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Mean-field theory for a passive scalar advected by a turbulent velocity field
with a random renewal time
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Mean-field theory for turbulent transport of a passive scalar~e.g., particles and gases! is discussed. Equations
for the mean number density of particles advected by a random velocity field, with a finite correlation time, are
derived. Mean-field equations for a passive scalar comprise spatial derivatives of high orders due to the
nonlocal nature of passive scalar transport in a random velocity field with a finite correlation time. A turbulent
velocity field with a random renewal time is considered. This model is more realistic than that with a constant
renewal time used by Elperinet al. @Phys. Rev. E61, 2617~2000!#, and employs two characteristic times: the
correlation time of a random velocity fieldtc , and a mean renewal timet. It is demonstrated that the turbulent
diffusion coefficient is determined by the minimum of the timestc and t. The mean-field equation for a
passive scalar was derived for different ratios oft/tc . The important role of the statistics of the field of
Lagrangian trajectories in turbulent transport of a passive scalar, in a random velocity field with a finite
correlation time, is demonstrated. It is shown that in the casetc!t!tN the form of the mean-field equation for
a passive scalar is independent of the statistics of the velocity field, wheretN is the characteristic time of
variations of a mean passive scalar field.

DOI: 10.1103/PhysRevE.64.026304 PACS number~s!: 47.27.Qb, 47.40.2x
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I. INTRODUCTION

Passive scalar transport in a turbulent velocity field w
studied intensively during the last years~see, e.g., Refs
@1–7#!. The main progress was achieved in understanding
properties of the high-order moments of a passive sca
e.g., non-Gaussian statistics and anomalous scalings.
that the non-Gaussian properties of passive fields adve
by turbulent fluid flow were already discussed in Ref.@8#.

While the analysis of high-order moments of a pass
scalar was the subject of numerous studies, only a few s
ies discussed the dynamics of a mean passive scalar
~see, e.g., Refs.@9,10#!. However, the mean-field theory fo
turbulent transport of particles and gases is of great imp
tance in view of numerous applications. In particular, t
theory is applied for an analysis of transport of aeroso
pollutants and cloud droplets in atmospheric turbulence
the Earth and other planets~see, e.g., Refs.@11–20#!, dust
transfer in interstellar turbulence and turbulent transpor
particles and gases in industrial flows~see, e.g., Refs.@21–
24#!.

The mean-field equation for a passive scalar is given

]N

]t
1“•~NVeff2DT“N!50, ~1!

whereDT is the turbulent diffusion coefficient, andVeff is an
effective velocity. For an incompressible velocity fieldVeff
5U, where U is the mean fluid velocity~see, e.g., Refs
@25–27#!. However, when the velocity fieldv is not diver-
gence free~e.g., due to particle’s inertia! the effective veloc-
ity is given by
1063-651X/2001/64~2!/026304~9!/$20.00 64 0263
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Veff5U2^tcv~“•v!&, ~2!

~see Refs.@6,28#! wheretc is the correlation time of a tur-
bulent velocity field. The second term in Eq.~2! can be in-
terpreted as an additional turbulent flux of particles, i.e.,
total turbulent flux of particles is given by

JT5NVeff2DT“N, ~3!

and ^tcv(“•v)&}“T, whereT is the mean fluid tempera
ture. The additional turbulent nondiffusive flux of particle
@which is caused by the term}^tcv(“•v)&] results in the
formation of inhomogeneities of particle distributions due
the excitation of a large-scale instability. One of the mo
important conditions for instability is the inhomogeneo
spatial distribution of the mean temperature. In particu
large-scale instability can be excited in the vicinity of th
minimum in the mean temperature~see Refs.@6,28#!. For
instance, in atmospheric turbulence large-scale instab
can be excited in the vicinity of the temperature inversi
~see Ref.@18#!.

Equations~1! and~2! were derived for the random veloc
ity field d correlated in time. It was recently shown Ref.@10#
that when a random velocity field has a small yet finite c
relation time, the mean-field equation has a much more c
plicated form than Eq.~1!. In particular, it contains high-
order spatial derivatives. In Ref.@10# a model of a random
compressible velocity field with a constant renewal time w
considered. This allowed one derive a mean-field equa
for the number density of particles advected by a rand
velocity field with a finite correlation time. However, thi
©2001 The American Physical Society04-1



wa
.

el
tic
-
on
fo

o
oc

he

di
of
u

el

m
tu
b

ts
y
iff
gi

ea

m
m

y
o

o

.
c

l

o

m

.

ry
nd
. We
into
ion
e

el
ws.
su-
lo-

y
b-
s-

ame
nar-
m

s-
ois-

ss
l
n

ree
e-

ion

i-

per
re,

c-

ned
c-
-

ELPERIN, KLEEORIN, ROGACHEVSKII, AND SOKOLOFF PHYSICAL REVIEW E64 026304
model is limited by the assumption of a constant rene
time, and does not describe a real turbulent velocity field

In the present study we consider a turbulent velocity fi
with a random renewal time. This model is more realis
than that used in Ref.@10#. In particular, when a mean re
newal time is very large in comparison with the correlati
time of the velocity field, we recover the results obtained
a turbulent flow without renewal. In this model there are tw
characteristic times: the correlation time of a random vel
ity field tc , and the mean renewal timet. It is demonstrated
that the turbulent diffusion coefficient is determined by t
minimum of the timestc and t. In the present study the
mean-field equation for a passive scalar was derived for
ferent ratios oft/tc . We demonstrate an important role
the statistics of the field of Lagrangian trajectories in turb
lent transport of a passive scalar in a random velocity fi
with a finite correlation time.

