!$d i j @2$A1~b!1A2~b!%a0

(v)1~1

2e!A2~b!nb15e$C2~b!13C3~b!%nb#1n i j @~1

2e!$2A1~b!1A2~b!%110e$C1~b!1C2~b!%#%,

~25!

wherenb(R)5nmn(R)bnm and the functionsCk(b) are de-
fined in Appendix B. Fore50 Eq. ~25! coincides with that
derived in Ref.@7#. The asymptotic formulas fora i j

(v) for b
!1 andb@1 are given by Eqs.~A54! and~A57! in Appen-
dix A.

C. The mean electromotive force and
the nonlinear magnetica tensor

Using Eqs.~A41!, ~A44!, and~A47! we calculate the elec
tromotive forceE

Ei5a i j Bj1~Veff3B! i2h i j ~“3B! j2k i jk~]B̂! jk ,
~26!

where the nonlinear effective drift velocityVeff5U1V(N)

and the velocity Ui(B)52(1/2)« imnamn5
2(1/2)¹pLpi

(M )(A2b) ~see Ref.@7#!, the velocity V(N) is
given by Eq.~A45!, and the tensor of turbulent magnet
diffusion h i j is given by Eq.~A51!, the tensork i jk is deter-
mined by Eq.~A52!, and the tensorL i j

(M ) is defined in Eqs.
~A26! and~A34!. In the kinematic dynamo the effective dri
velocity ~turbulent diamagnetic velocity! is caused by an in-
homogeneity of turbulence. The effective drift velocityU(B)
is determined by the tensorai j and is due to an induced
inhomogeneity of turbulence caused by the nonunifo
mean magnetic field. This implies that the nonuniform me
magnetic field modifies turbulent velocity field and crea
the inhomogeneity of turbulence. The effective veloc
V(N)(B) is determined by tensorbi jk and is caused by the
nonuniform mean magnetic field.

The a tensor is determined by the hydrodynamic a
magnetic contributions, i.e.,a i j (B)5a i j

(v)(B)1a i j
(h)(B) with

a i j
(h)~B!5a0

(h)~B!F~b!d i j ~27!

~see Ref.@7#!, where the tensora i j
(v)(B) is determined by Eq.

~25!, the functionF(b)5(3/b2)@12arctan(b)/b#, and the
magnetic parta0

(h)(B) of the a effect is determined by the
dynamic equation

]a0
(h)

]t
1

a0
(h)

T
1“•~Wa0

(h)1Fflux!52
4

9hTm0r
E~B!•B

~28!

~see Refs.@8,25,23,24,35#!, whereWi5 c̃i j Vj is the velocity
that depends on the mean fluid velocityV ~for an isotropic
turbulence the tensorc̃i j 5d i j and for an anisotropic tur-
7-4
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bulence with one preferential direction, say in the directione,
the tensorc̃i j 5(23/30)d i j 1(7/10)eiej , see Ref.@25#!; the
flux

Fflux}ta (v)~B!
“r

r S hT
(v)~B!B2

hT
(v)~B50!m0r

D ~29!

is related to the flux of the magnetic helicity and is indepe
dent of the mean fluid velocityV @8# ~see also Ref.@10#!, and
T;t0Rm is the characteristic time of relaxation of magne
helicity. The asymptotic formulas fora i j

(h) for b!1 andb
@1 are given by Eqs.~A55! and ~A58! in Appendix A.

IV. ANISOTROPIC BACKGROUND TURBULENCE WITH
ONE PREFERENTIAL DIRECTION

Now we consider an anisotropic background turbulen
with one preferential direction, say along an unit vectore.
Thus the tensorh i j

(v)(B50)5^tv iv j& is given by h i j
(v)(B

50)5hT
(v)d i j 1m i j

(v)5h0
(v)d i j 1«m

(v)ei j , where the trace
hpp

(v)(B50) in this equation yieldsh0
(v)5hT

(v)2(1/3)«m
(v) and

ei j 5eiej . Therefore, the anisotropic partm i j
(v) of the tensor

h i j
(v)(B50) is given by m i j

(v)5«m
(v)@ei j 2(1/3)d i j # and m̄ i j

(v)

[m in
(v)bn j1b inmn j

(v) 5 «m
(v)@(eib j 1 ejb i)(e•b̂) 2 (2/3)b i j #,

where«m
(v) is a degree of an anisotropy of the turbulence, a

mb
(v)[(1/2)m̄pp

(v)5«m
(v)@(e•b̂)221/3#. It follows from these

equations thath i j
(v)(B50)5d i j @hT

(v)2(1/3)«m
(v)#1ei j «m

(v) .
Now we take into account that the componentshxx

(v)(B50),
hyy

(v)(B50), andhzz
(v)(B50) are positive. This yields23/2

<«m
(v)/hT

(v)<3. The equations for the corresponding ma
netic tensors are obtained from these equations after
changev→h. For the magnetic fluctuations we also obta
that 23/2<«m

(h)/hT
(h)<3.

For galaxies, e.g., the preferential directione is along ro-
tation~which is parallel to the effective gravity field!. For the
axisymmetric aV dynamo and large magnetic Reynol
numbers the toroidal magnetic field is much larger than
poloidal field. Therefore, the valuee•b̂ is very small and can
be neglected becauseb̂ is approximately directed along th
toroidal magnetic field.

Thus, the nonlinear coefficients defining the mean elec
motive force in a turbulence with one preferential directi
are given by

h i j ~B!5Mhd i j 1Meei j 1Mbb i j , ~30!

Veff~B!5~1/B2!@MV
(1)
“B21MV

(2)e~e•“ !B2#,
~31!

k i jk~B!~]B̂! jk5Mk@e3~e•“ !B# i ~32!

~see Appendix C!, where we assumed thate•b̂50, the func-
tionsMh , Me , Mb , Mk , MV

(1) , andMV
(2) are given by Eqs.

