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Mean-field theory for turbulent transport of a passive so@ay., particles and gasas discussed. Equations
for the mean number density of particles advected by a random velocity field, with a finite correlation time, are
derived. Mean-field equations for a passive scalar comprise spatial derivatives of high orders due to the
nonlocal nature of passive scalar transport in a random velocity field with a finite correlation time. A turbulent
velocity field with a random renewal time is considered. This model is more realistic than that with a constant
renewal time used by Elperiet al. [Phys. Rev. B61, 2617(2000], and employs two characteristic times: the
correlation time of a random velocity fielg , and a mean renewal time It is demonstrated that the turbulent
diffusion coefficient is determined by the minimum of the timgsand 7. The mean-field equation for a
passive scalar was derived for different ratios7of.. The important role of the statistics of the field of
Lagrangian trajectories in turbulent transport of a passive scalar, in a random velocity field with a finite
correlation time, is demonstrated. It is shown that in the egaser< 7 the form of the mean-field equation for
a passive scalar is independent of the statistics of the velocity field, whei® the characteristic time of
variations of a mean passive scalar field.
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I. INTRODUCTION Veg=U—(7V(V-V)), (2

Passive scalar transport in a turbulent velocity field wa
studied intensively during the last yeafsee, e.g., Refs.
[1-7)). The main progress was achieved in understanding thgyeted as an additional turbulent flux of particles, i.e., the
properties of the_ hlgh—qrd_er moments of a passive scalafoial turbulent flux of particles is given by
e.g., non-Gaussian statistics and anomalous scalings. Note
that the non-Gaussian properties of passive fields advected
by turbulent fluid flow were already discussed in R&f.

While the analysis of high-order moments of a passive
scalar was the subject of numerous studies, only a few studnd {7.v(V -v))= VT, whereT is the mean fluid tempera-
ies discussed the dynamics of a mean passive scalar fietdre. The additional turbulent nondiffusive flux of particles
(see, e.g., Ref$§9,10]). However, the mean-field theory for [which is caused by the term(7.v(V-v))] results in the
turbulent transport of particles and gases is of great imporformation of inhomogeneities of particle distributions due to
tance in view of numerous applications. In particular, thisthe excitation of a large-scale instability. One of the most
theory is applied for an analysis of transport of aerosolsjmportant conditions for instability is the inhomogeneous
pollutants and cloud droplets in atmospheric turbulence ofpatial distribution of the mean temperature. In particular,
the Earth and other planetsee, e.g., Refd.11-2(), dust large-scale instability can be excited in the vicinity of the
transfer in interstellar turbulence and turbulent transport ofminimum in the mean temperatufeee Refs[6,28]). For
particles and gases in industrial flosee, e.g., Ref§21— instance, in atmospheric turbulence large-scale instability
24)). can be excited in the vicinity of the temperature inversion

The mean-field equation for a passive scalar is given by(see Ref[18]).

Equationg(1) and(2) were derived for the random veloc-
ity field & correlated in time. It was recently shown Rf0]
that when a random velocity field has a small yet finite cor-
relation time, the mean-field equation has a much more com-
whereD+ is the turbulent diffusion coefficient, andLg is an  plicated form than Eq(1). In particular, it contains high-
effective velocity. For an incompressible velocity fiely;  order spatial derivatives. In Ref10] a model of a random
=U, whereU is the mean fluid velocitysee, e.g., Refs. compressible velocity field with a constant renewal time was
[25-27). However, when the velocity field is not diver- considered. This allowed one derive a mean-field equation
gence frede.g., due to particle’s inertidhe effective veloc- for the number density of particles advected by a random
ity is given by velocity field with a finite correlation time. However, this

Ssee Refs[6,28]) where 7. is the correlation time of a tur-
bulent velocity field. The second term in E@) can be in-

Jr=NVg—D7VN, 3)

N
— T V-(NVes—D7VN) =0, (1)
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model is limited by the assumption of a constant renewakpheric and oceanic sciengewhere Eq.(4) is solved nu-
time, and does not describe a real turbulent velocity field. merically using averaging over trajecto§) (see, e.g., Refs.