The model of a turbulent velocity field with a rando
renewal time reproduces important features of some real
bulent flows. Indeed, the interstellar turbulence is driven
supernova explosions and it loses memory at the instan
explosions~see, e.g., Ref.@29#!, which can be described b
the Poisson process. Note that discussions on practical d
sion models in atmospheric sciences based on Lagran
techniques can be found, e.g., in reviews Refs.@16,20#.

II. GOVERNING EQUATIONS

In the present study we derive an equation for a m
passive scalar field~e.g., a number density of particles! ad-
vected by a random velocity field. The equation for the nu
ber densityn(t,r ) of small particles advected by a rando
fluid flow reads

]n~ t,r !

]t
1“•~nv!5DDn, ~4!

whereD is the coefficient of molecular~Brownian! diffusion,
andv(t,r ) is a random velocity field of particles which the
acquire in a turbulent fluid velocity field. We will take int
account the compressibility of velocity field“•vÞ0, which
occurs due either to the compressibility of the fluid itself
due to the particle’s inertia. Equation~4! implies the conser-
vation of the total number of particles in a closed volume

WhenDÞ0, particles are transported by both fluid adve
tion and Brownian motions~i.e., molecular diffusion!. In this
case the functionn(t,x) is given by

n~ t,x!5M j$G~ t,j!exp~j* •“ !n~s,x!% ~5!

~see Appendix A!, whereM j$•% denotes the mathematica
expectation over the Wiener paths

j5x2E
0

t2s

v~ t2m,j! dm1A2Dw~ t2s!. ~6!

j* 5j2x, w(t) is a Wiener process which describes the m
lecular diffusion,G(t,x)5exp@2*s

tb(m,j) dm# andb5“•v.
Note that there exists a large number of studies~particularly
Lagrangian models of passive tracer transport in the at
02630
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spheric and oceanic sciences!, where Eq.~4! is solved nu-
merically using averaging over trajectory~6! ~see, e.g., Refs
@16,20#!.

We consider a random velocity field which loses memo
at random instants of time. The velocity fields before a
after renewal are assumed to be statistically independent
introduce this assumption in order to decouple averaging
averagings over two time intervals. Indeed, the funct
G(t,j) in Eq. ~5! is determined by the velocity field after th
renewal, while the number density of particlesn(s,x) is de-
termined by the velocity field before renewal. This mod
reproduces important features of some real turbulent flo
Thus, e.g., the interstellar turbulence, which is driven by
pernova explosions, loses memory in the instants of exp
sions ~see, e.g., Ref.@29#!. Between renewals the velocit
field can be random, with intrinsic statistics. In order to o
tain a statistically stationary random velocity field, we a
sume that velocity fields between renewals have the s
statistics. The random renewal instants destroy the statio
ity of the velocity field. On the other hand, between rando
renewal instants the velocity field is stationary.

In order to perform calculations in a closed form, we a
sume that random renewal times can be described by a P
son process, as suggested in Ref.@29#. A two-point correla-
tion function of the velocity field is given by

f̂ mn5^vm~ t,x!vn~s,y!&5 f mn~ t2s,x,y!exp~2lut2su!,
~7!

where the function exp(2lut2su) describes a Poisson proce
for a random renewal time, andt51/l is the mean renewa
time. The correlation time of a random velocity field is give
by

tc5E f mm~t,x,x!dt/ f mm~0,x,x!. ~8!

Thus we introduced a model which is described by th
random processes:~i! the Wiener random process, which d
scribes Brownian motions, i.e., molecular diffusion;~ii ! the
Poisson process for random renewal times; and~iii ! the ran-
dom velocity field between the renewals. The correlat
time in the maximum scale of turbulent motionsl 0 is t0
5 l 0 /u0, whereu0 is the characteristic velocity in the max
mum scale of turbulent motionsl 0. The model of a turbulent
velocity field with random renewal instants used in our pa
implies that a random forcing acts continuously. Therefo
between renewals, turbulence does not decay@see Eq.~7! of
our paper#.