~C4!–~C9! in Appendix C. The tensorh i j (B) contains three
tensorsd i j , ei j , andb i j since here there are two preferre
directions, along the vectorse andB.
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Now we consider the hydrodynamic part of thea effect
for an anisotropic background turbulence with one prefer
tial direction. The tensora i j

(v)(B50) in this case can be re
written in the form a i j

(v)(B50)5a0
(v)d i j 1n i j 5@a0

(v)

2(1/3)«a#d i j 1«aei j , where«a is a degree of an anisotrop
of the a-tensor. Thus, the anisotropic partn i j is given by
n i j 5«a@ei j 2(1/3)d i j #. The electromotive force contains th
tensor a i j in the form a i j Bj . Thus, n i j b̂ j52(1/3)«a@b̂ i

23(e•b̂)ei # and nb52(1/3)«a@123(e•b̂)2#. Using Eq.
~25! we obtain the hydrodynamic part of thea tensor in an
anisotropic background turbulence with one preferential
rection

a i j
(v)~B!5d i j $@A1~b!1A2~b!#@a0

(v)2~1/3!«a~12e!#

2~5/6!«ae@2C1~b!13C2~b!13C3~b!#%

[Fa~b!d i j , ~33!

where we assumed thate•b̂50. For eÞ0 the tensora i j
(v)(B)

can change its sign at some valueB* of the mean magnetic
field @see Eqs.~C17! and ~C21! in Appendix C#. Thus the
point B5B* can determine a steady state configuration
the mean magnetic field foreÞ0.

V. APPLICATIONS: MEAN-FIELD EQUATIONS FOR
THE THIN-DISK AXISYMMETRIC aV DYNAMO

Here we apply the obtained results for the nonlinear m
electromotive force to the analysis of the thin-disk axisy
metric aV dynamo. Using Eqs.~30!–~32! we derive the
mean-field equations for the thin-disk axisymmetricaV dy-
namo,

]B

]t
5

]

]z S hB

]B

]z D1G̃
]A

]z
, ~34!

]A

]t
5hA

]2A

]z2
2VA

]A

]z
1aB, ~35!

where r, w and z are cylindrical coordinates,B5Bew1“

3(Aew), G̃52r (]V/]r ), and

hA~B!5Mh1Mk1Mb , hB~B!5Mh1Mk22MV ,
~36!

VA~B!5~hA2hB!~ lnuBu!8,

a~B!5Fa~B!a0
(v)1F~B!a0

(h)~B!, ~37!

and F85]F/]z, MV5MV
(1)1MV

(2) . In the axisymmetric
problem ]B/]w50. The thin-disk approximation implies
that the spatial derivatives of the mean magnetic field w
respect toz are much larger than the derivatives with resp
to r. It is seen from Eqs.~30!–~32! and Eqs.~36! and ~37!
that the contributions to the turbulent diffusion coefficien
hA(B) andhB(B) are from the tensor of turbulent diffusio
h i j (B), the tensork i jk(B) and the nonlinear velocityU(B)
1V(N)(B). On the other hand, contributions to the effecti
7-5
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velocity VA(B) are from the tensor of turbulent diffusio
h i j (B) and the nonlinear velocityU(B)1V(N)(B). The func-
tions hA(B), hB(B), andVA(B) are given by Eqs.~C11!–
~C13! in Appendix C.

The nonlinear dependencies:~a! of the turbulent magnetic
diffusion coefficientshA(B)/hT

(v) andhB(B)/hT
(v) ; ~b! of the

effective velocityVA(B)/(B2)8; and~c! of the nonlinear dy-
namo numberD(B)/D* are presented in Figs. 1–3. He
D* 5a* Gh3/h

*
2 , D(B)5a (v)(B)Gh3/@hA(B)hB(B)#, h*

5hT
(v)1(2/3)«m

(v) , a* is the maximum value of the hydro
dynamic part of thea effect, h is the disk thickness and
a (v)(B)5a0

(v)Fa(B). For simplicity we consider the cas
e50. In order to separate the study of the algebraic a
dynamic nonlinearities we defined the nonlinear dyna
numberD(B) using only the hydrodynamic part of thea
effect. We considered three cases: two types of an an
tropic background turbulence («m

(v)561.35hT
(v) ; «m

(h)50)
without magnetic fluctuations~Fig. 1 and Fig. 3! and an iso-
tropic («m

(v)5«m
(h)50) background turbulence with equipa

tition of hydrodynamic and magnetic fluctuations~Fig. 2!.
The negative degree of anisotropy«m

(v) implies that the ver-
tical ~along axisz) size of turbulent elements is less than t
horizontal size and positive«m

(v) means that the horizonta
size is less than the vertical size.

Figures 1–3 and the equations forhA(B) and hB(B)
show that the toroidal and poloidal magnetic fields have
ferent nonlinear turbulent magnetic diffusion coefficients.

FIG. 1. ~a! Nonlinear turbulent magnetic diffusion coefficient
~b! the nonlinear effective velocity;~c! the nonlinear dynamo num
ber for hT

(h)50, «m
(v)521.35hT

(v) , and«m
(h)50.
05630
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isotropic background turbulence~Fig. 2! the nonlinear effec-
tive velocity VA(B) is negative. The latter implies that it i
diamagnetic velocity that results in the field being pushed
from the regions with stronger mean magnetic field. In t
anisotropic background turbulence~Fig. 1 and Fig. 3! the
nonlinear effective velocity is positive,~i.e., paramagnetic
velocity that causes the magnetic field to be concentrate
the regions with stronger field!. The sign of«m

(v) affects the
value ofhA(B), hB(B) andVA(B), e.g., for positive param-
eter of anisotropy the functionshA(B), hB(B), andVA(B)
are larger at least in one order of magnitude than those
negative«m

(v) .
The dependencies of the nonlinear dynamo num

D(B)/D* on the mean magnetic fieldB/Beq demonstrate
that the algebraic nonlinearity alone~i.e., quenching of both,
the nonlineara effect and the nonlinear turbulent diffusio
coefficients! cannot saturate the growth of the mean ma
netic field ~where Beq5Am0ru0). Indeed, for anisotropic
background turbulence without magnetic fluctuations~Fig. 1
and Fig. 3! the nonlinear dynamo numberD(B)/D* is a
nonzero constant forb@1, i.e., it is independent ofb. This
is because, forb@1, the functionshA}1/b, hB}1/b, and
a}1/b2 @see Eqs.~C18!–~C21! in Appendix C#. In the case
of isotropic background turbulence with equipartition of h
drodynamic and magnetic fluctuations~Fig. 2! the nonlinear
dynamo numberD(B)/D* }b for b@1 because in this cas
the functionshA}1/b2, hB}1/b, and a}1/b2 @see Eqs.