In the present study we consider a turbulent velocity field 16,20]).
with a random renewal time. This model is more realistic We consider a random velocity field which loses memory
than that used in Refl0]. In particular, when a mean re- at random instants of time. The velocity fields before and
newal time is very large in comparison with the correlationafter renewal are assumed to be statistically independent. We
time of the velocity field, we recover the results obtained forintroduce this assumption in order to decouple averaging into
a turbulent flow without renewal. In this model there are twoaveragings over two time intervals. Indeed, the function
characteristic times: the correlation time of a random velocG(t,£) in Eq. (5) is determined by the velocity field after the
ity field 7., and the mean renewal timre It is demonstrated renewal, while the number density of particless,x) is de-
that the turbulent diffusion coefficient is determined by thetermined by the velocity field before renewal. This model
minimum of the timesr, and 7. In the present study the reproduces important features of some real turbulent flows.
mean-field equation for a passive scalar was derived for difThus, e.g., the interstellar turbulence, which is driven by su-
ferent ratios ofr/7.. We demonstrate an important role of pernova explosions, loses memory in the instants of explo-
the statistics of the field of Lagrangian trajectories in turbu-sions (see, e.g., Ref{29]). Between renewals the velocity
lent transport of a passive scalar in a random velocity fieldield can be random, with intrinsic statistics. In order to ob-
with a finite correlation time. tain a statistically stationary random velocity field, we as-

The model of a turbulent velocity field with a random sume that velocity fields between renewals have the same
renewal time reproduces important features of some real tusstatistics. The random renewal instants destroy the stationar-
bulent flows. Indeed, the interstellar turbulence is driven byity of the velocity field. On the other hand, between random
supernova explosions and it loses memory at the instants eénewal instants the velocity field is stationary.
explosions(see, e.g., Ref.29]), which can be described by In order to perform calculations in a closed form, we as-
the Poisson process. Note that discussions on practical diffsume that random renewal times can be described by a Pois-
sion models in atmospheric sciences based on Lagrangiaon process, as suggested in R2f]. A two-point correla-
techniques can be found, e.g., in reviews REI$,20. tion function of the velocity field is given by

Il. GOVERNING EQUATIONS frn= (Um(1,X)0n(S,Y)) = F et =S, X,y)EXH — N[t =5]),

7
In the present study we derive an equation for a mean @
passive scalar fiel¢e.g., a number density of particlead-  where the function exp{\|t—s|) describes a Poisson process
vected by a random velocity field. The equation for the numfor a random renewal time, ang=1/\ is the mean renewal
ber densityn(t,r) of small particles advected by a random time. The correlation time of a random velocity field is given
fluid flow reads by

an(t,r)
at

+V-(nv)=DAn, (4) TC:J fnm( 7:X,X)d 7/ f (0., X) . (8)

whereD is the coefficient of moleculaBrownian diffusion,  Thus we introduced a model which is described by three
andv(t,r) is a random velocity field of particles which they random processes) the Wiener random process, which de-
acquire in a turbulent fluid velocity field. We will take into scribes Brownian motions, i.e., molecular diffusidii) the
account the compressibility of velocity fieM-v+0, which ~ Poisson process for random renewal times; @ingithe ran-
occurs due either to the compressibility of the fluid itself ordom velocity field between the renewals. The correlation
due to the particle’s inertia. Equatigd) implies the conser- time in the maximum scale of turbulent motiohs is
vation of the total number of particles in a closed volume. =lq/up, whereuy is the characteristic velocity in the maxi-
WhenD #0, particles are transported by both fluid advec-mum scale of turbulent motiorlg. The model of a turbulent

tion and Brownian motioné.e., molecular diffusion In this  velocity field with random renewal instants used in our paper

case the functiom(t,x) is given by implies that a random forcing acts continuously. Therefore,
between renewals, turbulence does not dé¢sag Eq(7) of
n(t,x)=MAG(t,Hexp & - V)n(s,x)} (5 our papel.

_ i Now we average E(5) over a random velocity field for
(see Appendix A whereM -} denotes the mathematical 4 given realization of a Poisson process,

expectation over the Wiener paths
(N(t,x)=MA(G(t",Hexd £ (t')-VI){n(s,x))}, (9)

where the times is the last renewal time before andt’
=t—sis a random variable. Indeed, averaging of the func-
& =&—x, w(t) is a Wiener process which describes the mo-tions G(t’,&exd & (t')- V], n(s,x) can be decoupled into
lecular diffusion,G(t,x) =exd — [tb(u.£) du] andb=V-v.  the product of averages since the first function is determined
Note that there exists a large number of studfticularly by the velocity field after the renewal, while the second func-
Lagrangian models of passive tracer transport in the atmaion n(s,x) is determined by the velocity field before re-

t—s
E=x— fo V(t— ., & du+\2Dw(t—s). (6)
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newal. We average E¢) over the random renewal time At = 1( 2P o\ g o
taking into account the stationarity of the Poisson process. f do ((9—) + >l 7= (X) T N(t,x)(x)
The probability densityp(t’) for a random renewal timg is 0 ) 5=0 9o o

iven by p(t") =Aexp(—At"). The resulting averaged equa-
g yp(t') PAL') ¢ ged eq X exp(— o) =0, (14

tion is given by

t where we neglected the termsO[ (o/)\)3]. Then Eq.(14)
N(t,x)zf P(u,X,i V)N(t— u, ) exp —Au)du reduces to
0