Now we average Eq.~5! over a random velocity field for
a given realization of a Poisson process,

^n~ t,x!&5M j$^G~ t8,j!exp@j* ~ t8!•“#&^n~s,x!&%, ~9!

where the times is the last renewal time beforet, and t8
5t2s is a random variable. Indeed, averaging of the fun
tions G(t8,j)exp@j* (t8)•“#, n(s,x) can be decoupled into
the product of averages since the first function is determi
by the velocity field after the renewal, while the second fun
tion n(s,x) is determined by the velocity field before re
4-2
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newal. We average Eq.~9! over the random renewal timest8,
taking into account the stationarity of the Poisson proce
The probability densityp(t8) for a random renewal timet8 is
given by p(t8)5lexp(2lt8). The resulting averaged equa
tion is given by

N~ t,x!5E
0

t

P~m,x,i“ !N~ t2m,x!lexp~2lm!dm

1exp~2lt !P~ t,x,i“ !N0~x!, ~10!

whereN(t,x)5Et$^n(t,x)&% and N0(x)5N(t50,x), Et$•%
denotes an averaging over random renewal times,

P~ t,x,i“ !5M j$^G~ t,j!exp@j* •“&#%, ~11!

and the probability that no renewal occurs during timet is
exp(2lt). The first term in Eq.~10! describes the case whe
there is at least one renewal of the velocity field during
time t ~i.e., the Poisson event!, whereas the second term d
scribes the case when there is no renewal during the timt.
Now we use the identity

N~ t2m,x!5expS 2m
]

]t DN~ t,r !,

which follows from the Taylor expansion

f ~ t1t!5 (
m50

`
1

m! S t
]

]t D
m

f ~ t !5expS t
]

]t D f ~ t !.

Thus Eq.~10! can be rewritten as

F E
0

lt

PS s

l
,x,i“ DexpS 2

s

l

]

]t Dexp~2s!ds21GN~ t,x!

1exp~2lt !P~ t,x,i“ !N0~x!50. ~12!

Equation~12! generalizes the mean-field equation for a p
sive scalar advected by a random velocity field with a c
stant renewal time@compare with Eqs.~19! and~D6! derived
in Ref. @10#!#. Indeed, whent5const. Eq.~12! reads

FP~t,x,i“ !expS 2t
]

]t D21GN~ t,x!50. ~13!

III. MEAN-FIELD EQUATION FOR A PASSIVE SCALAR

In this section we derive mean-field equations for a p
sive scalar using different models of a random velocity fie
This allows us to elucidate some important features of a
bulent transport of a passive scalar in a random velocity fi
with a finite correlation time.

A. Random velocity field with a small renewal time

Consider a very small renewal time, i.e.,t!min$tc ;t0%.
Expanding the functions P(s/l,x,i“) and
exp@2(s/l)(]/]t)# into Taylor series in the vicinitys/l50
yields
02630
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]s D
s50

1
1

2 S ]2P

]s2D
s50

S s

l D2
]

]tGN~ t,x!S s

l D
3exp~2s!50, ~14!

where we neglected the terms;O@(s/l)3#. Then Eq.~14!
reduces to

]N~ t,x!

]t
5S ]P

]s
1

1

l

]2P

]s2D
s50

N~ t,x!, ~15!

where the operatorP(s,x,i“) is given by

P~s,x,i“ !512s@^b&1^vm&¹m1DD#1~s2/2!@¹p^vpb&

1¹p^vpvm&¹m1^vmb&¹m#1O~s3!. ~16!

Substituting Eq.~16! into Eq. ~15!, we obtain

]N

]t
1¹m~Vm

(eff)N2D̂mn¹nN!50, ~17!

where

Vm
(eff)5U2^tvb& ~18!

D̂mn5Ddmn1^tvmvn&, ~19!

and ^v&5U and ^b&5“•U. The turbulent transport coeffi
cients@see Eqs.~18! and~19!# derived above are different b
a factor 2 from those obtained for a model with ad corre-
lated in time random velocity field, and for a model with
constant renewal time. It is known that the model with ad
correlated in time random velocity field and the model with
constant renewal time do not recover the known turbul
diffusion tensor̂ tvmvn&. Thus, in these two models, one ha
to rescalet→2t in order to recover a correct coefficient o
turbulent diffusion. The reason for this inconsistency
purely formal. Thus, thed function is normalized in the in-
terval from2` to `, while in the model with ad correlated
in time random velocity field one has to integrate over t
time from 0 to`. The reason that the coefficient of turbule
diffusion in a turbulent velocity field with random renewa
is twice as large in comparison with that for a constant
newal time is as follows. Let us consider two random wal
The first one,zn

(1) , performs jumps at a distancevt to the
left and right with probabilities 1/2~herev and t are con-
stants!. The second one,zn

(2) , performs jumps to the left and
right with the same probabilities with velocityv during a
random time intervalm̃, wherem̃ has a Poisson distribution
with a mean valuet. A direct calculation shows that the roo
mean square value ofzn

(2) is twice as large as the roo
mean square value ofzn

(1) . Formally, a factor 2 in̂ tvmvn&
and in ^tvb& arises because these terms in operatorP
are proportional tos2 @see Eq. ~16!# and the integral
*0

`s2exp(2s) ds52.
Note that the turbulent diffusionDmn and the effective

drift velocity Vm
(eff) in the caset!min$tc ,t0% are determined
4-3
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only by the renewal timet, rather than bytc or t0. The
reason is that for the small renewal timet!min$tc ;t0% the
velocity field does not change during a small timet, and the
turbulent transport coefficients are determined by the
newal timet only.