FIG. 2. ~a! Nonlinear turbulent magnetic diffusion coefficient
~b! the nonlinear effective velocity;~c! the nonlinear dynamo num
ber for hT

(v)5hT
(h) and«m

(v)5«m
(h)50.
7-6
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~C18!–~C21! in Appendix C#. Note that the saturation of th
growth of the mean magnetic field can be achieved when
derivative of the nonlinear dynamo numberdD(B)/dB,0.
Thus, the algebraic nonlinearity alone cannot saturate
growth of the mean magnetic field. We will show below th
the combined effect of the algebraic and dynamic nonline
ties can limit the growth of the mean magnetic field.

Equation~28! in nondimensional form is given by

]a0
(h)

]t
1

a0
(h)

T
54S h

l 0
D 2

@hBB8A82~hAA92VAA81aB!B#

1@Cua0
(v)~z!u f h~z!Fa~B!hA~B!B2#8,

~38!

whereC is a coefficient,f h(z) describes the inhomogeneit
of the turbulent magnetic diffusion, and we definef (z)
5a0

(v)(z) f h(z). Here we use the standard dimensionle
form of the galactic dynamo equation~see, e.g., Ref.@16#!, in
particular, the length is measured in units of the disk thi
nessh, the time is measured in units ofh2/hT

(v) , and B is
measured in units of the equipartition energyBeq5Am0ru0.
Here u0 is the characteristic turbulent velocity in the max
mum scalel 0 of turbulent motions,hT

(v)5 l 0u0 /3 anda0
(v) ,

a0
(h) anda are measured in units ofa* ~the maximum value

FIG. 3. ~a! Nonlinear turbulent magnetic diffusion coefficient
~b! the nonlinear effective velocity;~c! the nonlinear dynamo num
ber for hT

(h)50, «m
(v)51.35hT

(v) , and«m
(h)50.
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of the hydrodynamic part of thea effect!. For galaxies
h/ l 0;5 andC;0.05–0.1. Nondimensional equations forA
andB are given by

]B/]t5~hBB8!82D0A8, ~39!

]A/]t5hAA92VAA81aB, ~40!

whereD05a* Gh3/hT
2 and Br52A8(z). In a steady state

Eqs.~38!–~40! yield

@hB~B!B8#212CD0Fa~B!hA~B!B2u f ~z!u50, ~41!

where we used the following boundary conditionsB(z5
61)50, B8(z50)50 andf (z50)50. The solution of Eq.
~41! for negativeD0 is given by

E
0

B

x~B̃!dB̃5A2CuD0u E
uzu

1 Af ~ z̃!dz̃, ~42!

where x(B)5hB(B)/@Fa(B)hA(B)B2#1/2. Consider the
casee50. For b@1 ~i.e., for B@1/A8) the equilibrium
mean toroidal magnetic fieldB(z) is given by

B~z!'A2CuD0uS E
uzu

1 Af ~ z̃!dz̃D 2

, ~43!

where we used that forb@1 the functionshA(B);3/5b,
hB(B);2/5b, Fa(B);2/b2, and x(B);2/Ab. Here for
simplicity we considered the case«m

(v)50. In a steady state
A(z)52hB(B)B8/uD0u. Now we specify the profile of the
function f (z), e.g., f (z)5 f * @sin(pz/2)#2k11@cos(pz/2)#2,
wherek51, 2, 3, . . . and

f * 5S 2k13

2 D S 2k13

2k11D (2k11)/2

.

The function f (z) changes in the interval 0< f (z)<1
and it has a maximum f (z5zm)51 at zm

5(2/p)arctan@A(2k11)/2#. Equation ~43! for this profile
f (z) with k52 yields

B~z!'0.4CuD0u$12@sin~pz/2!#7/2%2. ~44!

Equation~44! describes the equilibrium configuration of th
mean toroidal magnetic field. Thus, the saturation of
growth of the mean magnetic field is caused by both,
algebraic and dynamic nonlinearities. The dynamic non
earity is determined by the dynamic equation~38!, whereas
the algebraic nonlinearity implies the nonlinear dependen
of the turbulent magnetic diffusion coefficientshA(B) and
hB(B) and of the effective velocityVA(B) on the mean mag-
netic field @see Eqs.~C11!–~C13!#.

VI. DISCUSSION

In this study we calculated the nonlinear tensor of turb
lent magnetic diffusion, the nonlineark tensor, the nonlinear
effective velocity, and other coefficients defining the me
electromotive force for an anisotropic turbulence. The o
7-7
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tained results were specified for an anisotropic backgro
turbulence with one preferential direction. We found that
turbulent magnetic diffusion coefficients for the toroidal a
poloidal magnetic fields are different. We demonstrated t
even for a homogeneous turbulence there is the nonlin
effective velocity that can be a diamagnetic or paramagn
depending on the anisotropy of turbulence and the leve
magnetic fluctuations in the background turbulence. The
magnetic velocity implies that the field is pushed out fro
the regions with stronger mean magnetic field, while
paramagnetic velocity causes the magnetic field to be c
centrated in the regions with stronger field.

Note that dependencies of thea effect, the turbulent mag
netic diffusion coefficient and the effective drift velocity o
the mean magnetic field for an isotropic turbulence ha
been found in Refs.@36–38# using a modified second-orde
correlation approximation. Our results are different from th
obtained in Refs.@36–38#. The reason is that in Refs.@36–
38# a phenomenological procedure was used. In particula
the first step of the calculations the nonlinear terms in
magnetohydrodynamic equations were dropped~which is
valid for small hydrodynamic and magnetic Reynolds nu
bers or in a high conductivity limit and small Strouhle a
hydrodynamic Reynolds numbers!. In the next step of the
calculations in Refs.@36–38# it was assumed thatn5h
5 l c

2/tc , wherel c andtc are the correlation length and tim
of turbulent velocity field, respectively. The latter is val
when the hydrodynamic and magnetic Reynolds numbers
of the order of unity. In the present paper we use a differ
procedure~thet approximation! for large hydrodynamic and
magnetic Reynolds numbers.