1 9%P

do N go?
-

+exp(—M)P(t,X,i V)No(x), (10) IN(t,X) Z(W
ot

N(t,x), (15)
whereN(t,x)=E_{(n(t,x))} andNy(x)=N(t=0x), E{-} 0

denotes an averaging over random renewal times, where the operatoP(a,x,iV) is given by

P(t.xiV)=MA(G(t,§)exd & - V) ]}, 1D P(,x,iV)=1—0f(b)+ () Vet DA]+(02/2)[V (v, b)
and the probability that no renewal occurs during titne +Vp<vpvm>Vm+(vmb>Vm]+O(03)- (16
exp(—At). The first term in Eq(10) describes the case when
there is at least one renewal of the velocity field during theSubstituting Eq(16) into Eq. (15), we obtain
timet (i.e., the Poisson eventwhereas the second term de-
scribes the case when there is no renewal during the time oN (efin A _
Now we use the identity ot T V(Y "N=DmnVoN) =0, 17
d h
N(t—n,x>=exp(—m N(tD), where
VN =y —(rvb) (18)
which follows from the Taylor expansion A
Din=D Smnt{mvmun), (19

©

1 a\m d
f(t+7-)=mZ:0 H( Tﬁ> f(t):exp( Ta)f(t).

Thus Eq.(10) can be rewritten as

fMP (o v o J
. )\,X,I ex 3t

+exp(—At)P(t,X,iV)Ny(x)=0.

exp(—o)do—1|N(t,x)

(12

and(v)=U and(b)=V-U. The turbulent transport coeffi-
cients[see Eqgs(18) and(19)] derived above are different by

a factor 2 from those obtained for a model withSacorre-
lated in time random velocity field, and for a model with a
constant renewal time. It is known that the model witld a
correlated in time random velocity field and the model with a
constant renewal time do not recover the known turbulent
diffusion tensoK v ). Thus, in these two models, one has
to rescaler— 27 in order to recover a correct coefficient of

Equation(12) generalizes the mean-field equation for a pasturbulent diffusion. The reason for this inconsistency is
sive scalar advected by a random velocity field with a conpurely formal. Thus, the function is normalized in the in-

stant renewal timgcompare with Eqs(19) and(D6) derived
in Ref.[10])]. Indeed, whenr=const. Eq.(12) reads

pr (13

P(T,x,iV)exp( - ri> - 1}N(t,x)=0.

IIl. MEAN-FIELD EQUATION FOR A PASSIVE SCALAR

terval from — to o, while in the model with & correlated

in time random velocity field one has to integrate over the
time from O to. The reason that the coefficient of turbulent
diffusion in a turbulent velocity field with random renewals
is twice as large in comparison with that for a constant re-
newal time is as follows. Let us consider two random walks.
The first one,gﬁl), performs jumps at a distaneer to the
left and right with probabilities 1/Zherev and 7 are con-

In this section we derive mean-field equations for a passtants. The second one_;gz), performs jumps to the left and
sive scalar using different models of a random velocity field.right with the same probabilities with velocity during a

This allows us to elucidate some important features of a tur;

andom time intervak, whereu has a Poisson distribution

bulent transport of a passive scalar in a random velocity fiquNith a mean value- A direct calculation shows that the root

with a finite correlation time.

A. Random velocity field with a small renewal time

Consider a very small renewal time, i.es<min{7;7}.
Expanding the functions  P(o/\,x,iV) and
exd —(a/\)(dldt)] into Taylor series in the vicinityr/A =0
yields

mean square value qfﬁz) is twice as large as the root
mean square value @tV . Formally, a factor 2 in7v )
and in (7vb) arises because these terms in operdor
are proportional too? [see Eq.(16)] and the integral
[oo?exp(—o) do=2.

Note that the turbulent diffusiol,,, and the effective
drift velocity V(™ in the caser<min{z,, 7} are determined
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only by the renewal timer, rather than byr. or 7o. The  assume that the Lagrangian trajectori&sand the random
reason is that for the small renewal time<min{7.;7o} the  function £ G(t,£€) have Gaussian statistics. For a homoge-
velocity field does not change during a small timeand the  neous random velocity field, we assume tNBE{(£)} =0,
turbulent transport coefficients are determined by the rep AEEEN =WS,f(0),  MA(EG) =—0Vy, and

newal timer only. M £(G)}=1. The latter equation implies the conservation of
the total number of particles. Hef¢o) = o for o< 7, and
B. Random velocity field with Gaussian statistics for the f(o)= 7-5(20/ 7.—1) for e=7,. These equations yield

integrals fv(u,&du and fb(p,& du _
Now we consider a model with a random homogeneous PloxiV)=(1=0V - V)exi (1/2f(c)WA],  (27)

velocity field in which the integrals/v(u,&) du and  \here we used the identities
Sb(u,& du have Gaussian statistics. Using an identity