B. Random velocity field with Gaussian statistics for the
integrals *v„µ,j…dµ and *b„µ,j… dµ

Now we consider a model with a random homogene
velocity field in which the integrals*v(m,j) dm and
*b(m,j) dm have Gaussian statistics. Using an ident
E$exp(ah)%5exp(a2/2) and Eq.~11!, we obtain

P~s,x,i“!5exp@~1/2!sD̂mn¹m¹n2sV(eff)
•“#, ~20!

sVm
(eff)52M j$^jm* ~x!g~x!&%, ~21!

sD̂mn5M j$^jm* ~x!jn* ~x!&%, ~22!

whereh is a Gaussian random variable with zero mean a
unit variance,G5exp(g), andM j$^G&%51. The latter yields
M j$^g&%52(1/2)M j$^ĝ

2&%, where g5^g&1g̃. When tc
!t or tc!tN, these turbulent transport coefficients a
given by

Vm
(eff)522E

0

`

M j$^vm~0,j!b~s8,j!&% ds82M j$^j&%/s,

~23!

Dmn52E
0

`

M j$^vm~0,j!vn~s8,j!&% ds8, ~24!

whereDmn5Dmn12Ddmn , and we used the identity

M jH K E
0

m

am~m8,x! dm8E
0

m

cn~m9,x! dm9L J
.2mE

0

`

M j$^am~0,x!cn~m8,x!&% dm8. ~25!

Note that M j$^j* &%52M j$^*0
tv(s8,j) ds8&5” 0, even

when ^v(t,x)&50. When ^vb&Þ0 the mean trajectory
M j$^j* &%5” 0, due to an anisotropy which is caused by t
nonzero vector̂ vb&. Substituting Eqs.~20!, ~23!, and ~24!
into Eq. ~10!, we obtain

]N

]t
5@~1/2!D̂mn¹m¹n2V(eff)

•“#N~ t,x!. ~26!

Using Eqs.~13! and ~20! for the case max$tc ;tN%!t also
yields Eq.~26!. Note that the form of Eq.~26! obtained for
tc!min$t;tN% and max$tc ;tN%!t coincides with Eq.~17!,
derived for the caset!min$tc ;tN%.

C. Random velocity field with Gaussian statistics for the
Lagrangian trajectories j* and random function j* G„t,j…

Now we consider a model for a random velocity field wi
Gaussian statistics for the Lagrangian trajectories, i.e.,
02630
-
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assume that the Lagrangian trajectoriesj* and the random
function j* G(t,j) have Gaussian statistics. For a homog
neous random velocity field, we assume thatM j$^j* &%50,
M j$^jm* jn* &%5Wdmnf (s), M j$^jm* G&%52sVm , and
M j$^G&%51. The latter equation implies the conservation
the total number of particles. Heref (s)5s2 for s,tc and
f (s)5tc

2(2s/tc21) for s>tc . These equations yield

P~s,x,i“!5~12sV•“!exp@~1/2! f ~s!WD#, ~27!

where we used the identities

E$exp~ah!%5exp~a2/2!, ~28!

S ]

]m
exp~a1mg! D

m50

5g exp~a!, ~29!

andh is a Gaussian random variable with zero mean and
variance. Equations~10! and ~29! yield, for tc!t,

]N

]t
5L̂N~ t,x!, ~30!

L̂5tcWD1
1

2t
@A124tV•“21#. ~31!

Whentc!t!tN , Eq. ~31! reads

L̂5tcWD2V•“2t~V•“!2, ~32!

where W/V2.t/tc and tN5min$LN /V;LN
2/DT%. For t@tN ,

the mean number density of particles is determined by
equation

N~ t,x!5~12tV•“ !exp@ ttcWD#N~ t50,x!. ~33!

In order to derive Eq.~33!, we used Eq.~10! in which the
first term on the right hand side is neglected for larget
~small l). Now we differentiate Eq.~33! with respect tot,
and neglect terms;O(t21) for very large times. Thus we
arrive at the equation

]N

]t
5tcWDN~ t,x!. ~34!

Note that for this model of the random velocity field, th
form of a mean-field equation for a passive scalar is differ
from that derived for other models@see Eqs.~30! and ~31!#.
Moreover, in the case oft@max$tc ;tN%, the mean-field
equation for a passive scalar does not contain the effec
velocity V(eff), i.e., it is independent of the compressibility o
the velocity fieldv. Only in the casetc!t!tN the mean-
field equation for a passive scalar is similar to Eqs.~17! and
~26!, which were derived using different models for rando
velocity field. Indeed, Eqs.~30! and~32! for tc!t!tN yield

]N

]t
1¹m~VmN2W̃mn¹nN!50, ~35!

whereW̃mn5tcWdmn2tVmVn .
4-4
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D. Weak inhomogeneity and slow evolution of the mean
number density of particles

In the casetc!t!tN the mean-field equation for a pa
sive scalar is independent of the statistics of the velo
field, Lagrangian trajectories and other characteristics~where
tN5min$LN /V;LN