In this study we also demonstrated an important role
two types of nonlinearities~algebraic and dynamic! in the
mean-field dynamo. The algebraic nonlinearity is determin
by a nonlinear dependence of the mean electromotive fo
on the mean magnetic field. The dynamic nonlinearity is
termined by a differential equation for the magnetic part
the a effect. This equation is a consequence of the con
vation of the total magnetic helicity~which includes both,
the magnetic helicity of the mean magnetic field and
magnetic helicity of small-scale magnetic fluctuations!. We
found that at least for theaV axisymmetric dynamo the
algebraic nonlinearity alone@i.e., the nonlinear functions
a(B), hA(B), hB(B), and VA(B)] cannot saturate the dy
namo generated mean magnetic field. The important par
eter that characterizes the algebraic nonlinearity is the n
linear dynamo numberD(B). The saturation of the growth o
the dynamo generated mean magnetic field by the algeb
nonlinearity alone is possible when the derivati
dD(B)/dB,0. We found that for theaV axisymmetric dy-
namo the nonlinear dynamo numberD(B) is either a con-
stant orD(B)}B for B.Beq/3 depending on the model o
the background turbulence. Therefore, in this case the a
braic nonlinearity alone cannot saturate the dynamo ge
ated mean magnetic field.

The situation is changed when the dynamic nonlinearit
taken into account. The crucial point is that the dynam
equation for the magnetic part of thea effect ~i.e., the dy-
namic nonlinearity! includes the flux of the magnetic helic
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ity. Without the flux, the total magnetic helicity is conserve
locally and the level of the saturated mean magnetic field
very low @8#. The flux of the magnetic helicity results in tha
the total magnetic helicity is not conserved locally becau
the magnetic helicity of small-scale magnetic fluctuations
redistributed by a helicity flux. In this case an integral of t
total magnetic helicity over the disk is conserved. The eq
librium state is given by a balance between magnetic heli
production and magnetic helicity transport@8#. These two
types of the nonlinearities~algebraic and dynamic! result in
the equilibrium strength of the mean magnetic field being
the same order as that of the equipartition fieldBeq ~see Sec.
V! in agreement with observations of the galactic magne
fields ~see, e.g.,@16#!.
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APPENDIX A: CALCULATION OF THE MEAN
ELECTROMOTIVE FORCE

Let us derive the equations for the second moments.
this purpose we rewrite Eqs.~3! and ~4! in a Fourier space
and repeat twice the vector multiplication of Eq.~3! by the
wave vectork. The result is given by

dui~k,t !/dt5~2Pip~k!2d ip!Ŝp
(c)~b;B!/~m0r!

1Ŝi
(b)~b;B!/~m0r!2T̃i2nk2ui2F̃ i ,

~A1!

dbi~k,t !/dt5Ŝi
(b)~u;B!2Ŝi

(c)~u;B!1Gi2hk2bi ,
~A2!

where Ŝi
(c)(a;A)5 i *ap(k2Q)QpAi(Q)dQ, Ŝi

(b)(a;A)

5 ikp*ai(k2Q)Ap(Q)dQ, T̃5k3(k3T)/k2, F̃(k,R,t)5k
3@k3F(k,R)#/k2r, Pi j (k)5d i j 2ki j , d i j is the Kronecker
tensor andki j 5kikj /k2. We use the two-scale approach, i.e
a correlation function

^ui~x!uj~y!&5E ^ui~k1!uj~k2!&exp$ i ~k1•x

1k2•y!%dk1dk2

5E f i j ~k,K !exp~ ik•r1 iK•R!dkdK

5E f i j ~k,R!exp~ ik•r !dk,

f i j ~k,R!5E ^ui~k1K /2!uj~2k1K /2!&exp~ iK•R!dK ,
7-8
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where R5(x1y)/2, r5x2y, K5k11k2 , k5(k1
2k2)/2, R andK correspond to the large scales, andr andk
to the small ones~see, e.g., Refs.@39,40#!. The other second
moments have the same form, e.g.,

hi j ~k,R!5E ^bi~k1K /2!bj~2k1K /2!&

3exp~ iK•R!dK /m0r,

gi j ~k,R!5E ^bi~k1K /2!uj~2k

1K /2!&exp~ iK•R!dK .

The two-scale approach is valid when (1/B)(dB/dR)! l 0
21,

whereB5uBu. Now we derive the equations for the correl
tion functionsf i j (k,R), andhi j (k,R), andgi j (k,R)

] f i j /]t5 i ~k•B!F i j 1Mi j 1Fi j 22nk2f i j , ~A3!

]hi j /]t52 i ~k•B!F i j 1Ri j 22hk2hi j , ~A4!

]gi j /]t5I i j 1Ci j 2~n1h!k2gi j , ~A5!

I i j 5 i ~k•B!~ f i j 2hi j !1~1/2!~B•“ !~ f i j 1hi j !2 f p jBi ,p

1hip@2Pjl ~k!2d j l #Bl ,p2Bp,qkp~ f i jq1hi jq !, ~A6!

where “5]/]R, f i jq5(1/2)] f i j /]kq , hi jq

5(1/2)]hi j /]kq , and Fi j (k,R)5^F̃ i(k,R)uj (2k,R)&
1^ui(k,R)F̃ j (2k,R)&, Bi , j5]Bi /]Rj , and

F i j ~k,R!5@gi j ~k,R!2gji ~2k,R!#/m0r. ~A7!

The third moments are given by Mi j (k,R)
52^T̃i(k)uj (2k)&2^ui(k)T̃j (2k)&, Ri j (k,R)
5^G̃i(k)bj (2k)&1^bi(k)G̃j (2k)& and Ci j (k,R)
5^G̃i(k)uj (2k)&2^bi(k)T̃j (2k)&.

For the derivation of Eqs.~A3!–~A6! we performed sev-
eral calculations that are similar to the following, whic
arose in computing]gi j /]t. The other calculations follow
similar lines and are not given here. Let us defineYi j (k,R)
by

Yi j ~k,R!5E ^Ŝi
(b)~u;B;k1K /2!uj~2k

1K /2!&exp~ iK•R!dK

5 i E ^ui~k1K /22Q!uj~2k1K /2!&~kp

1Kp/2!Bp~Q!exp~ iK•R!dKdQ.

Next, we introduce new variables:k̃15k1K /22Q, k̃2

52k1K /2 and k̃5( k̃12 k̃2)/25k2Q/2, K̃5 k̃11 k̃25K
2Q. Therefore,
05630
Yi j ~k,R!5 i E f i j ~k2Q/2,K2Q!~kp

1Kp/2!Bp~Q!exp~ iK•R!dKdQ. ~A8!