E{exp@n)}=exp@?¥2) and Eq.(11), we obtain E{expan)}=expa?/2), (28
P(o,%,iV)=exd (1/2) 6DV mVa— oVED. V], (20 ]
(o ) H(1/2)oDppViVa—o 1, (20 anQaﬂL,ug) —gexpa), (29)
gV == MJ(&,(09(x)}, (D) w0
R andy is a Gaussian random variable with zero mean and unit
D mn=MA(ERX) &G (X))}, (220 variance. Equation&L0) and (29) yield, for r.<r,

where 5 is a Gaussian random variable with zero mean and N .
unit variance G =exp@), andM f(G)} = 1. The latter yields = ~LN(tX), (30)

M (g)}=—(1/2)M (g%}, where g=(g)+g. When 7,

<71 or 7.<7\, these turbulent transport coefficients are ~ 1
given byc § L=7WA+ 2—7[\/1—4TV-V—1]. (31
Vg?ﬁ)=—2j Mé‘{(Um(O,g)b(OJ,g»} dO'/—M§{<§>}/O', WhenTc<T<TN, EC](31) reads
0 ~
(23 L=7WA—V.-V—7(V-V)2, (32
@ , , where W/V2> 7/ 7. and ry=min{Ly/V;LZ/D+}. For =1y,
Dmn:zfO Md(vm(0.8vn(co”,§))} do”, (249 the mean number density of particles is determined by the

equation

whereD ,n=Dmnnt 2D 6mn, and we used the identity N(t.x) = (1— V- V)exp t WA N(t=0) 33
1 (o] ¥ .

® ®
M§[<f am(p',x) d,u’J Cn(p",X) d,u”>} In order to derive Eq(33), we used Eq(10) in which the
0 0 first term on the right hand side is neglected for large
o (small\). Now we differentiate Eq(33) with respect tat,
:ZMJ M d(am(0x)cn(p’, X))} du’. (25  and neglect terms-O(t 1) for very large times. Thus we
0 arrive at the equation
Note that MA(&)}=—M4([ov(o',§)da’)#0, even IN
when (v(t,x))=0. When (vb)#0 the mean trajectory a—t=1-CWAN(t,x). (34
M(&")}#0, due to an anisotropy which is caused by the
honzero vectofvb). Substituting Eqs(20), (23), and(24)  Note that for this model of the random velocity field, the

into Eq. (10), we obtain form of a mean-field equation for a passive scalar is different
IN from that derived for other mode[see Eqs(30) and(31)].
E=[(l/2)f)manVn—V(em'V]N(t,X)- (26) Moreover, in the case of>maxXr.;n}, the mean-field

equation for a passive scalar does not contain the effective
velocity V(¢ i.e., it is independent of the compressibility of
the velocity fieldv. Only in the caser.<r<7y the mean-
field equation for a passive scalar is similar to EdS) and
(26), which were derived using different models for random
velocity field. Indeed, Eq€$30) and(32) for 7. <7< 7y yield

Using Egs.(13) and (20) for the case mdx,;m}<t also
yields Eq.(26). Note that the form of Eq(26) obtained for
T<min{7,7y} and maxr.;m}<7 coincides with Eq.(17),
derived for the case<<min{z;;7\}.

C. Random velocity field with Gaussian statistics for the ON _
Lagrangian trajectories £ and random function &* G(t,£) E_va(VmN_WmnVnN):O: (35

Now we consider a model for a random velocity field with 5
Gaussian statistics for the Lagrangian trajectories, i.e., wahereW,,,= 7. W= 7V, -
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D. Weak inhomogeneity and slow evolution of the mean fluctuations of the particle number density, even for a very
number density of particles small compressibility of a random velocity field with a finite

In the caser,< <y the mean-field equation for a pas- correlation time(see Ref[19]). . .

sive scalar is independent of the statistics of the velocity The obtained results are important in studies of turbulent
field, Lagrangian trajectories and other characterigtidsere  transport in various naturally occurring and industrial flows,
7v=min{Ly/V;L3/D7}). Indeed, consider a weakly inhomo- Where commonly used local second-order differential trans-
geneous case and slow evolution of the mean number densiB@rt models are employed. In particular, these results may be
of particlesN. Note that a weakly inhomogeneous case im-Of relevance in atmospheric phenomefeag., dynamics of
plies largery. Expanding in Taylor series the first term of cloud droplets and atmospheric aerosols, smog formation,
Eg. (12) and Eq.(11) for small spatial and time derivatives etc. We considered a low Mach numbers compressible tur-

of N, we arrive at the equation bulent fluid flowV-v#0, i.e.,V-v=—(v-Vp)/p, wherep
N is the density of the fluid. In an atmosphere without tempera-
o (VENY D V.V IN=0, (36) ture |nver5|9r11, the (_:haracterlstlc density stratlflc_:auon length
ot A ,=|Vplp|~*=8 kilometers, and therefor¥-v is small.