2/DT%). Indeed, consider a weakly inhomo
geneous case and slow evolution of the mean number de
of particlesN. Note that a weakly inhomogeneous case i
plies largetN . Expanding in Taylor series the first term o
Eq. ~12! and Eq.~11! for small spatial and time derivative
of N, we arrive at the equation

]N

]t
1~V(eff)

“2D̃mn¹m¹n!N50, ~36!

where D̃mn5M j$^Gjm* jn* &%/2s and V(eff)

52M j$^Gj* &%/s. Note that the correlation function
M j$^Gjm* jn* &% and M j$^Gj* &% are proportional tos. Here
we neglected the small second term;exp(2tN /t) in Eq.
~12!. Notably, in the above derivation we did not use a
assumptions about the statistics of the velocity field, the
grangian trajectories, and the functionG.

IV. DISCUSSION

We developed a mean-field theory of transport of a p
sive scalar~e.g., particles and gases! in a random velocity
field with a finite correlation timetc . We used a model o
the velocity field with a random renewal time. The mea
field equation for a passive scalar is derived for arbitr
ratiost/tc , wheret is the mean renewal time. In a gener
case the latter equation is an integral equation. Howeve
various applications the second-order differential equati
~in spatial variables! for the mean passive scalar field a
used. We determined the conditions when the mean-fi
equation can be reduced to a second-order differential e
tion for different models of a turbulent velocity field~i.e.,
different statistics of the velocity field, Lagrangian traject
ries, and other flow field characteristics!. We demonstrated
an important role of the statistics of the Lagrangian trajec
ries of particles for turbulent transport of a passive sca
We also found that the turbulent diffusion coefficient is d
termined by the minimum of the correlationtc and average
renewalt times.

The considered model of a turbulent velocity field with
random renewal time is quite general. In particular, whe
mean renewal time is very large in comparison with the c
relation time of the velocity field, we recover the resu
obtained for a turbulent flow without renewal. On the oth
hand, in the caset!tc the random velocity field behave
similarly to thed correlated in time random velocity field.

It was recently found~see Ref.@19#! that due to the finite
correlation time of a random velocity field, the field of La
grangian trajectories is compressible even if the veloc
field is incompressible. The compressibility of the field
Lagrangian trajectories results in the excitation of a sm
scale instability of the second moment of the particle num
density, and the formation of small-scale inhomogeneities
02630
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fluctuations of the particle number density, even for a ve
small compressibility of a random velocity field with a finit
correlation time~see Ref.@19#!.

The obtained results are important in studies of turbul
transport in various naturally occurring and industrial flow
where commonly used local second-order differential tra
port models are employed. In particular, these results ma
of relevance in atmospheric phenomena~e.g., dynamics of
cloud droplets and atmospheric aerosols, smog format
etc!. We considered a low Mach numbers compressible
bulent fluid flow“•vÞ0, i.e.,“•v52(v•“r)/r, wherer
is the density of the fluid. In an atmosphere without tempe
ture inversion, the characteristic density stratification len
Lr5u“r/ru21.8 kilometers, and therefore“•v is small.
However, in an atmosphere with temperature inversion,
characteristic density stratification length in the vicinity
the temperature inversion layerLr;LT.250–300 m,
whereLT5u“T/Tu21. This implies that in the vicinity of the
temperature inversion layer, the value of velocity divergen
“•v is not so small. The velocity fieldvp of droplets and
aerosols is also compressible, i.e.,“•vp5“•v
1tp“•(“Pf /r)1O(tp

2) Ref. @6#, where the velocity of
droplets or aerosolsvp depends on the velocity of the atmo
spheric fluidv, and can be determined from the equation
motion for a particle. This equation represents a balance
particle inertia, with the fluid drag force produced by th
motion of the particle relative to the atmospheric fluid a
gravity force. HerePf is the atmospheric fluid pressure, an
tp is the characteristic time of the coupling between the p
ticle and atmospheric fluid~Stokes time!. Solution of the
equation of motion for small particles withrp@r yields vp

5v1Vg2tp@]v/]t1((v1Vg)•“)v#1O(tp
2) ~see Ref.

@30#!, whereVg5tpg is the terminal fall velocity,g is the
acceleration due to gravity, andrp is the material density of
particles.

The formation of large-scale inhomogeneities of aeros
and droplets in a turbulent atmosphere is associated
both particle inertia and correlation between velocity a
temperature fluctuations of an atmospheric fluid in the pr
ence of a nonzero mean fluid temperature gradient Ref.@6#.
Indeed, the inertia of particles results in the fact that partic
with rp@r inside the turbulent eddy are carried out
boundary regions between the eddies by inertial forces~i.e.,
regions with low vorticity or high strain rate; see, e.g., Re
@30,31#!. On the other hand, the inertia effect causes“•vp
}tpDPfÞ0. In addition, for large Peclet numbers“•vp}
2dn/dt @see Eq.~4!#. Therefore,dn/dt}2tpDPf . This im-
plies that in regions whereDPf,0, there is an accumulation
of inertial particles~i.e., dn/dt.0). Similarly, there is an
outflow of inertial particles from the regions withDPf.0.
In a turbulence without large-scale external gradients of te
perature, a drift from regions with increased~decreased! con-
centrations of inertial particles by a turbulent flow of fluid
equiprobable in all directions. The location of these regio
is not correlated with the turbulent velocity field. Therefo
they do not contribute to the large-scale flow of inertial p
ticles.