SinceuQu!uku we use the Taylor expansion

f i j ~k2Q/2,K2Q!. f i j ~k,K2Q!2
1

2

] f i j ~k,K2Q!

]ks
Qs

1O~Q2!, ~A9!

and the following identities:

@ f i j ~k,R!Bp~R!#K5E f i j ~k,K2Q!Bp~Q!dQ,

~A10!

¹p@ f i j ~k,R!Bp~R!#

5E iK p@ f i j ~k,R!Bp~R!#K exp~ iK•R!dK .

~A11!

Therefore, Eqs.~A8!–~A11! yield

Yi j ~k,R!.@ i ~k•B!1~1/2!~B•“ !# f i j ~k,R!

2kpf i js~k,R!Bp,s . ~A12!

In Eqs. ~A3! and ~A4! we neglected the term
}(B•“)gi j and }Bi ,pgp j because they contribute to th
modification of the mean Lorentz force by the turbulen
effect ~see, e.g., Refs.@30,31#!. In Eq. ~A5! we neglected the
second and higher derivatives overR. We also neglected in
Eq. ~A5! the terms that are of the order o
Rm21

“(Bi , f i j ,hi j ) and Re21
“(Bi ; f i j ;hi j ). When the

mean magnetic field is zero Eq.~A3! reads

] f i j
(0)/]t5Mi j

(0)1Fi j
(0)22nk2f i j

(0) . ~A13!

We assume thatFi j is not changed during the generation
the mean magnetic field, i.e.,Fi j 5Fi j

(0) . This implies an as-
sumption of a constant power of the source of turbulence

Now we split all correlation functions ~i.e.,
f i j ,hi j ,gi j ,F i j ) into two parts, e.g.,f i j 5 f i j

(N)1 f i j
(S) , where

f i j
(N)5@ f i j (k,R)1 f i j (2k,R)#/2 and f i j

(S)5@ f i j (k,R)
2 f i j (2k,R)#/2. Next, we uset approximation that is deter
mined by Eqs.~8!–~10!. We assume thathk2!t21 and
nk2!t21 for the inertial range of turbulent fluid flow. We
also assume that the characteristic time of variation of
mean magnetic fieldB is substantially longer than the corre
lation timet(k) for all turbulence scales. Thus, Eqs.~A3!–
~A5! yield

f i j
(N)' f i j

(0N)1 i t~k•B!F i j
(S) , ~A14!

hi j
(N)'hi j

(0N)2 i t~k•B!F i j
(S) , ~A15!

f i j
(S)' f i j

(0S)1 i t~k•B!F i j
(N) , ~A16!

gi j 'tI i j , ~A17!
7-9
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wherec52(k•Bt)2/m0r, ki j 5kikj /k2, f i j
(0N) and f i j

(0S) de-
scribe the nonhelical and helical tensors of the backgro
turbulence. The tensorhi j

(S) is determined by an evolutionar
equation~see, e.g., Refs.@15,23,32,24,2,25,8# and Sec. III C!.
Now we calculateF i j

(N) and F i j
(S) . The definition ofF i j ,

given by Eqs.~A7! and ~A17! yields

F i j ~k,R!'t~m0r!21@ I i j ~k,R!2I j i ~2k,R!#. ~A18!

Substituting Eq.~A6! into Eq. ~A18! and using Eqs.~5! and
~6! we obtain

F i j 't~m0r!21$2i ~k•B!~ f i j 2hi j !2Bi ,p~ f p j1hp j!

1Bj ,p~ f ip1hip!12Bl ,p~hp jkli 2hipkl j !%. ~A19!

Now using Eqs.~A14!–~A16! and Eq.~A19! we get

F i j
(N)'t~11c!21~m0r!21$2i ~k•B!~ f i j

(0S)2hi j
(S)!

1Bj ,p~ f pi
(0N)1hpi

(0N)!2Bi ,p~ f p j
(0N)1hp j

(0N)!

12Bp,l~hjl
(N)kpi2hil

(N)kp j!%, ~A20!

F i j
(S)'2i t~112c!21~m0r!21~k•B!~ f i j

(0N)2hi j
(0N)!

1O~Bi , j !. ~A21!

To calculate the electromotive force we do not take into
count the second- and higher-orders spatial derivatives o
mean magnetic field. This implies that in the tensorbi jk ~and,
therefore, in the tensorF i j

(S)) we neglect the first- and higher
orders spatial derivatives of the mean magnetic field@see
Eqs.~11!, ~A21!, and~A23! below#.

Note that Eqs.~A14! and ~A15! yield

f i j
(N)1hi j

(N)' f i j
(0N)1hi j

(0N) . ~A22!

This is in agreement with the fact that a uniform mean m
netic field performs no work on the turbulence. It can on
redistribute the energy between hydrodynamic fluctuati
and magnetic fluctuation. Analysis in Ref.@31# showed that a
change of the total energy~kinetic and magnetic! of fluctua-
tions caused by a nonuniform mean magnetic field is of
order ;thT

(v)DB2. In the case of a very strong mean ma
netic field Eq.~A22! can be violated.

Using Eqs.~A14!–~A16! and ~A20!–~A21! we calculate
the electromotive forceEi(r50)5*Ei(k)dk, where the Fou-
rier componentEi(k)5(m0r/2)« imnFnm

(N)(k), and« i jk is the
Levi-Civita tensor. The electromotive force is given by Eq
~11!–~13!. Substituting Eq.~A15! into Eq. ~13! we get

bi jk5E t~11c!21$« i jn~ f kn
(0N)1hkn

(0N)!22« imnkm j@hnk
(0N)

2 i t~k•B!Fnk
(S)#%dk. ~A23!

The integration ink space in Eq.~A23! yields

bi jk5« i jnlnk
(P)~b!12« inmznk jm

(C) ~b!. ~A24!

Hereafter we use the following definitions:
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Xi jk . . .
(C) ~b!5Xi jk . . .

(v) ~b!2Xi jk . . .
(v) ~A2b!1Xi jk . . .

(h) ~A2b!,
~A25!

Xi jk . . .
(M ) ~b!5Xi jk . . .

(v) ~b!2Xi jk . . .
(h) ~b!, ~A26!

Xi jk . . .
(P) ~b!5Xi jk . . .