However, in an atmosphere with temperature inversion, the
where D= MA(GELE 20 and y(ef)  characteristic density stratification length in the vicinity of

=—MJ(G&)}/o. Note that the correlation functions the temperature _Inversion layeA ,~ Ay=250-300 m,
M {(GELER )} and M {(G£*)} are proportional tar. Here whereA+=[VT/T|"%. This implies that in the vicinity of the
we neglected the small second termexp(—mn/7) in Eq.  temperature inversion layer, the value of velocity divergence
(12). Notably, in the above derivation we did not use anyV -V is not so small. The velocity field, of droplets and
assumptions about the statistics of the velocity field, the Laaerosols is also compressible, i.e.V-v,=V.v
grangian trajectories, and the functi@n +TpV'(VPf/p)+O(T’2)) Ref. [6], where the velocity of
droplets or aerosolg, depends on the velocity of the atmo-
spheric fluidv, and can be determined from the equation of
motion for a particle. This equation represents a balance of
We deve|oped a mean-field theory of transport of a paspal’tide inertia, with the fluid drag force produced by the
sive scalar(e.g., particles and gasem a random velocity motion of the particle relative to the atmospheric fluid and
field with a finite correlation timer,. We used a model of gravity force. HereP; is the atmospheric fluid pressure, and
the velocity field with a random renewal time. The mean-7, is the characteristic time of the coupling between the par-
field equation for a passive scalar is derived for arbitranicle and atmospheric fluigStokes timg Solution of the
ratios 7/ 7, wherer is the mean renewal time. In a general equation of motion for small particles with,>p yields v,
case the latter equation is an integral equation. However, ifFV+Vy— [ dv/dt+ ((v+ Vg)-V)v]+O(T§) (see Ref.
various applications the second-order differential equation§30]), whereV = 7,9 is the terminal fall velocityg is the
(in spatial variablesfor the mean passive scalar field are acceleration due to gravity, ang is the material density of
used. We determined the conditions when the mean-fielgarticles.
equation can be reduced to a second-order differential equa- The formation of large-scale inhomogeneities of aerosols
tion for different models of a turbulent velocity fielde., and droplets in a turbulent atmosphere is associated with
different statistics of the velocity field, Lagrangian trajecto-both particle inertia and correlation between velocity and
ries, and other flow field characteristicsVe demonstrated temperature fluctuations of an atmospheric fluid in the pres-
an important role of the statistics of the Lagrangian trajectoence of a nonzero mean fluid temperature gradient [®éf.
ries of particles for turbulent transport of a passive scalarlndeed, the inertia of particles results in the fact that particles
We also found that the turbulent diffusion coefficient is de-with p,>p inside the turbulent eddy are carried out to
termined by the minimum of the correlatian and average boundary regions between the eddies by inertial foftes
renewalr times. regions with low vorticity or high strain rate; see, e.g., Refs.
The considered model of a turbulent velocity field with a[30,31)). On the other hand, the inertia effect cauSes/,
random renewal time is quite general. In particular, when ax7,AP#0. In addition, for large Peclet numbe®. v, =
mean renewal time is very large in comparison with the cor—dn/dt [see Eq(4)]. Thereforedn/dte — r,AP¢. This im-
relation time of the velocity field, we recover the results plies that in regions wher& P;<0, there is an accumulation
obtained for a turbulent flow without renewal. On the otherof inertial particles(i.e., dn/dt>0). Similarly, there is an
hand, in the case<r, the random velocity field behaves outflow of inertial particles from the regions withP;>0.
similarly to the é correlated in time random velocity field. In a turbulence without large-scale external gradients of tem-
It was recently foundsee Ref[19]) that due to the finite perature, a drift from regions with increas@hkcreasedcon-
correlation time of a random velocity field, the field of La- centrations of inertial particles by a turbulent flow of fluid is
grangian trajectories is compressible even if the velocityequiprobable in all directions. The location of these regions
field is incompressible. The compressibility of the field of is not correlated with the turbulent velocity field. Therefore
Lagrangian trajectories results in the excitation of a smallthey do not contribute to the large-scale flow of inertial par-
scale instability of the second moment of the particle numbeticles.
density, and the formation of small-scale inhomogeneities of The situation is drastically changed when there is a large-