The situation is drastically changed when there is a lar
4-5
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scale inhomogeneity of the temperature of the turbulent fl
In this case the mean heat flux^vu&Þ0. Therefore, fluctua-
tions of both the temperatureu and velocityv of the fluid are
correlated. Fluctuations in the temperature cause fluctuat
of the pressure of the fluid, and vice versa~see the equation
of statePf5rkBTf /mm , wherekB is the Boltzmann con-
stant,mm is the mass of molecules of atmospheric fluid, a
Tf is the fluid temperature!. The pressure fluctuations resu
in fluctuations of the number density of inertial particle
Indeed, an increase~decrease! in the pressure of the atmo
spheric fluid is accompanied by an accumulation~outflow! of
the particles. Therefore, the direction of the mean flux
particles coincides with that of the heat flux, i.e.,^vpn&
}^vu&}2“T, whereT5^Tf& is the mean temperature of a
atmospheric fluid with a characteristic valueT* , and Tf
5T1u. Therefore the mean flux of the inertial particle
~aerosols and droplets! is directed to the minimum of the
mean temperature, and the inertial particles are accumul
in this region~e.g., in the vicinity of the temperature inve
sion layer!. This effect is more pronounced when the atm
spheric turbulent fluid flow is inhomogeneous in the dire
tion of the mean temperature gradient. Thus, in a turbu
atmosphere, this effect~the effect of turbulent thermal diffu
sion! causes an accumulation of aerosol particles in the
cinity of the temperature inversion. On the other hand, t
bulent diffusion results in a relaxation of the partic
inhomogeneities. Thus two competitive mechanisms of p
ticle transport, i.e., mixing by turbulent diffusion and th
accumulation of particles due to turbulent thermal diffusio
exist simultaneously with the effect of gravitational settli
of particles.

The effective velocityV(eff) ~which determines accumula
tion of particles caused by the effect of turbulent therm
diffusion! can be estimated as

V(eff)52^tvp~“•vp!&

52~2/3!VgA~Re,a* !LP ln~Re!~“T!/T ~37!

~see Refs.@6,18#!, where we neglected the small molecul
flux of the particles and the compressibility of the surroun
ing fluid. Here A(Re,a* )51 when the particle sizea*
,acr , A(Re,a* )5123ln(a* /acr)/ ln(Re) for a* >acr , acr
5r d(r/rp)1/2, Re5 l 0u0 /n is the Reynolds number,r d
5 l 0Re23/4 is the viscous scale of the turbulent fluid flow
andDT5u0l 0 /3 is the coefficient of the turbulent diffusion
Thus, e.g.,acr;20 mm for Re5107, l 05100 m, andrp
51 g/cm3. The effective velocityV(eff) of particles deter-
mines a turbulent contribution to the particle velocity, due
both the effect of inertia and the mean temperature gradi
Remarkably, Eq.~37! for the effective velocity of the par
ticles provides a local parametrization of the turbulence
fects, and it can be directly incorporated into existing atm
spheric numerical models. It is seen from Eq.~37! that the
ratio uV(eff)/Vgu is of the order of

uV(eff)/Vgu;~LP /LT!~dT/T* !ln Re,

wheredT is the temperature difference in the scaleLT , and
T* is the characteristic temperature. In an atmosphere w
02630
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out temperature inversion, the temperature gradient is 1
per 1000 m, and the ratiouV(eff)/Vgu for particles of radius
30–300 mm changes in the interval: 0.27–0.15. In an atm
sphere without temperature inversion the effective part
velocity is directed opposite to the terminal fall velocity, an
thus the effective particle velocity decreases the effec
sedimentation velocity by 10–30 %. On the other hand, in
atmosphere with a temperature inversion the tempera
gradient is 1 K per 100 m and the ratiouV(eff)/Vgu for par-
ticles of radiusa* 530–300 mm changes in the interva
2.7–1.5. In this case, the effective particle velocityV(eff) is
larger than the terminal fall velocityVg . In the atmosphere
with a temperature inversion, the effective particle veloc
V(eff) is directed to the temperature minimum, and this
sults in an accumulation of particles in the vicinity of th
temperature inversion.

The additional turbulent nondiffusive flux of particles du
to the effective velocityV(eff) results in the formation of
inhomogeneities of aerosol distributions, whereby the ini
spatial distribution of particles in the turbulent atmosphe
evolves under certain conditions into a large-scale inhom
geneous distribution due to the excitation of an instabili
One of the most important conditions for the instability is
inhomogeneous spatial distribution of the mean atmosph
temperature~see Refs.@6,17,28#!. In particular, the instabil-
ity can be excited in the vicinity of the minimum in the mea
temperature. The characteristic time of the formation of
homogeneities of particles ist f;LT /uV(eff)2Vgu. The for-
mation of inhomogeneities is possible whenV(eff).Vg . The
initially spatial distribution of the concentration of the ine
tial particles evolves into a pattern containing regions w
increased~decreased! concentrations of particles. The cha
acteristic vertical size of the inhomogeneity is of the order

l f;LTF S VgLP

DT
D S dT

T*
D ln ReG21/2

.