(v) ~b!1Xi jk . . .
(h) ~b!, ~A27!

and

l i j
(a)~b!5E ci j ~k!t~k!

11c~b,k!
dk, ~A28!

z i jmn
(a) ~b!5E ci j ~k!t~k!

11c~b,k!
kmndk, ~A29!

and b i54Bi /(u0A2m0r), c(b,k)5@(b•k)u0t/2#2, ci j

5 f i j
(0N) for l i j

(v), andci j 5hi j
(0N) for l i j

(h) .
For the calculation of the tensorbi jk we specified a mode

of the background turbulence~i.e., turbulence with zero
mean magnetic field!. The turbulent velocity and magneti
fields of the background turbulence are determined by
~17!. To integrate over the angles ink space in Eqs.~A28!
and ~A29! we use the following identities:

E ki j sinu

11a cos2u
dudw5Ā1d i j 1Ā2b i j , ~A30!

E ki jmn sinu

11a cos2u
dudw5C̄1~d i j dmn1d imd jn1d ind jm!

1C̄2b i jmn1C̄3~d i j bmn1d imb jn

1d inb jm1d jmb in1d jnb im

1dmnb i j !, ~A31!

where a5@bu0kt(k)/2#2, b̂ i5b i /b, b i j 5b̂ i b̂ j , b i jk . . .

5b̂ i b̂ j b̂k . . . , and

Ā15
2p

a F ~a11!
arctan~Aa!

Aa
21G ,

Ā252
2p

a F ~a13!
arctan~Aa!

Aa
23G ,

C̄15
p

2a2 F ~a11!2
arctan~Aa!

Aa
2

5a

3
21G ,

C̄25
p

2a2 F ~3a2130a135!
arctan~Aa!

Aa
2

55a

3
235G ,

C̄352
p

2a2 F ~a216a15!
arctan~Aa!

Aa
2

13a

3
25G .
7-10
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To integrate overk in Eqs. ~A28! and ~A29! we use the
Kolmogorov spectrum of the background turbulence, i
t f pp

(0N)(k)5hT
(v)w(k), thpp

(0N)(k)5hT
(h)w(k), and m i j

(a)(k)
5m i j

(a)(R)w(k)/3, where w(k)5(pk2k0)21(k/k0)27/3,
t(k)52t0(k/k0)22/3, wherek0<k<kd , k05 l 0

21, l 0 is the
maximum scale of turbulent motions andkd5k0Re3/4 is de-
termined by the Kolmogorov’s viscous scale of turbulen
The integration ink space in Eqs.~A28! and ~A29! yields

l i j
(a)~b!5L i j

(a)~b!1b̂ i@g (a)~b!b̂ j1C2~b!m jn
(a)b̂n#,

~A32!

z i jmn
(a) ~b!5j i jmn

(a) ~b!1b̂n@Ui jm
(a) ~b!1G (a)~b!d i j b̂m#,

~A33!

where

L i j
(a)~b!5C1~b!m i j

(a)1C2~b!m in
(a)bn j1d i j $@A1~b!

1~1/2!A2~b!#hT
(a)1~1/4!C3~b!mb

(a)%, ~A34!

g (a)~b!5~5/12!C2~b!mb
(a)2~1/2!A2~b!hT

(a) , ~A35!

G (a)~b!5~5/12!C2~b!mb
(a)1~1/2!A2~b!hT

(a) , ~A36!

Ui jm
(a) ~b!5~5/6!$@A2~b!2C3~b!#m i j

(a)b̂m2C3~b!~m im
(a)b̂ j

1m ip
(a)b̂pdm j2mmp

(a)b̂pd i j !2C2~b!m ip
(a)bp jm%,

~A37!

j i jmn
(a) ~b!5~1/2!dmn$@A1~b!hT

(a)1~5/6!C3~b!mb
(a)#d i j

1~5/3!@A1~b!2C1~b!#m i j
(a)

2~5/3!C3~b!m ip
(a)bp j%1~5/6!$d i j @C1~b!mmn

(a)

1C3~b!mnp
(a)bpm#2C1~b!m im

(a)d jn

2C3~b!m ip
(a)bpmd jn%, ~A38!

and mb
(a)5mps

(a)bsp , C1(b)5(5/6)@A1(b)1A2(b)
1C1(b)#, C2(b)5(5/6)@C3(b)2A2(b)#, C3(b)
5(5/3)@A2(b)1C3(b)#. The functions An(b)
5*k0

` Ān(a)w(k)k2dk5(3b4/p)*b
`@Ān(X2)/X5#dX and

similarly for Cn(b), where a5@bu0kt(k)/2#25X2

5b2(k/k0)2/3, and we took into account that the inerti
range of the turbulence exists in the scales:l d<r< l 0. Here
the maximum scale of the turbulencel 0!LB , and l d
5 l 0 /Re3/4 is the viscous scale of turbulence, andLB is the
characteristic scale of variations of the nonuniform me
magnetic field. For very large Reynolds numberskd5 l d

21 is
very large and the turbulent hydrodynamic and magnetic
ergies are very small in the viscous dissipative range of
turbulence 0<r< l d . Thus we integrated inAn over k from
k05 l 0

21 to `. The functionsAn(b) andCn(b) are given in
Appendix B. In Eqs.~A33!–~A38! we omitted terms that are
symmetric in indexesi and n because after multiplication
z i jmn

(a) (b) by « l in these symmetric terms vanish@see Eq.
~A24!#.
05630
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In order to extract terms}« i jmb̂m , which contribute to
the nonlinear diamagnetic and paramagnetic velocities,
split bi jk into two parts, i.e.,bi jk5bi jk

(1)1bi jk
(2) , where

bi jk
(1)5« inmb̂m$d jn@g (P)~b!b̂k1C2~b!mkp

(P)b̂p#

12@G (C)~b!dnkb̂ j1Unk j
(C)~b!#%, ~A39!

bi jk
(2)5« i jnLnk

(P)~b!12« inmjnk jm
(C) ~b! ~A40!

@see the definitions given by Eqs.~A25!–~A27!#. Next, we
calculatebi jkBj ,k . Using Eqs.~11!, ~A39!, and ~A40! we
also split the electromotive force into two parts

E5E(1)1E(2), ~A41!

E i
(1)5bi jk

(1)Bj ,k , ~A42!