IV. DISCUSSION
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scale inhomogeneity of the temperature of the turbulent flowout temperature inversion, the temperature gradient is 1 K
In this case the mean heat fl4x6)+ 0. Therefore, fluctua- per 1000 m, and the ratib/(emlvg| for particles of radius
tions of both the temperatuand velocityv of the fluid are  30-300 um changes in the interval: 0.27-0.15. In an atmo-
correlated. Fluctuations in the temperature cause fluctuationsphere without temperature inversion the effective particle
of the pressure of the fluid, and vice velsge the equation velocity is directed opposite to the terminal fall velocity, and
of statePi=pxgT;/m,, where kg is the Boltzmann con- thus the effective particle velocity decreases the effective
stant,m,, is the mass of molecules of atmospheric fluid, andsedimentation velocity by 10—30 %. On the other hand, in an
Tt is the fluid temperatuje The pressure fluctuations result atmosphere with a temperature inversion the temperature
in fluctuations of the number density of inertial particles. gradient is 1 K per 100 m and the ra‘p¢<eﬁ)/vg| for par-
Indeed, an increasglecreasein the pressure of the atmo- ticles of radiusa, =30-300 um changes in the interval
spheric fluid is accompanied by an accumulatioatflow) of 2,715 In this case, the effective particle velodit§f™ is
the particles. Therefore, the direction of the mean flux ofiarger than the terminal fall velocity. In the atmosphere
particles coincides with that of the heat flux, i.€v,n)  with a temperature inversion, the effective particle velocity
x(v@)x—VT, whereT=(Ty) is the mean temperature of an v(¢f is directed to the temperature minimum, and this re-
atmospheric fluid with a characteristic valdg, , and T sults in an accumulation of particles in the vicinity of the
=T+ 6. Therefore the mean flux of the inertial particles temperature inversion.
(aerosols and dropletss directed to the minimum of the  The additional turbulent nondiffusive flux of particles due
mean temperature, and the inertial particles are accumulated the effective velocityV(®™ results in the formation of
in this region(e.g., in the vicinity of the temperature inver- inhomogeneities of aerosol distributions, whereby the initial
sion layey. This effect is more pronounced when the atmo-spatial distribution of particles in the turbulent atmosphere
spheric turbulent fluid flow is inhomogeneous in the direc-evolves under certain conditions into a large-scale inhomo-
tion of the mean temperature gradient. Thus, in a turbulengeneous distribution due to the excitation of an instability.
atmosphere, this effe¢the effect of turbulent thermal diffu- One of the most important conditions for the instability is an
sion) causes an accumulation of aerosol particles in the viinhomogeneous spatial distribution of the mean atmospheric
cinity of the temperature inversion. On the other hand, turtemperaturdsee Refs[6,17,29). In particular, the instabil-
bulent diffusion results in a relaxation of the particle jty can be excited in the vicinity of the minimum in the mean
inhomogeneities. Thus two competitive mechanisms of partemperature. The characteristic time of the formation of in-
ticle transport, i.e., mixing by turbulent diffusion and the homogeneities of particles iss~A+1/|VEM -V |. The for-
accumulation of particles due to turbulent thermal diffusion,mation of inhomogeneities is possible whetf >V,. The
exist simultaneously with the effect of gravitational settlinginitially spatial distribution of the concentration of the iner-
of particles. tial particles evolves into a pattern containing regions with
The effective velocityv ™ (which determines accumula- increaseddecreasedconcentrations of particles. The char-

tion of particles caused by the effect of turbulent thermalacteristic vertical size of the inhomogeneity is of the order of
diffusion) can be estimated as
(ngP

Dr

-12

VEN = — (7 (V-vy)) li~Aq InRe

= —(213)V,A(Rea, ) Ap IN(R(VT)/T  (37)

oT
T,

Thus it is important to take into account the additional tur-

(see Refs[6,18)), where we neglected the small molecular bulent nondiffusive flux of particles due to the effective ve-

flux of the particles and the compressibility of the surround-0City V' in atmospheric phenomen@.g., atmospheric
ing fluid. Here A(Rea,)=1 when the particle size aerosols, cloud formation, and smog formajio®bserva-
N * *

<ay, A(Rea,)=1-3In(a, /a,)/In(Re) for a,=a,, ay tlﬁns oLvertlcaI' distributions of gerosols in the atmr?sphere
=r4(plp,) Y2 Re=lgu/v is the Reynolds numberry S ow that maximum concentrations can occur within tem-

=1,Re ¥ is the viscous scale of the turbulent fluid flow, perature inv_ersion layersee, €.9., Re{32], and references
andDt=ugly/3 is the coefficient of the turbulent diffusion. therel_r). Using the characteristic parameters of the atmo-
Thus, e.g.a,~20 um for Re=10’, 1,=100 m, andp,, spheric turbulent boundary layéa maximum scale of turbu-
=1 g/cn?. The effective velocityv (™ of particles deter- lent flow o~ 10?__104 cm; a velocity on a scalé, of Ug
mines a turbulent contribution to the particle velocity, due to__ 30-100 cm/s; and a Reynolds number-ReéF—10) we

both the effect of inertia and the mean temperature gradienf’.b'[aln that for particles with material density,~1