Thus it is important to take into account the additional tu
bulent nondiffusive flux of particles due to the effective v
locity V(eff) in atmospheric phenomena~e.g., atmospheric
aerosols, cloud formation, and smog formation!. Observa-
tions of vertical distributions of aerosols in the atmosph
show that maximum concentrations can occur within te
perature inversion layers~see, e.g., Ref.@32#, and references
therein!. Using the characteristic parameters of the atm
spheric turbulent boundary layer~a maximum scale of turbu
lent flow l 0;103–104 cm; a velocity on a scalel 0 of u0
;30–100 cm/s; and a Reynolds number Re;106–107) we
obtain that for particles with material densityrp;1
22g/cm3 and radiusa* 530 mm, the characteristic time o
formation of inhomogeneities of the order of 11 min for th
temperature gradient 1 K/100 m and 106 min for the te
perature gradient 1 K/200 m. For particles of the sizea*
5100 mm, the characteristic time for the formation of inho
mogeneities of the order of 1 min for the temperature gra
ent 1 K/100 m and 121 min for the temperature gradi
1 K/200 m. These estimates are in compliance with
characteristic times of formation of inhomogeneous str
tures in atmosphere. We expect that the spatial density mpn
4-6
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of particles inside the inhomogeneous structures is of
order of the densityr of the surrounding fluid.

The effect of turbulent thermal diffusion may also be
relevance in combustion. In particular, this effect may ca
the formation of inhomogeneities in the spatial distributi
of fuel droplets in internal combustion engines~see, e.g.,
Refs. @22,24,33#!. Indeed, the characteristic parameters
turbulence in a cylinder of internal combustion engine are
follows: maximum scale of turbulent flowl 0;0.5–1 cm; a
velocity on thel 0 scale ofu0;100 cm/s; a Reynolds num
ber Re;(0.727)3103; characteristic values of the mea
temperature distribution on a scaleLT;13–18 cm; and a
dimensionless mean spatial temperature variationdT/T*
;0.3–0.5~see, e.g., Refs.@22,24,33#!. Then the characteris
tic time of formation of inhomogeneities in a spatial dist
bution of droplets of radiusa* 530 mm is ;(3 –6)
31022 s. Notably, this time is comparable to the durati
of an engine cycle. These turbulence induced inhomoge
ities in the spatial distribution of the evaporating fuel dro
lets have strong effects upon combustion, soot, and emis
formation ~see, e.g., Refs.@22,24,33#!.
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APPENDIX A: DERIVATION OF EQ. „5…

In this appendix we will derive Eq.~5!. To this end we
use an exact solution of Eq.~4! with an initial condition
n(t5s,x)5n(s,x) in the form of the Feynman-Kac formula

n~ t,x!5M j$G~ t,s,j~ t,s!!n~s,j~ t,s!!%, ~A1!

G~ t,s,j!5expF2E
s

t

b~m,j~ t,m!! dmG , ~A2!

whereM j$•% denotes the mathematical expectation over
Wiener paths j(t,s)5x2*0

t2sv@ t2m,j(t,m)# dm
1(2D)1/2w(t2s). Now we assume that

n~ t,j!5E exp~ i j•q!n~s,q! dq. ~A3!

Substituting Eq.~A3! into Eq. ~A2!, we obtain

n~ t,x!5E M j$G~ t,s,j~ t,s!!exp@ i j* •q#n~s,q!%

3exp~ iq•x! dq, ~A4!

where j* 5j2x. In Eq. ~A4!, we expand the function
exp@ij* •q# in Taylor series atq50, i.e.,
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exp@ i j* •q#5 (
k50

`

~1/k! !~ i j* •q!k. ~A5!

We use an identity (iq)kexp@ix•q#5“

kexp@ix•q#. Using this
identity, and Eqs.~A4! and ~A5! we obtain

n~ t,x!5M jH G~ t,s,j!F (
k50

`

~1/k! !

3~j* •“!kG E n~s,q!exp~ iq•x! dqJ . ~A6!

After the inverse Fourier transformation in Eq.~A6!, we ob-
tain Eq.~5!. Equation~A3! can be formally considered as a
inverse Fourier transformation of the functionn(t,j). How-
ever,j is the Wiener path, which is not a usual spatial va
able. Therefore, it is desirable to derive Eq.~A4! by a more
rigorous method, as done in Appendix B.

APPENDIX B: DERIVATION OF EQ. „A4…

In this section we will derive Eq.~A4!. In order to derive
Eq. ~A4! more rigorously we use an exact solution of t
Cauchy problem for Eq.~4! with an initial condition n(t
5s,x)5n(s,x) in another form,

n~ t,x!5zz$J~ t,s,z!G̃~ t,s,z! n„s,z~ t,s!…%, ~B1!

where

G̃~ t,s,z!5expF2E
s

t

b~m,z~ t,m!! dmG , ~B2!