E i
(2)5ai j Bj1bi jk

(2)Bj ,k . ~A43!

Using Eqs.~A39! and ~A42! we obtain

E i
(1)5~V(N)3B! i2h i j

(1)~“3B! j , ~A44!

where

Vi
(N)~B!5

1

2B2
@g (P)~b!12G (C)~b!#¹ iB

21
1

B
@2Uik j

(C)~b!

1C2~b!mkp
(P)b̂pd i j #¹kBj , ~A45!

h i j
(1)5g (P)~b!Pi j ~b!, ~A46!

and Pi j (b)5d i j 2b i j . For the calculation of the term
}g (P)(b) in these equations we used an ident
« imnbnpBm,p[2@B3(B•“)B# i /B252@B3“(B2/2)# i /B2

2Pip(b)(“3B)p , which follows from the formula
(B•“)B5(1/2)“B22B3(“3B). Following Ref. @21# we
use an identityBj ,k5(]B̂) jk2« jkl(“3B) l /2 in order to re-
write Eq. ~A43! in the form

E i
(2)5a i j Bj1~U3B! i2h i j

(2)~“3B! j2k i jk~]B̂! jk ,
~A47!

where

h i j
(2)5~« ikpbjkp

(2) 1« jkpbikp
(2)!/4, ~A48!

k i jk~B!52~bi jk
(2)1bik j

(2)!/2. ~A49!

Using Eqs.~A44! and ~A47! we obtain the equation fo
the electromotive forceE5E(1)1E(2) which is given by Eq.
~26!. The tensor of turbulent magnetic diffusion

h i j ~B!5h i j
(1)1h i j

(2) ~A50!

is given by
7-11
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h i j ~B!5d i j $A1~b!hT
(P)1~5/12!@C2~b!12C3~b!#mb

(P)

2@A1hT# (C)2~5/6!@C3mb# (C)%2~1/4!

3@2C1~b!m i j
(P)1C2~b!m̄ i j

(P)#1~5/6!@~A1

1C1!m i j #
(C)1~5/12!@C3m̄ i j #

(C)

1~1/2!b i j @A2~b!hT
(P)2~5/6!C2~b!mb

(P)#,

~A51!

where m̄ i j
(a)5m in

(a)bn j1b inmn j
(a) , and we used Eqs.~A46!,

~A48!, and the definitions~A25!–~A27!. In particular,
@X# (C)(b)5X(v)(b)2X(v)(A2b)1X(h)(A2b) that implies,
e.g.,@A1hT# (C)5A1(b)hT

(v)2A1(A2b)hT
(v)1A1(A2b)hT

(h) .
Using Eqs.~A40! and ~A49! we calculatek i jk(B)

k i jk~B!52~1/2!@C1~b!L̂ i jk
(P)1C2~b!N̂i jk

(P)#1~5/6!@~A1

23C1!L̂ i jk # (C)2~5/2!@C3N̂i jk # (C), ~A52!

where L̂ i jk
(a)5« i jnmnk

(a)1« iknmn j
(a) , N̂i jk

(a)5mnp
(a)(« i jnbpk

1« iknbp j), and @C3N̂i jk # (C)5C3(b)N̂i jk
(v)2C3(A2b)(N̂i jk

(v)

2N̂i jk
(h)) and similarly for @(A123C1)L̂ i jk # (C) @see Eq.

~A25!#.
The asymptotic formulas for the nonlinear coefficients d

fining the mean electromotive force forb!1 are given by

h i j ~B!5d i j hT
(v)2

1

2
m i j

(M )2
2

5
b2Fd i j H 2hT

(v)2hT
(h)

1
5

21
~2mb

(v)2mb
(h)!J 1

5

42
~5m i j

(h)219m i j
(v)12m̄ i j

(v)

15m̄ i j
(h)!1b i j hT

(P)G , ~A53!

a i j
(v)~B!5a0

(v)d i j 1n i j 2~2/5!b2$d i j @3a0
(v)1nb$11~8/7!e%#

1n i j @22~9/7!e#%, ~A54!

a i j
(h)~B!5a0

(h)~B!~123b2/5!d i j , ~A55!

and forb@1 they are given by

h i j ~B!5
3p

5b Fd i j H hT
(M )/A21hT

(h)1
5

48
@mb

(v)~32A2!

1mb
(h)~A211!#J 1

5

48H m i j
(v)~925A2!1m i j

(h)~5A2

21!2
3

10
@m̄ i j

(v)~52A2!1m̄ i j
(h)~31A2!#J

2
1

2
b i j S hT

(P)1
5

8
mb

(P)D G , ~A56!

a i j
(v)~B!52~3p/10b!@d i j ~12e!nb2n i j ~119e!#

1~2a0
(v)/b2!d i j , ~A57!
05630
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a i j
(h)~B!5~3p/2b2!a0

(h)~B!d i j . ~A58!

The asymptotic formulas for the tensork i jk for b!1 and
b@1 are given by Eqs.~21! and ~22!.

APPENDIX B: THE FUNCTIONS Aa„b… AND Ca„b…

The functionsAa(b) andCa(b) are given by

A1~b!5
6

5 Farctanb

b S 11
5

7b2D 1
1

14
L~b!2

5

7b2G ,

A2~b!52
6

5 Farctanb

b S 11
15

7b2D 2
2

7
L~b!2

15

7b2G ,

C1~b!5
3

10Farctanb

b S 11
10

7b2
1

5

9b4D 1
2

63
L~b!

2
235

189b2
2

5

9b4G ,

C2~b!5
3

2 Farctanb

b S 3

5
1

30

7b2
1

35

9b4D 1
16

315
L~b!

2
565

189b2
2

35

9b4G ,

C3~b!52
3

2 Farctanb

b S 1

5
1

6

7b2
1

5

9b4D 2
8

315
L~b!

2
127

189b2
2

5

9b4G ,

where L(b)5122b212b4 ln(11b22). For b!1 these
functions are given by

A1~b!;12~2/5!b2, A2~b!;2~4/5!b2,

C1~b!;~1/5!@12~2/7!b2#, C2~b!;

2~32/105!b4 ln b, C3~b!;2~4/35!b2,

and forb@1 they are given by

A1~b!;3p/5b22/b2, A2~b!;23p/5b14/b2,

C1~b!;3p/20b, C2~b!;9p/20b, C3~b!;

23p/20b.