Remarkably, Eq(37) for the effective velocity of the par- f—Zg/c'rrF ar]}‘?‘ rﬁdiusa* =30 '“mf t:e charac:ceristic.tiTe Orf]
ticles provides a local parametrization of the turbulence efformation of inhomogeneities of the order of 11 min for the

fects, and it can be directly incorporated into existing atmo-emperature gradient 1 K/100 m and 106 min for the tem-

spheric numerical models. It is seen from Eg7) that the Perature gradient 1 K/200 m. For particles of the size

ratio |V(M/V,| is of the order of =100 wm, the characteristic time for the formation of inho-
g mogeneities of the order of 1 min for the temperature gradi-
|V(eff)/\/g|~(AP/AT)(5T/T*)In Re, ent 1 K/100 m and 121 min for the temperature gradient

1 K/200 m. These estimates are in compliance with the
where 5T is the temperature difference in the scalg, and  characteristic times of formation of inhomogeneous struc-
T, is the characteristic temperature. In an atmosphere withtures in atmosphere. We expect that the spatial densjty m
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of particles inside the inhomogeneous structures is of the *

order of the density of the surrounding fluid. exdi & -q]=>, (1K)(i& - q)k (A5)
The effect of turbulent thermal diffusion may also be of k=0

relevance in combustion. In particular, this effect may cause,,

the formation of inhomogeneities in the spatial distribution

of fuel droplets in internal combustion enginésee, e.g.,

Refs. [22,24,33). Indeed, the characteristic parameters of

turbulence in a cylinder of internal combustion engine are as n(t,x)=M;

follows: maximum scale of turbulent floly~0.5-1 cm; a

velocity on thel, scale ofuy~100 cm/s; a Reynolds num-

ber Re-(0.7—7)x10% characteristic values of the mean X(& - W)k

temperature distribution on a scale;~13-18 cm; and a

dimensionless mean spatial temperature varia&dnT,

~0.3-0.5(see, e.g., Ref§22,24,33). Then the characteris- After the inverse Fourier transformation in H&6), we ob-

tic time of formation of inhomogeneities in a spatial distri- tain Eq.(5). Equation(A3) can be formally considered as an

bution of droplets of radiusa, =30 um is ~(3-6) inverse Fourier transformation of the functio(t, ). How-

X102 s. Notably, this time is comparable to the durationever,£ is the Wiener path, which is not a usual spatial vari-

of an engine cycle. These turbulence induced inhomogeneble. Therefore, it is desirable to derive E44) by a more

ities in the spatial distribution of the evaporating fuel drop-rigorous method, as done in Appendix B.

lets have strong effects upon combustion, soot, and emission

formation (see, e.g., Ref§22,24,33). APPENDIX B: DERIVATION OF EQ. (A4)

e use an identityi@))“exix- q]= V¥exfix- q]. Using this
identity, and Eqs(A4) and (A5) we obtain

©

G(t,s,f){g,o (1K!)

fn(s,q)exp(iq-x) dq]. (AB)

In this section we will derive EqA4). In order to derive
Eqg. (A4) more rigorously we use an exact solution of the
This study was partially supported by The German-IsraeliCauchy problem for Eq(4) with an initial conditionn(t

Project CooperatiofDIP) administrated by the Federal Min- =s,X)=n(s,X) in another form,

istry of Education and Resear(BMBF) and INTAS (Grant _

No. 00-0309. D.S. is grateful to a special fund for visiting n(t,x)={4J(t,s,0)G(t,s,8) n(s,&(t,s))},  (BL)
senior scientists of the Faculty of Engineering of the Ben-

Gurion University of the Negev, and to the Russian FoundaWwhere

tion for Basic ResearctRFBR) for financial support under

- t
Grant No. 01-02-16158. G(t,s,g)zex;{—f b( .8t ) d“} 82)
S
APPENDIX A: DERIVATION OF EQ. (5)

t—s
In this appendix we will derive Eq(5). To this end we J(t-S,é'):eXF{ —(ZD)_”ZJ v(t—7n,4t,7))- dw(zy)
use an exact solution of Eq4) with an initial condition 0
n(t=s,x)=n(s,x) in the form of the Feynman-Kac formula:

n(t,x)=MdG(t,s,&(t,s))n(s,&t,9))}, (AL)