J~ t,s,z!5expF2~2D !21/2E
0

t2s

v~ t2h,z~ t,h!!• dw~h!

2~4D !21E
0

t2s

v2
„t2h,z~ t,h!… dhG , ~B3!

z~ t,s!5x1~2D !1/2~w~ t !2w~s!!, ~B4!

wherew(t) is a Wiener process,M z$•% denotes the math
ematical expectation over the Wiener pathsz, andb5“•v.
Note that there is a singularity in Eq.~B3! at D→0. How-
ever, this singularity in the final result is eliminated by
change of variables~see below! Refs. @10,34#. As follows
from Cameron-Martin-Girsanov theorem, the transformat
from Eq. ~A1! to Eq. ~B1! can be considered as a change
variablesj→z in the path integral@Eq. ~A1!# ~see, e.g., Ref.
@35#!. Note that the path-integral representation for the eff
tive diffusion function of a passive scalar field forb50 was
suggested by Drummond in Ref.@36#.

The difference between solutions~B1! and~A1! is as fol-
lows. The functionn„s,j(t,s)… in Eq. ~A1! depends explic-
itly on the random velocity fieldv via the Wiener pathj,
while the functionn(s,z(t,s)) in Eq. ~B1! is independent of
the velocityv. Using Eq.~B1! allows us to separate the av
erage over the random Wiener process, and the average
4-7
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the random velocity field. Due to the Markovian property
the Wiener process, solution~B1! can be rewritten in the
form

n~ t,x!5E$S~ t,s,x,Y! n~s,Y!%5E Q̃~ t,s,x,y!n~s,y! dy,

~B5!

where

Q̃~ t,s,x,y!5„4pD~ t2s!…23/2

3expS 2
~y2x!2

4D~ t2s! DS~ t,s,x,y!, ~B6!

S~ t,s,x,y!5M n$J~ t,s,n!G̃~ t,s,n!%, ~B7!

and M n$•% means a path integral taken over the set
Wiener trajectoriesn which connect points (t,x) and (s,y).
The mathematical expectationE$•% in Eq. ~B5! denotes an
averaging over a set of random pointsY which have Gauss
ian statistics. Here we used here the following property
the averaging over the Wiener process:E$M n$•%%5M z$•%.

Now we make a change of variables (x,y)→(x,y5z
1x) in Eq. ~B5!, i.e.,

Q̃~ t,s,x,y!5Q̃~ t,s,x,z1x!5Q~ t,s,x,z!. ~B8!

The Fourier transformation in Eq.~B5! yields

n~ t,x!5E E Q~ t,s,x,k!exp~ ik•z! dk

3E n~s,q!exp@ iq•~z1x!# dq dz.

Sinced(k1q)5(2p)23*exp@i(k1q•z)#dz, we obtain

n~ t,x!5~2p!3E Q~ t,s,x,2q!n~s,q!exp~ iq•x!dq.

~B9!

In Eq. ~B9!, the functionQ(t,s,x,2q) is given by
.

v.

tt

02630
f

f

f

Q~ t,s,x,2q!5~2p!23E Q~ t,s,x,z!exp~ iq•z! dz.

~B10!

SubstitutingQ̃(t,s,x,y)5Q(t,s,x,z) in Eq. ~B5!, and taking
into account thaty5z1x we obtain

n~ t,x!5E Q~ t,s,x,z!n~s,z1x!dz. ~B11!

Equation~B10! can be rewritten in the form

~2p!3Q~ t,s,x,2q!exp~ iq•x!

5E Q~ t,s,x,z!exp@ iq•~z1x!# dz. ~B12!

The right hand sides of Eqs.~B11! and~B12! coincide when
n(s,z1x)5exp@iq•(z1x)#. Thus a particular solution@Eq.
~B11!# of Eq. ~4! with the initial condition n(s,y)
5exp(iq•y) coincides in form with integral~B12!. On the
other hand, a solution of Eq.~4! is given by Eq.~B1!. Sub-
stituting the initial conditionn(s,z)5exp(iq•z)5exp@iq•(x
1(2D)1/2w)# into Eq. ~B1! we obtain

n~ t,x!5M z$J~ t,s,z!G̃~ t,s,z!exp@ iq•~x1~2D !1/2w!#%.
~B13!

Comparing Eqs.~B11!–~B13!, we find that

Q~ t,s,x,2q!5~2p!23M z$J~ t,s,z!G̃~ t,s,z!

3exp@ i ~2D !1/2q•w#%. ~B14!

Now we rewrite Eq.~B14! using the Feynman-Kac formul
~A1!. The result is given by

Q~ t,s,x,2q!5~2p!23M j$G„t,s,j~ t,s!…exp@ i j* •q#%,
~B15!

where j* 5j2x. Substituting Eq.~B15! into Eq. ~B9! we
obtain Eq.~A4!. The above derivation proves the assumpti
~A3! is correct for a Wiener pathj.
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