Since the functionA1(b)1A2(b);O(b22) for b@1 ~it de-
scribes an isotropic part of thea effect! we took into account
in the functionsA1(b) andA2(b) the terms that are of the
order of ;O(b22). Here we also used that forb!1 the
function L(b);122b224b4 ln b, and forb@1 the func-
tion L(b);2/3b2.
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APPENDIX C: DERIVATION OF THE NONLINEAR
DEPENDENCIES hA„B…, hB„B… AND VA„B…

Now we consider an anisotropic background turbulen
with one preferential direction, say along unit vectore,
wheree•b̂50. In this case

V(N)5@V(1)
“B21V(2)e~e•“ !B21V(3)~B•“ !B#/B2,

~C1!

U5@U (1)
“B21U (2)e~e•“ !B21U (3)~B•“ !B#/B2,

~C2!

k i jk~]B̂! jk52$W̃@“B212~B•“ !B#3B2Mke

3~e•“ !B% i /B2, ~C3!

where

V(1)52~1/4!$A2~b!hT
(P)1~5/18!C2~b!«m

(P)1~5/9!@~C2

12A2!«m# (C)2~1/2!@A2hT# (C)%,

V(2)5~5/6!@~A22C3!«m# (C), V(3)5~5/9!@C3«m# (C)

2~1/3!C2~b!«m
(P) ,

U (1)52~A2b/48!C~A2b!, U (2)5

2~A2b/4!C18~A2b!«m
(M ) ,

U (3)5~1/6!C2~A2b!«m
(M ) , W̃52~1/12!$C2~b!«m

(P)

15@C3«m# (C)%.

In order to derive Eq.~C3! we used the following identities

Li jk
(a)~]B̂! jk52«m

(a)@e3~e•“ !B# i ,

Ni jk
(a)~]B̂! jk52~1/6B2!«m

(a)@~“B212~B•“ !B!3B# i .

Using Eqs.~C1!–~C3! and ~A51! we calculate the functions
Mh , Me , Mb , Mk , MV

(1) , andMV
(2) in Eqs.~30!–~32!,

Mh5A1~b!hT
(P)1~5/36!@A1~b!14A2~b!1C1~b!

2C2~b!25C3~b!#«m
(P)2~5/18!@~C11A1!«m# (C)

2@A1hT# (C)1~1/6!C2~A2b!«m
(M ) , ~C4!

Mk5~1/2!C1~b!«m
(P)1~5/6!@~3C12A1!«m# (C),

~C5!

Mb5~1/6!$3A2~b!hT
(P)1@~5/6!C2~b!14C2~b!#«m

(P)

2C2~A2b!«m
(M )%, ~C6!

Me52~1/2!C1~b!«m
(P)1~5/6!@~C11A1!«m# (C),

~C7!
05630
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MV
(1)[V(1)1U (1)12W1~1/2!~V(3)1U (3)!

52~1/4!A2~b!hT
(P)2~5/72!@C2~b!14C3~b!

24A2~b!#«m
(P)1~1/12!C2~A2b!«m

(M )1~5/36!

3$@A2hT# (C)2@~C212A214C3!«m# (C)%

2~A2b/48!C~A2b!, ~C8!

MV
(2)[V(2)1U (2)5~5/6!@~A22C3!«m# (C)

2~A2b/4!C18~A2b!«m
(M ). ~C9!

Now we take into account thatV(N), U, andk contribute into
the tensorh i j . This implies that in order to calculateMh ,
Me , andMb we perform the change

h i j →h i j 1Pi j ~b!@V(3)1U (3)12W#, ~C10!

where the second term in Eq.~C10! @which is proportional to
Pi j (b)] describes a contributionV(N), U, and k into the
tensorh i j . Using Eqs.~30!–~32! and ~C4!–~C9! we calcu-
late the functionshA(B), hB(B), andVA(B)

hA~B!5h̃~B!1~10/9!@~2C12A1!«m# (C)2@A1hT# (C),
~C11!

hB~B!5h̃~B!1~5/18!@~8C11C2110C324A1

24A2!«m# (C)2@~A11A2!hT# (C)

1~A2b/24!C~A2b!, ~C12!

VA~B!5$~5/18!@~4A22C2210C3!«m# (C)1@A2hT# (C)

2~A2b/24!C~A2b!%~ lnuBu!8, ~C13!

where C(x)512@A18(x)1(1/2)A28(x)#hT
(M )1C08(x)«m

(M ) ,

h̃(B)5@A1(b)1(1/2)A2(b)#hT
(P)1(«m

(P)/12)C0(b), C0(b)
5(5/3)@4A1(b)13A2(b)14C1(b)2C3(b)# and@X# (C) is
defined by Eq.~A25!. The asymptotic formulas for the func
tions hA , hB , VA , anda i j

(v) for b!1 are given by

hA~B!5h* 2~2/5!b2@3hT
(v)1~10/63!~14«m

(v)2«m
(h)!#,

~C14!

hB~B!5h* 2~2/5!b2@9hT
(v)28hT

(h)1~10/63!~41«m
(v)

237«m
(h)!#, ~C15!

VA~B!5~4/5!b2@3hT
(v)24hT

(h)1~5/7!~3«m
(v)24«m

(h)!#

3~ lnuBu!8, ~C16!

a i j
(v)~B!5d i j @~a0

(v)2~1/3!«a!~12~6/5!b2!

2~2/105!b2«ae#, ~C17!

and forb@1 they are given by
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hA~B!5~p/6b!@~9/5!~A221!hT
(M )1~A227/8!«m

(v)

2~A229/8!«m
(h)#, ~C18!

hB~B!5~p/4A2b!$~3/5!@~2A221!hT
(v)1~2A2

11!hT
(h)#1~1/24!@~22A2213!«m

(v)1~18A2

113!«m
(h)#%, ~C19!
D.

s.

s-

-
,

-

,

n

R

05630
VA~B!52
3p

4A2b
F S 4A2

5
21D $hT

(v)1~5/8!«m
(v)%1hT

(h)

1~5/8!«m
(h)G~ lnuBu!8, ~C20!

a i j
(v)~B!52d i j $~p/b!«ae2~2/b2!@a0

(v)2~1/3!«a~1

2e!#%. ~C21!
s

s.

p.

-
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