ACKNOWLEDGMENTS

t—s
—(4D)‘1J'0 vz(t—n,l(t.n))dn}, (B3)

g(t,9)=x+(2D)* A w(t) —w(s)), (B4)

t
G(t,S,§)=eXF{—Jsb(Mf(t,,u))d,u ; (A2)

wherew(t) is a Wiener procesdyl -} denotes the math-
ematical expectation over the Wiener pathandb=V-v.
®Note that there is a singularity in E¢B3) at D—0. How-
ever, this singularity in the final result is eliminated by a

whereM 4 -} denotes the mathematical expectation over th
Wiener paths  &(t,8)=x—Jg V[t—p,&t )] du

+(2D)"Aw(t—s). Now we assume that change of variablegsee below Refs.[10,34. As follows
from Cameron-Martin-Girsanov theorem, the transformation
n(t,g):f exp(i £ gq)n(s,q) dq. (A3)  from Eq.(Al) to Eq.(B1) can be considered as a change of
variablesé— ¢ in the path integralEq. (Al)] (see, e.g., Ref.

[35]). Note that the path-integral representation for the effec-
tive diffusion function of a passive scalar field for=0 was
suggested by Drummond in R¢B6].

Substituting Eq(A3) into Eq.(A2), we obtain

n(t,x)=f MAG(t,s,&(t,s))exdi & -qIn(s,q)} The difference between solutiofB1) and(Al) is as fol-
lows. The functionn(s, £(t,s)) in Eq. (Al) depends explic-
Xexp(ig-x) dq, (A4) itly on the random velocity fields via the Wiener pathg,

while the functionn(s,{(t,s)) in Eq. (B1) is independent of
where & =£&¢-x. In Eq. (A4), we expand the function the velocityv. Using Eqg.(B1) allows us to separate the av-
exdi&* -q] in Taylor series ag=0, i.e., erage over the random Wiener process, and the average over
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the random velocity field. Due to the Markovian property of s _
the Wiener process, solutiofB1) can be rewritten in the Q(t,s,x,—q)=(2m) fQ(t,s,x,z)exp(lq-z) dz.

form (B10)

n(t,x)=E{S(t,s,x,Y) n(S'Y)}:j Q(t,s,x,y)n(s,y) dy, _Substitutingé(t,s,x,y):Q(t,s,x,z_) in Eq. (B5), and taking
into account thay=z+x we obtain

(BS)
where n(t,x)=j Qt,sx2n(s,z+xdz.  (B1Y)
Q(tsxy)=(mD(t=s) ¥ Equation(B10) can be rewritten in the form
xexp( - %) S(t,s,x,y), (B6) (2m)%Q(t,s,%, —q)exp(iq-x)
Stsxy)=MtsnBtsy}, (B = | Qtsxaedia e @12

and M {-} means a path integral taken over the set ofThe right hand sides of EqéB11) and(B12) coincide when
Wiener trajectoriesr which connect pointst(x) and s,y).  n(s,z+x)=exgdiq-(z+x)]. Thus a particular solutiofEq.
The mathematical expectatidg{ -} in Eq. (B5) denotes an (B11)] of Eg. (4) with the initial condition n(s,y)
averaging over a set of random poinswhich have Gauss- =exp(q-y) coincides in form with integra(B12). On the
ian statistics. Here we used here the following property ofother hand, a solution of Eg4) is given by Eq.(B1). Sub-
the averaging over the Wiener proceB$M ,{-}}=Mg-}. stituting the initial conditionn(s, &) =exp(q- &) =exdiq- (x
Now we make a change of variableg,y)— (X, y=z +(2D)Yaw)] into Eq.(B1) we obtain
+Xx) in Eq. (B5), i.e., 3
n(t,x)=MAJ(t,s,0)G(t,s,H)exdig- (x+(2D) ) ]}.

Qt,sxy)=0Q(t,5,x,2+Xx)=Q(t,5,x,2).  (BY) (B13)
The Fourier transformation in EGB5) yields Comparing Eqs(B11)—(B13), we find that
)= -3 e
n(t,x):j f Q(t,s,x,k)exp(ik- z) dk Q(t,s,x,—q)=(2m) M;{J(I,S,DG(I,S,D
X exdi(2D)Y%q-w]}. (B14)
Xf n(s,q)exdig-(z+x)]dqdz. Now we rewrite Eq.(B14) using the Feynman-Kac formula

(Al1). The result is given by

Q(t,s,x,—q)=(2m) *MLG(t,s,&t,s))exdi& - ql},
(B15)

Sinced(k+q)=(27) *fexdi(k+q-2z)]dz, we obtain

n(t,x)=(27-r)3f Q(t,s,x,—g)n(s,q)expiq- x)dq.
(BY) where & = £—x. Substituting Eq.(B15) into Eq. (B9) we
obtain Eq.(A4). The above derivation proves the assumption
In Eq. (B9), the functionQ(t,s,x,—q) is given by (A3) is correct for a Wiener path.
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